化工进展 ›› 2025, Vol. 44 ›› Issue (5): 2746-2757.DOI: 10.16085/j.issn.1000-6613.2024-2108
• 合成材料利用 • 上一篇
收稿日期:2024-12-26
修回日期:2025-02-17
出版日期:2025-05-25
发布日期:2025-05-20
通讯作者:
肖刚,苏海佳
作者简介:唐泽群(1998—),男,博士研究生,研究方向为塑料化学生物协同处理。E-mail:2023400313@buct.edu.cn。
基金资助:
TANG Zequn(
), WANG Zishuai, XIAO Gang(
), SU Haijia(
)
Received:2024-12-26
Revised:2025-02-17
Online:2025-05-25
Published:2025-05-20
Contact:
XIAO Gang, SU Haijia
摘要:
塑料废弃物因其分布范围广、回收处理复杂等问题对自然环境构成严重威胁。传统的填埋法和焚烧法未能有效缓解塑料废弃物对环境的污染问题。化学回收处理作为一种替代方案,将塑料废弃物降解为低聚物或转化为其他产品,显示出潜在的环境友好性和经济效益。本文全面介绍了塑料废弃物中主要聚合物(聚酯类塑料、聚烯烃类塑料)催化溶剂分解法的反应机制和产物转化应用。特别关注了针对聚酯类塑料回收转化的水解法、醇解法和氨解法,以及针对聚烯烃塑料回收转化的烯烃复分解法,这些方法能够在温和条件下实现塑料废弃物的高效降解和回收。最后,从催化剂设计和产物高值转化两个层面探讨了催化溶剂分解法转化塑料废弃物的发展机遇,以及未来研究关注的关键科学和技术问题。
中图分类号:
唐泽群, 王子帅, 肖刚, 苏海佳. 催化溶剂分解法转化塑料废弃物的研究进展[J]. 化工进展, 2025, 44(5): 2746-2757.
TANG Zequn, WANG Zishuai, XIAO Gang, SU Haijia. Research advances in catalytic solvolysis to convert plastic waste[J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2746-2757.
| 底物 | 温度/℃ | 压力 | 催化剂 | 时间/h | 产率/% | 参考文献 |
|---|---|---|---|---|---|---|
| PET | 230 | 1bar | ZSM-5 | 0.5 | TPA, 100 | [ |
| 220 | — | TPA | 3 | TPA, 95.5 | [ | |
| 180 | 微波,46W | NaOH | 0.5 | TPA, 97 | [ | |
| 200 | 1bar | — | 1 | TPA, 97.9 | [ | |
| 210 | 微波 | t-BuNH2/LiBr | 0.2 | TPA, 100 | [ | |
| 195 | 3MPa | 金属离子 | 2 | TPA, 95 | [ | |
| PLA | 50 | 超声 | — | 0.08 | 乳酸, 90 | [ |
| 50 | 常压 | TBD | 2 | 乙基乳酸酯, 80 | [ | |
| PHB | 200 | — | H2SO4 | 2 | 丙烯, 100 | [ |
表1 催化水解法转化聚酯类塑料废弃物
| 底物 | 温度/℃ | 压力 | 催化剂 | 时间/h | 产率/% | 参考文献 |
|---|---|---|---|---|---|---|
| PET | 230 | 1bar | ZSM-5 | 0.5 | TPA, 100 | [ |
| 220 | — | TPA | 3 | TPA, 95.5 | [ | |
| 180 | 微波,46W | NaOH | 0.5 | TPA, 97 | [ | |
| 200 | 1bar | — | 1 | TPA, 97.9 | [ | |
| 210 | 微波 | t-BuNH2/LiBr | 0.2 | TPA, 100 | [ | |
| 195 | 3MPa | 金属离子 | 2 | TPA, 95 | [ | |
| PLA | 50 | 超声 | — | 0.08 | 乳酸, 90 | [ |
| 50 | 常压 | TBD | 2 | 乙基乳酸酯, 80 | [ | |
| PHB | 200 | — | H2SO4 | 2 | 丙烯, 100 | [ |
| 底物 | 温度/℃ | 压力 | 催化剂 | 时间/h | 产率/% | 参考文献 |
|---|---|---|---|---|---|---|
| PET | 190 | 1bar | [Bmim][OAc] | 3 | BHET, 58.2 | [ |
| 190 | 1bar | 单氰胺 | 2.5 | BHET, 95 | [ | |
| 300 | 11bar | — | 0.4~0.8 | BHET, 30 | [ | |
| 190 | 常压 | TBD | 3.5 | BHET, 78 | [ | |
| 210 | — | Fe3O4 | 0.5 | BHET, 93 | [ | |
| 210 | 微波 | t-BuNH2/LiBr | 0.2 | BHET, 100 | [ | |
| 220~230 | 24atm | 醋酸锌 | 8~35 | BHET, 88 | [ | |
| 120 | 常压 | DES | 2 | DMT, 80 | [ | |
| PLA | 140 | 常压 | SO42-/ZrO2/SiO2 | 5 | 乳酸甲酯(MLA), 92.7 | [ |
| 100 | 常压 | DBU | 5 | MLA, 91 | [ | |
| 130 | 常压 | FeCl3 | 4 | MLA, 87.2 | [ | |
| PBT | 230 | N2 | TBOT-抗坏血酸 | 1.5 | BHBT | [ |
表2 催化醇解法转化聚酯类塑料废弃物
| 底物 | 温度/℃ | 压力 | 催化剂 | 时间/h | 产率/% | 参考文献 |
|---|---|---|---|---|---|---|
| PET | 190 | 1bar | [Bmim][OAc] | 3 | BHET, 58.2 | [ |
| 190 | 1bar | 单氰胺 | 2.5 | BHET, 95 | [ | |
| 300 | 11bar | — | 0.4~0.8 | BHET, 30 | [ | |
| 190 | 常压 | TBD | 3.5 | BHET, 78 | [ | |
| 210 | — | Fe3O4 | 0.5 | BHET, 93 | [ | |
| 210 | 微波 | t-BuNH2/LiBr | 0.2 | BHET, 100 | [ | |
| 220~230 | 24atm | 醋酸锌 | 8~35 | BHET, 88 | [ | |
| 120 | 常压 | DES | 2 | DMT, 80 | [ | |
