化工进展 ›› 2025, Vol. 44 ›› Issue (5): 2758-2766.DOI: 10.16085/j.issn.1000-6613.2024-1931
• 合成材料利用 • 上一篇
付东龙(
), 冯冠晴, 徐心泉, 陆振谱, 裴春雷, 巩金龙(
)
收稿日期:2024-11-22
修回日期:2024-12-27
出版日期:2025-05-25
发布日期:2025-05-20
通讯作者:
巩金龙
作者简介:付东龙(1990—),男,教授,博士生导师,研究方向为多相催化及原位表征。E-mail:dl_fu@tju.edu.cn。
FU Donglong(
), FENG Guanqing, XU Xinquan, LU Zhenpu, PEI Chunlei, GONG Jinlong(
)
Received:2024-11-22
Revised:2024-12-27
Online:2025-05-25
Published:2025-05-20
Contact:
GONG Jinlong
摘要:
塑料的催化资源化对于应对全球塑料污染至关重要,但其大规模商业化应用面临着多种挑战。本文重点讨论了近年来在应对塑料催化资源化过程挑战的最新研究进展,探讨了塑料化学升级回收中的两大重要挑战,即低转化效率与高能耗问题。深入探讨了通过提高传统催化体系碳利用效率实现塑料废弃物高效利用的方法,并综述了新型反应体系在实验温和条件下塑料资源化利用的相关研究进展。本文通过对传统和新型塑料催化转化中催化剂、反应工艺等方面的系统讨论,提出可利用微波、等离子体等外场强化方式或其他可再生能源突破传统基于对流和热辐射的热传递方式限制,充分利用不同能量形式的协同效应,为促进面向可持续循环的塑料废弃物资源化利用的未来研究提供了新思路。
中图分类号:
付东龙, 冯冠晴, 徐心泉, 陆振谱, 裴春雷, 巩金龙. 塑料催化资源化利用研究进展[J]. 化工进展, 2025, 44(5): 2758-2766.
FU Donglong, FENG Guanqing, XU Xinquan, LU Zhenpu, PEI Chunlei, GONG Jinlong. Recent advances in catalytic conversion of waste plastics[J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2758-2766.
| 1 | KOTS Pavel A, VANCE Brandon C, QUINN Caitlin M, et al. A two-stage strategy for upcycling chlorine-contaminated plastic waste[J]. Nature Sustainability, 2023, 6: 1258-1267. |
| 2 | NEELAVANNAN Kannaiyan, Indra Sekhar SEN, LONE Aasif Mohmad, et al. Microplastics in the high-altitude Himalayas: Assessment of microplastic contamination in freshwater lake sediments, Northwest Himalaya (India)[J]. Chemosphere, 2022, 290: 133354. |
| 3 | STUBBINS Aron, LAW Kara Lavender, MUÑOZ Samuel E, et al. Plastics in the Earth system[J]. Science, 2021, 373(6550): 51-55. |
| 4 | THUSHARI G G N, SENEVIRATHNA J D M. Plastic pollution in the marine environment[J]. Heliyon, 2020, 6(8): e04709. |
| 5 | JAMBECK Jenna R, GEYER Roland, WILCOX Chris, et al. Plastic waste inputs from land into the ocean[J]. Science, 2015, 347(6223): 768-771. |
| 6 | HUFFMAN George L, KELLER Daniel J. The plastics issue[M]//GUILLET James, ed. Polymers and ecological problems. Boston, MA: Springer US, 1973: 155-167. |
| 7 | HAHLADAKIS John N, VELIS Costas A, WEBER Roland, et al. An overview of chemical additives present in plastics: Migration, release, fate and environmental impact during their use, disposal and recycling[J]. Journal of Hazardous Materials, 2018, 344: 179-199. |
| 8 | MATO Y, ISOBE T, TAKADA H, et al. Plastic resin pellets as a transport medium for toxic chemicals in the marine environment[J]. Environmental Science & Technology, 2001, 35(2): 318-324. |
| 9 | CABERNARD Livia, PFISTER Stephan, OBERSCHELP Christopher, et al. Growing environmental footprint of plastics driven by coal combustion[J]. Nature Sustainability, 2022, 5: 139-148. |
| 10 | L-A WALL, S-L MADORSKY, D-W BROWN, et al. The depolymerization of polymethylene and polyethylene[J]. Journal of the American Chemical Society, 1954, 76(13): 3430-3437. |
| 11 | SCHYNS Zoé O G, SHAVER Michael P. Mechanical recycling of packaging plastics: A review[J]. Macromolecular Rapid Communications, 2021, 42(3): e2000415. |
| 12 | ARIFUZZAMAN Md, SUMPTER Bobby G, DEMCHUK Zoriana, et al. Selective deconstruction of mixed plastics by a tailored organocatalyst[J]. Materials Horizons, 2023, 10(9): 3360-3368. |
| 13 | NIXON Kevin D, SCHYNS Zoé O G, LUO Yuqing, et al. Analyses of circular solutions for advanced plastics waste recycling[J]. Nature Chemical Engineering, 2024, 1: 615-626. |
| 14 | DERMOT O’SULLIVAN. German chemical giants join to recycle plastics[J]. Chemical & Engineering News Archive, 1990, 68(21): 8. |
| 15 | VOGT Bryan D, STOKES Kristoffer K, KUMAR Sanat K. Why is recycling of postconsumer plastics so challenging?[J]. ACS Applied Polymer Materials, 2021, 3(9): 4325-4346. |
| 16 | LI Houqian, AGUIRRE-VILLEGAS Horacio A, ALLEN Robert D, et al. Expanding plastics recycling technologies: Chemical aspects, technology status and challenges[J]. Green Chemistry, 2022, 24(23): 8899-9002. |
| 17 | HOPEWELL Jefferson, DVORAK Robert, KOSIOR Edward. Plastics recycling: Challenges and opportunities[J]. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 2009, 364(1526): 2115-2126. |
| 18 | SUN Jiakai, DONG Jinhu, GAO Lijun, et al. Catalytic upcycling of polyolefins[J]. Chemical Reviews, 2024, 124(16): 9457-9579. |
| 19 | CORMA A, ORCHILLÉS A V. Current views on the mechanism of catalytic cracking[J]. Microporous and Mesoporous Materials, 2000, 35: 21-30. |
| 20 | DUAN Jindi, CHEN Wei, WANG Chengtao, et al. Coking-resistant polyethylene upcycling modulated by zeolite micropore diffusion[J]. Journal of the American Chemical Society, 2022, 144(31): 14269-14277. |
| 21 | TAN JUN zhi, HULLFISH Cole W, ZHENG Yiteng, et al. Conversion of polyethylene waste to short chain hydrocarbons under mild temperature and hydrogen pressure with metal-free and metal-loaded MFI zeolites[J]. Applied Catalysis B: Environmental, 2023, 338: 123028. |
| 22 | COONRADT H L, GARWOOD W E. Mechanism of hydrocracking. reactions of paraffins and olefins[J]. Industrial & Engineering Chemistry Process Design and Development, 1964, 3(1): 38-45. |
| 23 | PYRA Kamila, TARACH Karolina A, Anna ŚRĘBOWATA, et al. Pd-modified beta zeolite for modulated hydro-cracking of low-density polyethylene into a paraffinic-rich hydrocarbon fuel[J]. Applied Catalysis B: Environmental, 2020, 277: 119070. |
| 24 | ZHANG Fan, ZENG Manhao, YAPPERT Ryan D, et al. Polyethylene upcycling to long-chain alkylaromatics by tandem hydrogenolysis/aromatization[J]. Science, 2020, 370(6515): 437-441. |
| 25 | DU Junjie, ZENG Lin, YAN Tao, et al. Efficient solvent- and hydrogen-free upcycling of high-density polyethylene into separable cyclic hydrocarbons[J]. Nature Nanotechnology, 2023, 18(7): 772-779. |
| 26 | LU Shenglu, JING Yaxuan, FENG Bo, et al. H2-free plastic conversion: Converting PET back to BTX by unlocking hidden hydrogen[J]. ChemSusChem, 2021, 14(19): 4242-4250. |
| 27 | LIU Jieyi, WEI Junde, FENG Xiao, et al. Ni/HZSM-5 catalysts for hydrodeoxygenation of polycarbonate plastic wastes into cycloalkanes for sustainable aviation fuels[J]. Applied Catalysis B: Environmental, 2023, 338: 123050. |
| 28 | LEE Wei-Tse, VAN MUYDEN Antoine, BOBBINK Felix D, et al. Mechanistic classification and benchmarking of polyolefin depolymerization over silica-alumina-based catalysts[J]. Nature Communications, 2022, 13(1): 4850. |
| 29 | CHEN Ruizhe, CHENG Leilei, GU Jing, et al. Mechanistic understanding of metal-acid synergetic hydroconversion of polyethylene under mild conditions over a Ru/MOR catalyst[J]. Energy Conversion and Management, 2024, 300: 117983. |