| PLA | 140 | 常压 | SO42-/ZrO2/SiO2 | 5 | 乳酸甲酯(MLA), 92.7 | [ |
| 100 | 常压 | DBU | 5 | MLA, 91 | [ | |
| 130 | 常压 | FeCl3 | 4 | MLA, 87.2 | [ | |
| PBT | 230 | N2 | TBOT-抗坏血酸 | 1.5 | BHBT | [ |
| 底物 | 温度/℃ | 压力 | 催化剂 | 时间/h | 产率/% | 参考 文献 |
|---|---|---|---|---|---|---|
| PET | 250 | 常压 | 乙二胺 | 0.2 | BAETA, 92 | [ |
| 196 | 1 bar | Hmim.TfO | 1 | BHETA, 89 | [ | |
| 114 | 1 bar | NaOAc | 4 | BHET, 86 | [ | |
| 170 | — | 醋酸钠和硫酸钾 | 8 | BHETA, 91 | [ |
表3 催化氨解法转化聚酯类塑料废弃物
| 底物 | 温度/℃ | 压力 | 催化剂 | 时间/h | 产率/% | 参考 文献 |
|---|---|---|---|---|---|---|
| PET | 250 | 常压 | 乙二胺 | 0.2 | BAETA, 92 | [ |
| 196 | 1 bar | Hmim.TfO | 1 | BHETA, 89 | [ | |
| 114 | 1 bar | NaOAc | 4 | BHET, 86 | [ | |
| 170 | — | 醋酸钠和硫酸钾 | 8 | BHETA, 91 | [ |
| 1 | WONG S L, NGADI N, ABDULLAH T A T, et al. Current state and future prospects of plastic waste as source of fuel: A review[J]. Renewable and Sustainable Energy Reviews, 2015, 50: 1167-1180. |
| 2 | BABAAHMADI Vahid, ABUZADE Ramazan ALI, MONTAZER Majid. Enhanced ultraviolet-protective textiles based on reduced graphene oxide-silver nanocomposites on polyethylene terephthalate using ultrasonic-assisted in situ thermal synthesis[J]. Journal of Applied Polymer Science, 2022, 139(21): 52196. |
| 3 | PRZEMIENIECKI Sebastian W, KOSEWSKA Agnieszka, Sławomir CIESIELSKI, et al. Changes in the gut microbiome and enzymatic profile of Tenebrio molitor larvae biodegrading cellulose, polyethylene and polystyrene waste[J]. Environmental Pollution, 2020, 256: 113265. |
| 4 | Khalid Mahmood ZIA, BHATTI Haq Nawaz, AHMAD BHATTI Ijaz. Methods for polyurethane and polyurethane composites, recycling and recovery: A review[J]. Reactive and Functional Polymers, 2007, 67(8): 675-692. |
| 5 | RAHEEM Ademola Bolanle, NOOR Zainura Zainon, HASSAN Azman, et al. Current developments in chemical recycling of post-consumer polyethylene terephthalate wastes for new materials production: A review[J]. Journal of Cleaner Production, 2019, 225: 1052-1064. |
| 6 | DIAZ-SILVARREY Laura S, MCMAHON Andrew, PHAN Anh N. Benzoic acid recovery via waste poly(ethylene terephthalate) (PET) catalytic pyrolysis using sulphated zirconia catalyst[J]. Journal of Analytical and Applied Pyrolysis, 2018, 134: 621-631. |
| 7 | CHAUDHARI Utkarsh S, LIN Yingqian, THOMPSON Vicki S, et al. Systems analysis approach to polyethylene terephthalate and olefin plastics supply chains in the circular economy: A review of data sets and models[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(22): 7403-7421. |
| 8 | TANG Zequn, XIAO Gang, WANG Zishuai, et al. Chemical recycling and upcycling of waste plastics: A review[J]. Green Chemical Technology, 2024, 1(1): 10003. |
| 9 | Rajesh BANU J, Godvin SHARMILA V, USHANI U, et al. Impervious and influence in the liquid fuel production from municipal plastic waste through thermo-chemical biomass conversion technologies—A review[J]. Science of the Total Environment, 2020, 718: 137287. |
| 10 | RAGAERT Kim, DELVA Laurens, VAN GEEM Kevin. Mechanical and chemical recycling of solid plastic waste[J]. Waste Management, 2017, 69: 24-58. |
| 11 | ZHOU Mei, LI Shijia, XU Weifeng, et al. Theoretical study on hydrolysis/alcoholysis/ammonolysis mechanisms of ethylene terephthalate dimer [J]. China Plastics, 2023, 37(1): 90-98. |
| 12 | BARNARD Elaine, RUBIO ARIAS Jose Jonathan, THIELEMANS Wim. Chemolytic depolymerisation of PET: A review[J]. Green Chemistry, 2021, 23(11): 3765-3789. |
| 13 | SIENKIEWICZ Andrzej, KRASUCKA Patrycja, CHARMAS Barbara, et al. Swelling effects in cross-linked polymers by thermogravimetry[J]. Journal of Thermal Analysis and Calorimetry, 2017, 130(1): 85-93. |
| 14 | HUANG Jinbao, XU Weifeng, LONG Yang, et al. Studies on hydrolysis/alcoholysis/ammonolysis mechanisms of ethylene terephthalate dimer using DFT method[J]. Arabian Journal of Chemistry, 2024, 17(4): 105719. |
| 15 | PESTANA Samuel C, MACHADO João N, Domingos PINTO R, et al. Natural eutectic solvents for sustainable recycling of poly(ethyleneterephthalate): Closing the circle[J]. Green Chemistry, 2021, 23(23): 9460-9464. |
| 16 | YUN Lingxia, QIAO Meng, ZHANG Bin, et al. Upcycling plastic wastes into high-performance nano-MOFs by efficient neutral hydrolysis for water adsorption and photocatalysis[J]. Journal of Materials Chemistry A, 2024, 12(30): 19452-19461. |
| 17 | CAO Jingjing, LIANG Huaxing, YANG Jie, et al. Depolymerization mechanisms and closed-loop assessment in polyester waste recycling[J]. Nature Communications, 2024, 15(1): 6266. |
| 18 | LEE Chia-Wei, LIN Chia-Hsing, WANG Lyuying, et al. Developing sustainable and recyclable high-efficiency electromagnetic interference shielding nanocomposite foams from the upcycling of recycled poly(ethylene terephthalate)[J]. Chemical Engineering Journal, 2023, 468: 143447. |
| 19 | XU Zhen, MUNYANEZA Nuwayo Eric, ZHANG Qikun, et al. Chemical upcycling of polyethylene, polypropylene, and mixtures to high-value surfactants[J]. Science, 2023, 381(6658): 666-671. |
| 20 | Eva BÄCKSTRÖM, ODELIUS Karin, HAKKARAINEN Minna. Ultrafast microwave assisted recycling of PET to a family of functional precursors and materials[J]. European Polymer Journal, 2021, 151: 110441. |
| 21 | KANG Myung Jong, YU Hye Jin, JEGAL Jonggeon, et al. Depolymerization of PET into terephthalic acid in neutral media catalyzed by the ZSM-5 acidic catalyst[J]. Chemical Engineering Journal, 2020, 398: 125655. |
| 22 | Ivana ČORAK, TARBUK Anita, Dragan ĐORĐEVIĆ, et al. Sustainable alkaline hydrolysis of polyester fabric at low temperature[J]. Materials, 2022, 15(4): 1530. |
| 23 | RAHIMI AliReza, GARCÍA Jeannette M. Chemical recycling of waste plastics for new materials production[J]. Nature Reviews Chemistry, 2017, 1: 46. |
| 24 | BEECH Jessica Lusty, CLARE Rita, KINCANNON William M, et al. A flexible kinetic assay efficiently sorts prospective biocatalysts for PET plastic subunit hydrolysis[J]. RSC Advances, 2022, 12(13): 8119-8130. |
| 25 | GEYER B, LORENZ G, KANDELBAUER A. Recycling of poly(ethylene terephthalate)—A review focusing on chemical methods[J]. Express Polymer Letters, 2016, 10(7): 559-586. |