| 30 | SUN Jiakai, LEE Yu-Hsuan, YAPPERT Ryan D, et al. Bifunctional tandem catalytic upcycling of polyethylene to surfactant-range alkylaromatics[J]. Chem, 2023, 9(8): 2318-2336. |
| 31 | LIU Sibao, KOTS Pavel A, VANCE Brandon C, et al. Plastic waste to fuels by hydrocracking at mild conditions[J]. Science Advances, 2021, 7(17): eabf8283. |
| 32 | VANCE Brandon C, KOTS Pavel A, WANG Cong, et al. Single pot catalyst strategy to branched products via adhesive isomerization and hydrocracking of polyethylene over platinum tungstated zirconia[J]. Applied Catalysis B: Environmental, 2021, 299: 120483. |
| 33 | WU Xueting, WANG Xiao, ZHANG Lingling, et al. Polyethylene upgrading to liquid fuels boosted by atomic Ce promoters[J]. Angewandte Chemie International Edition, 2024, 63(8): e202317594. |
| 34 | LI Lin, LUO Hu, SHAO Zilong, et al. Converting plastic wastes to naphtha for closing the plastic loop[J]. Journal of the American Chemical Society, 2023, 145(3): 1847-1854. |
| 35 | SERRANO D P, AGUADO J, ESCOLA J M. Developing advanced catalysts for the conversion of polyolefinic waste plastics into fuels and chemicals[J]. ACS Catalysis, 2012, 2(9): 1924-1941. |
| 36 | WU Chunfei, WILLIAMS Paul T. Pyrolysis-gasification of post-consumer municipal solid plastic waste for hydrogen production[J]. International Journal of Hydrogen Energy, 2010, 35(3): 949-957. |
| 37 | WU Chunfei, WILLIAMS Paul T. Effects of gasification temperature and catalyst ratio on hydrogen production from catalytic steam pyrolysis-gasification of polypropylene[J]. Energy & Fuels, 2008, 22(6): 4125-4132. |
| 38 | ELBABA Ibrahim F, WILLIAMS Paul T. Deactivation of nickel catalysts by sulfur and carbon for the pyrolysis-catalytic gasification/reforming of waste tires for hydrogen production[J]. Energy & Fuels, 2014, 28(3): 2104-2113. |
| 39 | NISHINO Junya, ITOH Masaaki, FUJIYOSHI Hironobu, et al. Catalytic degradation of plastic waste into petrochemicals using Ga-ZSM-5[J]. Fuel, 2008, 87(17/18): 3681-3686. |
| 40 | RATNASARI Devy K, NAHIL Mohamad A, WILLIAMS Paul T. Catalytic pyrolysis of waste plastics using staged catalysis for production of gasoline range hydrocarbon oils[J]. Journal of Analytical and Applied Pyrolysis, 2017, 124: 631-637. |
| 41 | ZHANG Zedong, WANG Jia, GE Xiaohu, et al. Mixed plastics wastes upcycling with high-stability single-atom Ru catalyst[J]. Journal of the American Chemical Society, 2023, 145(41): 22836-22844. |
| 42 | ONWUDILI Jude A, MUHAMMAD Chika, WILLIAMS Paul T. Influence of catalyst bed temperature and properties of zeolite catalysts on pyrolysis-catalysis of a simulated mixed plastics sample for the production of upgraded fuels and chemicals[J]. Journal of the Energy Institute, 2019, 92(5): 1337-1347. |
| 43 | SULLIVAN Kevin P, WERNER Allison Z, RAMIREZ Kelsey J, et al. Mixed plastics waste valorization through tandem chemical oxidation and biological funneling[J]. Science, 2022, 378(6616): 207-211. |
| 44 | TISO Till, NARANCIC Tanja, WEI Ren, et al. Towards bio-upcycling of polyethylene terephthalate[J]. Metabolic Engineering, 2021, 66: 167-178. |