| 26 | Sibel ÜGDÜLER, VAN GEEM Kevin M, DENOLF Ruben, et al. Towards closed-loop recycling of multilayer and coloured PET plastic waste by alkaline hydrolysis[J]. Green Chemistry, 2020, 22(16): 5376-5394. |
| 27 | YANG Weisheng, LIU Rui, LI Chang, et al. Hydrolysis of waste polyethylene terephthalate catalyzed by easily recyclable terephthalic acid[J]. Waste Management, 2021, 135: 267-274. |
| 28 | ABEDSOLTAN Hossein. A focused review on recycling and hydrolysis techniques of polyethylene terephthalate[J]. Polymer Engineering & Science, 2023, 63(9): 2651-2674. |
| 29 | SOONG Ya-Hue Valerie, SOBKOWICZ Margaret J, XIE Dongming. Recent advances in biological recycling of polyethylene terephthalate (PET) plastic wastes[J]. Bioengineering, 2022, 9(3): 98. |
| 30 | YOSHIDA Shosuke, HIRAGA Kazumi, TAKEHANA Toshihiko, et al. A bacterium that degrades and assimilates poly(ethylene terephthalate)[J]. Science, 2016, 351(6278): 1196-1199. |
| 31 | KARIMI ESTAHBANATI M R, KONG Xin Ying, ESLAMI ALI, et al. Current developments in the chemical upcycling of waste plastics using alternative energy sources[J]. ChemSusChem, 2021, 14(19): 4152-4166. |
| 32 | SIDDIQUI Mohammad Nahid, ACHILIAS Dimitris S, REDHWI Halim Hamid, et al. Hydrolytic depolymerization of PET in a microwave reactor[J]. Macromolecular Materials and Engineering, 2010, 295(6): 575-584. |
| 33 | Nayely TREJO-CARBAJAL, AMBRIZ-LUNA Karina I, HERRERA-GONZÁLEZ Ana M. Efficient method and mechanism of depolymerization of PET under conventional heating and microwave radiation using t-BuNH2/Lewis acids[J]. European Polymer Journal, 2022, 175: 111388. |
| 34 | ZHANG Shengbo, HU Qikun, ZHANG Yuxiao, et al. Depolymerization of polyesters by a binuclear catalyst for plastic recycling[J]. Nature Sustainability, 2023, 6: 965-973. |
| 35 | ZHANG Shengbo, XUE Yingying, WU Yanfen, et al. PET recycling under mild conditions via substituent-modulated intramolecular hydrolysis[J]. Chemical Science, 2023, 14(24): 6558-6563. |
| 36 | KARAYANNIDIS G P, CHATZIAVGOUSTIS A P, ACHILIAS D S. Poly(ethylene terephthalate) recycling and recovery of pure terephthalic acid by alkaline hydrolysis[J]. Advances in Polymer Technology, 2002, 21(4): 250-259. |
| 37 | Dorin STANICA-EZEANU, MATEI Danuta. Natural depolymerization of waste poly(ethylene terephthalate) by neutral hydrolysis in marine water[J]. Scientific Reports, 2021, 11(1): 4431. |
| 38 | GREWELL David, SRINIVASAN Gowrishankar, COCHRAN Eric. Depolymerization of post-consumer polylactic acid products[J]. Journal of Renewable Materials, 2014, 2(3): 157-165. |
| 39 | MAJGAONKAR Pranav, HANICH Ronny, MALZ Frank, et al. Chemical recycling of post-consumer PLA waste for sustainable production of ethyl lactate[J]. Chemical Engineering Journal, 2021, 423: 129952. |
| 40 | LI Yalin, STRATHMANN Timothy J. Kinetics and mechanism for hydrothermal conversion of polyhydroxybutyrate (PHB) for wastewater valorization[J]. Green Chemistry, 2019, 21(20): 5586-5597. |