| 45 | ZHOU Xiaoli, WU Biao, QIAN Xiujuan, et al. Valorization of PE plastic waste into lipid cells through tandem catalytic pyrolysis and biological conversion[J]. Journal of Environmental Chemical Engineering, 2023, 11(5): 111016. |
| 46 | XU Zhen, PAN Fuping, SUN Mengqi, et al. Cascade degradation and upcycling of polystyrene waste to high-value chemicals[J]. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(34): e2203346119. |
| 47 | MUNYANEZA Nuwayo Eric, POSADA Carlos, XU Zhen, et al. A generic platform for upcycling polystyrene to aryl ketones and organosulfur compounds[J]. Angewandte Chemie International Edition, 2023, 62(36): e202307042. |
| 48 | HAN Xinlei, ZHOU Xinru, JI Tuo, et al. Boosting the catalytic performance of metal-zeolite catalysts in the hydrocracking of polyolefin wastes by optimizing the nanoscale proximity[J]. EES Catalysis, 2024, 2(1): 300-310. |
| 49 | RUBIO ARIAS Jose Jonathan, THIELEMANS Wim. Instantaneous hydrolysis of PET bottles: An efficient pathway for the chemical recycling of condensation polymers[J]. Green Chemistry, 2021, 23(24): 9945-9956. |
| 50 | CAMPANELLI John R, KAMAL M R, COOPER D G. A kinetic study of the hydrolytic degradation of polyethylene terephthalate at high temperatures[J]. Journal of Applied Polymer Science, 1993, 48(3): 443-451. |
| 51 | ZENG Wei, ZHAO Yanfei, ZHANG Fengtao, et al. A general strategy for recycling polyester wastes into carboxylic acids and hydrocarbons[J]. Nature Communications, 2024, 15(1): 160. |
| 52 | ZUNITA Megawati, WINOTO Haryo Pandu, M Fikar Kamil FAUZAN, et al. Recent advances in plastics waste degradation using ionic liquid-based process[J]. Polymer Degradation and Stability, 2023, 211: 110320. |
| 53 | ZHANG Wei, KIM Sungmin, WAHL Lennart, et al. Low-temperature upcycling of polyolefins into liquid alkanes via tandem cracking-alkylation[J]. Science, 2023, 379(6634): 807-811. |
| 54 | SMITH Emma L, ABBOTT Andrew P, RYDER Karl S. Deep eutectic solvents (DESs) and their applications[J]. Chemical Reviews, 2014, 114(21): 11060-11082. |
| 55 | ZHOU Lei, LU Xingmei, JU Zhaoyang, et al. Alcoholysis of polyethylene terephthalate to produce dioctyl terephthalate using choline chloride-based deep eutectic solvents as efficient catalysts[J]. Green Chemistry, 2019, 21(4): 897-906. |
| 56 | MITTAL Alok, SONI R K, DUTT Krishna, et al. Scanning electron microscopic study of hazardous waste flakes of polyethylene terephthalate (PET) by aminolysis and ammonolysis[J]. Journal of Hazardous Materials, 2010, 178(1/2/3): 390-396. |
| 57 | GOLDMAN Alan S, ROY Amy H, HUANG Zheng, et al. Catalytic alkane metathesis by tandem alkane dehydrogenation-olefin metathesis[J]. Science, 2006, 312(5771): 257-261. |
| 58 | JIA Xiangqing, QIN Chuan, FRIEDBERGER Tobias, et al. Efficient and selective degradation of polyethylenes into liquid fuels and waxes under mild conditions[J]. Science Advances, 2016, 2(6): e1501591. |
| 59 | ELLIS Lucas D, ORSKI Sara V, KENLAW Grace A, et al. Tandem heterogeneous catalysis for polyethylene depolymerization via an olefin-intermediate process[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(2): 623-628. |
| 60 | GUIRONNET Damien, PETERS Baron. Tandem catalysts for polyethylene upcycling: A simple kinetic model[J]. The Journal of Physical Chemistry A, 2020, 124(19): 3935-3942. |
| 61 | WANG Nicholas M, STRONG Garrett, DASILVA Vanessa, et al. Chemical recycling of polyethylene by tandem catalytic conversion to propylene[J]. Journal of the American Chemical Society, 2022, 144(40): 18526-18531. |
| 62 | CONK Richard J, HANNA Steven, SHI Jake X, et al. Catalytic deconstruction of waste polyethylene with ethylene to form propylene[J]. Science, 2022, 377(6614): 1561-1566. |
| 63 | ARROYAVE Alejandra, CUI Shilin, LOPEZ Jaqueline C, et al. Catalytic chemical recycling of post-consumer polyethylene[J]. Journal of the American Chemical Society, 2022, 144(51): 23280-23285. |
| 64 | ZENG Manhao, LEE Yu-Hsuan, STRONG Garrett, et al. Chemical upcycling of polyethylene to value-added α, ω-divinyl-functionalized oligomers[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(41): 13926-13936. |
| 65 | ASHRAF Muhammad, ULLAH Nisar, KHAN Ibrahim, et al. Photoreforming of waste polymers for sustainable hydrogen fuel and chemicals feedstock: Waste to energy[J]. Chemical Reviews, 2023, 123(8): 4443-4509. |
| 66 | BHATTACHARJEE Subhajit, LINLEY Stuart, REISNER Erwin. Solar reforming as an emerging technology for circular chemical industries[J]. Nature Reviews Chemistry, 2024, 8(2): 87-105. |
| 67 | ZHAO Zhiyong, YUE Shuai, YANG Gaohua, et al. A unified view of carbon neutrality: Solar-driven selective upcycling of waste plastics[J]. Transactions of Tianjin University, 2024, 30(1): 1-26. |
| 68 | KAWAI Tomoji, SAKATA Tadayoshi. Photocatalytic hydrogen production from water by the decomposition of poly-vinylchloride, protein, algae, dead insects, and excrement[J]. Chemistry Letters, 1981, 10(1): 81-84. |
| 69 | UEKERT Taylor, KUEHNEL Moritz F, WAKERLEY David W, et al. Plastic waste as a feedstock for solar-driven H2 generation[J]. Energy & Environmental Science, 2018, 11(10): 2853-2857. |
| 70 | DU Mengeng, ZHANG Yu, KANG Sailei, et al. Trash to Treasure: Photoreforming of Plastic Waste into Commodity Chemicals and Hydrogen over MoS2-Tipped CdS Nanorods[J]. ACS Catalysis, 2022, 12(20): 12823-12832. |
| 71 | ZHANG Shuai, LI Haobo, WANG Lei, et al. Boosted photoreforming of plastic waste via defect-rich NiPS3 nanosheets[J]. Journal of the American Chemical Society, 2023, 145(11): 6410-6419. |
| 72 | JIAO Xingchen, ZHENG Kai, CHEN Qingxia, et al. Photocatalytic conversion of waste plastics into C2 fuels under simulated natural environment conditions[J]. Angewandte Chemie International Edition, 2020, 59(36): 15497-15501. |
| 73 | MIAO Yingxuan, ZHAO Yunxuan, GAO Junyu, et al. Direct photoreforming of real-world polylactic acid plastics into highly selective value-added pyruvic acid under visible light[J]. Journal of the American Chemical Society, 2024, 146(7): 4842-4850. |
| 74 | CAO Ruochen, ZHANG Meiqi, HU Chaoquan, et al. Catalytic oxidation of polystyrene to aromatic oxygenates over a graphitic carbon nitride catalyst[J]. Nature Communications, 2022, 13(1): 4809. |
| 75 | UEKERT Taylor, KASAP Hatice, REISNER Erwin. Photoreforming of nonrecyclable plastic waste over a carbon nitride/nickel phosphide catalyst[J]. Journal of the American Chemical Society, 2019, 141(38): 15201-15210. |