| 41 | HUANG Jinbao, LI Sijia, LONG Yang, et al. Mechanistic and kinetic studies on pyrolysis, hydrolysis and alcoholysis of polybutylene terephthalate using density functional theory[J]. Journal of Environmental Chemical Engineering, 2024, 12(5): 113586. |
| 42 | LI Zheng, SHEN Yong, LI Zhibo. Chemical upcycling of poly(3-hydroxybutyrate) into bicyclic ether-ester monomers toward value-added, degradable, and recyclable poly(ether ester)[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(25): 8228-8238. |
| 43 | JEHANNO Coralie, ALTY Jill W, ROOSEN Martijn, et al. Critical advances and future opportunities in upcycling commodity polymers[J]. Nature, 2022, 603(7903): 803-814. |
| 44 | KILAPARTHI Sravan Kumar, ADDAD Ahmed, BARRAS Alexandre, et al. Simultaneous upcycling of PET plastic waste and CO2 reduction through co-electrolysis: A novel approach for integrating CO2 reduction and PET hydrolysate oxidation[J]. Journal of Materials Chemistry A, 2023, 11(47): 26075-26085. |
| 45 | WEI Ren, TISO Till, Jürgen BERTLING, et al. Possibilities and limitations of biotechnological plastic degradation and recycling[J]. Nature Catalysis, 2020, 3: 867-871. |
| 46 | SINGH Baghendra, YADAV Abhimanyu, INDRA Arindam. Realizing electrochemical transformation of a metal-organic framework precatalyst into a metal hydroxide-oxy(hydroxide) active catalyst during alkaline water oxidation[J]. Journal of Materials Chemistry A, 2022, 10(8): 3843-3868. |
| 47 | REN Tianlun, DUAN Zhongyao, WANG Huizhen, et al. Electrochemical co-production of ammonia and biodegradable polymer monomer glycolic acid via the co-electrolysis of nitrate wastewater and waste plastic[J]. ACS Catalysis, 2023, 13(15): 10394-10404. |
| 48 | ZHOU Hua, REN Yue, LI Zhenhua, et al. Electrocatalytic upcycling of polyethylene terephthalate to commodity chemicals and H2 fuel[J]. Nature Communications, 2021, 12(1): 4679. |
| 49 | KIM Hee Taek, KIM Jae Kyun, Hyun Gil CHA, et al. Biological valorization of poly(ethylene terephthalate) monomers for upcycling waste PET[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(24): 19396-19406. |
| 50 | KANG Myung Jong, KIM Hee Taek, LEE Min-Woo, et al. A chemo-microbial hybrid process for the production of 2-pyrone-4,6-dicarboxylic acid as a promising bioplastic monomer from PET waste[J]. Green Chemistry, 2020, 22(11): 3461-3469. |
| 51 | WANG Zishuai, WANG Yaoqiang, XIAO Gang, et al. Modular chem-bio upcycling of waste poly(ethylene terephthalate) to glycolic acid and 2,4-pyridine dicarboxylic acid[J]. AIChE Journal, 2025, 71(3): e18686. |
| 52 | XIN Jiayu, ZHANG Qi, HUANG Junjie, et al. Progress in the catalytic glycolysis of polyethylene terephthalate[J]. Journal of Environmental Management, 2021, 296: 113267. |
| 53 | PAYNE Jack, JONES Matthew D. The chemical recycling of polyesters for a circular plastics economy: Challenges and emerging opportunities[J]. ChemSusChem, 2021, 14(19): 4041-4070. |
| 54 | 罗中, 程瑾. 废PET聚酯化学解聚及应用研究进展[J]. 精细石油化工, 2021, 38(1): 72-78. |
| LUO Zhong, CHENG Jin. Research progress in chemical depolymerization and application of waste PET polyester[J]. Speciality Petrochemicals, 2021, 38(1): 72-78. | |
| 55 | VAIDYA U R, NADKARNI V M. Polyester polyols from glycolyzed PET waste: Effect of glycol type on kinetics of polyesterification[J]. Journal of Applied Polymer Science, 1989, 38(6): 1179-1190. |
| 56 | AL-SABAGH A M, YEHIA F Z, HARDING David R K, et al. Fe3O4-boosted MWCNT as an efficient sustainable catalyst for PET glycolysis[J]. Green Chemistry, 2016, 18(14): 3997-4003. |
| 57 | AL-SABAGH Ahmed M, YEHIA Fatma Z, EISSA Abdel-Moneim M F, et al. Glycolysis of poly(ethylene terephthalate) catalyzed by the lewis base ionic liquid [bmim][OAc][J]. Industrial & Engineering Chemistry Research, 2014, 53(48): 18443-18451. |
| 58 | YUE Qun, XIAO Lin, ZHANG Mi, et al. The glycolysis of poly(ethylene terephthalate) waste: Lewis acidic ionic liquids as high efficient catalysts[J]. Polymers, 2013, 5(4): 1258-1271. |
| 59 | WANG Zishuai, JIN Yu, WANG Yaoqiang, et al. Cyanamide as a highly efficient organocatalyst for the glycolysis recycling of PET[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(24): 7965-7973. |
| 60 | IMRAN Muhammad, KIM Bo-Kyung, HAN Myungwan, et al. Sub- and supercritical glycolysis of polyethylene terephthalate (PET) into the monomer bis(2-hydroxyethyl) terephthalate (BHET)[J]. Polymer Degradation and Stability, 2010, 95(9): 1686-1693. |
| 61 | FUKUSHIMA Kazuki, COULEMBIER Olivier, LECUYER Julien M, et al. Organocatalytic depolymerization of poly(ethylene terephthalate)[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2011, 49(5): 1273-1281. |
| 62 | SUN Qian, ZHENG Yuanyuan, YUN Lingxia, et al. Fe3O4 nanodispersions as efficient and recoverable magnetic nanocatalysts for sustainable PET glycolysis[J]. ACS Sustainable Chemistry & Engineering, 2023, 11(19): 7586-7595. |
| 63 | PINGALE N D, SHUKLA S R. Microwave assisted ecofriendly recycling of poly(ethylene terephthalate) bottle waste[J]. European Polymer Journal, 2008, 44(12): 4151-4156. |
| 64 | TANG Jing, MENG Xiangshuai, CHENG Xiujie, et al. Mechanistic insights of cosolvent efficient enhancement of PET methanol alcohololysis[J]. Industrial & Engineering Chemistry Research, 2023, 62(12): 4917-4927. |
| 65 | YE Boyong, ZHOU Ruru, WANG Caili, et al. Alcoholysis of waste PLA-based plastics to methyl lactate over sulfated ZrO2/SiO2 catalyst[J]. Applied Catalysis A: General, 2023, 649: 118936. |
| 66 | LIU Fusheng, GUO Jiao, ZHAO Penghui, et al. Facile synthesis of DBU-based protic ionic liquid for efficient alcoholysis of waste poly(lactic acid) to lactate esters[J]. Polymer Degradation and Stability, 2019, 167: 124-129. |
| 67 | LIU Huiqing, SONG Xiuyan, LIU Fusheng, et al. Ferric chloride as an efficient and reusable catalyst for methanolysis of poly(lactic acid) waste[J]. Journal of Polymer Research, 2015, 22(7): 135. |
| 68 | LIU Jizhe, JIANG Zhenlin, XIE Wanyu, et al. Preparation of PBAT copolyesters with flame retardant and degradable functions through PBT chemical alcoholysis and closed-loop recycling[J]. ACS Sustainable Chemistry & Engineering, 2024, 12(47): 17301-17318. |
| 69 | LI Yanyan, LI Keli, LI Mengjuan, et al. Zinc-doped ferrite nanoparticles as magnetic recyclable catalysts for scale-up glycolysis of poly(ethylene terephthalate) wastes[J]. Advanced Powder Technology, 2022, 33(3): 103444. |
| 70 | SIDDIQUI Mohammad Nahid, REDHWI Halim Hamid, AL-ARFAJ Abdulrahman A, et al. Chemical recycling of PET in the presence of the bio-based polymers, PLA, PHB and PEF: A review[J]. Sustainability, 2021, 13(19): 10528. |
| 71 | 刘吉星, 龚智婷, 聂思恒. 聚对苯二甲酸乙二醇酯解聚为高附加值化学品的研究进展[J]. 化学工程与技术, 2024, 14(2): 98-105. |
| LIU Jixing, GONG Zhiting, NIE Siheng. Research progress in depolymerization of polyethylene terephthalate into high value-added chemicals[J]. Hans Journal of Chemical Engineering and Technology, 2024, 14(2): 98-105. | |
| 72 | LI Fei, YAO Xiaoqian, DING Rong, et al. Directional glycolysis of waste PET using deep eutectic solvents for preparation of aromatic-based polyurethane elastomers[J]. Green Chemistry, 2024, 26(18): 9802-9813. |
| 73 | KIM Dong Hyun, HAN Dong Oh, SHIM Kyu IN, et al. One-pot chemo-bioprocess of PET depolymerization and recycling enabled by a biocompatible catalyst, betaine[J]. ACS Catalysis, 2021, 11(7): 3996-4008. |
| 74 | CAO Fan, WANG Liyan, ZHENG Rongrong, et al. Research and progress of chemical depolymerization of waste PET and high-value application of its depolymerization products[J]. RSC Advances, 2022, 12(49): 31564-31576. |
| 75 | ZHU Chenxi, YANG Linlin, LI Yueru, et al. High efficient synthesis of benzyl lactate through waste PLA alcoholysis by protic ionic salt[J]. Chemical Engineering Journal, 2024, 501: 157644. |
| 76 | ZHENG Zhiwen, REN Li, FENG Wenjiang, et al. Surface characterization of polyethylene terephthalate films treated by ammonia low-temperature plasma[J]. Applied Surface Science, 2012, 258(18): 7207-7212. |
| 77 | MERSHA Desalegn Abera, GESESE Tesfa Nega, SENDEKIE Zenamarkos Bantie, et al. Operating conditions, products and sustainable recycling routes of aminolysis of polyethylene terephthalate (PET)—A review[J]. Polymer Bulletin, 2024, 81(13): 11563-11579. |
| 78 | DE DIOS CAPUTTO María Dolores, NAVARRO Rodrigo, VALENTÍN Juan López, et al. Chemical upcycling of poly(ethylene terephthalate) waste: Moving to a circular model[J]. Journal of Polymer Science, 2022, 60(24): 3269-3283. |
| 79 | CONROY Stuart, ZHANG Xiaolei. Theoretical insights into chemical recycling of polyethylene terephthalate (PET)[J]. Polymer Degradation and Stability, 2024, 223: 110729. |
| 80 | LENG Zhen, PADHAN Rabindra Kumar, SREERAM Anand. Production of a sustainable paving material through chemical recycling of waste PET into crumb rubber modified asphalt[J]. Journal of Cleaner Production, 2018, 180: 682-688. |
| 81 | KAMMAKAKAM Irshad, O’HARRA Kathryn E, DENNIS Grayson P, et al. Self-healing imidazolium-based ionene-polyamide membranes: An experimental study on physical and gas transport properties[J]. Polymer International, 2019, 68(6): 1123-1129. |
| 82 | SHARMA Pratibha, LOCHAB Bimlesh, KUMAR Devendra, et al. Sustainable bis-benzoxazines from cardanol and PET-derived terephthalamides[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(3): 1085-1093. |
| 83 | TAN Jeremy P K, TAN Jason, PARK Nathanial, et al. Upcycling poly(ethylene terephthalate) refuse to advanced therapeutics for the treatment of nosocomial and mycobacterial infections[J]. Macromolecules, 2019, 52(20): 7878-7885. |
| 84 | SHUKLA S R, HARAD Ajay M. Aminolysis of polyethylene terephthalate waste[J]. Polymer Degradation and Stability, 2006, 91(8): 1850-1854. |
| 85 | PALEKAR Vikrant S, SHAH Rikhil V, SHUKLA S R. Ionic liquid-catalyzed aminolysis of poly(ethylene terephthalate) waste[J]. Journal of Applied Polymer Science, 2012, 126(3): 1174-1181. |
| 86 | PARAB Yogesh S, PINGALE Navnath D, SHUKLA Sanjeev R. Aminolytic depolymerization of poly(ethylene terephthalate) bottle waste by conventional and microwave irradiation heating[J]. Journal of Applied Polymer Science, 2012, 125(2): 1103-1107. |
| 87 | SERRANO D P, AGUADO J, ESCOLA J M. Developing advanced catalysts for the conversion of polyolefinic waste plastics into fuels and chemicals[J]. ACS Catalysis, 2012, 2(9): 1924-1941. |
| 88 | TANG Zequn, ZHAO Yilin, WANG Zishuai, et al. Cobalt catalyzed carbonyl functionalization to boost the biodegradation of polyethylene by Bacillus velezensis C5[J]. Chemical Engineering Journal, 2024, 495: 153226. |
| 89 | ELLIS Lucas D, RORRER Nicholas A, SULLIVAN Kevin P, et al. Chemical and biological catalysis for plastics recycling and upcycling[J]. Nature Catalysis, 2021, 4: 539-556. |
| 90 | WESTLIE Andrea, CHEN Eugene, HOLLAND Chris, et al. Polyolefin innovations toward circularity and sustainable alternatives[J]. Macromolecular Rapid Communications, 2022, 43(24): 2200492. |
| 91 | HUANG Zheng, ROLFE Eleanor, CARSON Emily C, et al. Efficient heterogeneous dual catalyst systems for alkane metathesis[J]. Advanced Synthesis & Catalysis, 2010, 352(1): 125-135. |
| 92 | CONK Richard J, HANNA Steven, SHI Jake X, et al. Catalytic deconstruction of waste polyethylene with ethylene to form propylene[J]. Science, 2022, 377(6614): 1561-1566. |
| 93 | JIA Xiangqing, QIN Chuan, FRIEDBERGER Tobias, et al. Efficient and selective degradation of polyethylenes into liquid fuels and waxes under mild conditions[J]. Science Advances, 2016, 2(6): e1501591. |
| 94 | Cristina MEGÍAS-SAYAGO, Ignacio CENTENO-VEGA, BOBADILLA Luis F, et al. Alkane metathesis over immobilized pincer-ligated iridium complexes: Effect of support nature[J]. Applied Catalysis B: Environmental, 2023, 338: 123002. |
| 95 | ELLIS Lucas D, ORSKI Sara V, KENLAW Grace A, et al. Tandem heterogeneous catalysis for polyethylene depolymerization via an olefin-intermediate process[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(2): 623-628. |
| 96 | WANG Nicholas M, STRONG Garrett, DASILVA Vanessa, et al. Chemical recycling of polyethylene by tandem catalytic conversion to propylene[J]. Journal of the American Chemical Society, 2022, 144(40): 18526-18531. |
| [1] | 吴雪梅, 丁同梅, 赫崇衡, 田恒水. 尿素醇解法合成碳酸乙烯酯[J]. 化工进展, 2016, 35(10): 3263-3266. |
| [2] | 贺 涛,刘定华,刘晓勤. 碳酸乙烯酯催化水解合成乙二醇 [J]. 化工进展, 2008, 27(11): 1808-. |
| [