| 76 | UEKERT Taylor, DORCHIES Florian, PICHLER Christian M, et al. Photoreforming of food waste into value-added products over visible-light-absorbing catalysts[J]. Green Chemistry, 2020, 22(10): 3262-3271. |
| 77 | UEKERT Taylor, BAJADA Mark A, SCHUBERT Teresa, et al. Scalable photocatalyst panels for photoreforming of plastic, biomass and mixed waste in flow[J]. ChemSusChem, 2021, 14(19): 4190-4197. |
| 78 | ZHOU Hua, REN Yue, LI Zhenhua, et al. Electrocatalytic upcycling of polyethylene terephthalate to commodity chemicals and H2 fuel[J]. Nature Communications, 2021, 12(1): 4679. |
| 79 | WANG Yuxiang, LIU Kesheng, LIU Fulai, et al. Selective electro-reforming of waste polyethylene terephthalate-derived ethylene glycol into C2 chemicals with long-term stability[J]. Green Chemistry, 2023, 25(15): 5872-5877. |
| 80 | DU Mengmeng, ZHANG Yu, KANG Sailei, et al. Electrochemical production of glycolate fuelled by polyethylene terephthalate plastics with improved techno-economics[J]. Small, 2023, 19(39): e2303693. |
| 81 | ZHANG Bowen, ZHANG Huiyan, PAN Yuyang, et al. Photoelectrochemical conversion of plastic waste into high-value chemicals coupling hydrogen production[J]. Chemical Engineering Journal, 2023, 462: 142247. |
| 82 | LI Xin, WANG Jianying, ZHANG Ting, et al. Photoelectrochemical catalysis of waste polyethylene terephthalate plastic to coproduce formic acid and hydrogen[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(29): 9546-9552. |
| 83 | MA Fahao, LI Zaiqi, HU Riming, et al. Electrocatalytic waste-treating-waste strategy for concurrently upgrading of polyethylene terephthalate plastic and CO2 into value-added formic acid[J]. ACS Catalysis, 2023, 13(21): 14163-14172. |
| 84 | KIM Jinhyun, JANG Jinha, HILBERATH Thomas, et al. Photoelectrocatalytic biosynthesis fuelled by microplastics[J]. Nature Synthesis, 2022, 1: 776-786. |
| [1] | 王水众, 宋国勇. 木质素选择性氢解制备高功能化单酚及其高值利用[J]. 化工进展, 2025, 44(5): 2535-2540. |
| [2] | 王嘉, 孙丹卉, 乔一凡, 范秀方, 赵立东, 贺雷, 陆安慧. 乙醇催化转化制高值化学品研究进展[J]. 化工进展, 2025, 44(5): 2587-2597. |
| [3] | 刘威, 侯雪兰, 杨贵东. 氢-氨绿色循环研究进展与展望[J]. 化工进展, 2025, 44(5): 2625-2641. |
| [4] | 许镇浩, 易子骁, 曾晨, 王宇辰, 严凯. 生物质基平台分子转化升级的研究进展[J]. 化工进展, 2025, 44(5): 2642-2654. |
| [5] | 冯娇, 刘明明, 刘耀, 王昕, 陈可泉. 利用可再生原料生物合成脂肪族短链二元胺与醇的研究进展[J]. 化工进展, 2025, 44(5): 2655-2666. |
| [6] | 艾佳臻, 张振磊, 詹国雄, 马龙巍, 史国靖, 尹海川, 张香平. “木质素优先”还原催化分馏工艺与模拟研究进展[J]. 化工进展, 2025, 44(5): 2683-2693. |
| [7] | 丁阿静, 周巧巧, 顾学红. 膜反应器中杨木催化气化制清洁合成气[J]. 化工进展, 2025, 44(5): 2716-2723. |
| [8] | 何志勇. 分步脱羟/脱碳催化剂实现高效裂解甲醇制氢[J]. 化工进展, 2025, 44(5): 2724-2732. |
| [9] | 唐泽群, 王子帅, 肖刚, 苏海佳. 催化溶剂分解法转化塑料废弃物的研究进展[J]. 化工进展, 2025, 44(5): 2746-2757. |
| [10] | 张绎如, 韩东梅, 马伟芳. 铁基复合卤氧化铋磁性材料强化可见光催化处理难降解有机废水研究进展[J]. 化工进展, 2025, 44(4): 2258-2273. |
| [11] | 苏晓洁, 严群, 李欣城, 薛文慧, 陈奕浩. NiCo2O4@纤蛇纹石活化过硫酸钾降解甲基橙[J]. 化工进展, 2025, 44(4): 2352-2364. |
| [12] | 宋坤莉, 肖雷, 马丹丹, 肖朋, 杨莎莎, 石建稳. 超低温氨气选择性脱硝催化剂的研究进展[J]. 化工进展, 2025, 44(4): 2028-2035. |
| [13] | 王淑媛, 尹玲玲, 高志华, 黄伟. 插层Cu比例对CuZnAl-LDHs催化剂结构及催化性能的影响[J]. 化工进展, 2025, 44(4): 2036-2044. |
| [14] | 张佩, 高莉宁, 丁思晴, 李立, 祝锡爇, 何锐. g-C3N4/TiO2异质结光催化剂的制备及其对NO的降解性能[J]. 化工进展, 2025, 44(4): 2045-2056. |
| [15] | 陈宇航, 李巧艳, 梁美生, 宋天远, 汪玥, 李思萌, 周宇璇. Sn掺杂Cu/CeZrO2/γ-Al2O3对三效催化(TWC)反应的作用:提高低温活性和抗硫性[J]. 化工进展, 2025, 44(3): 1368-1377. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |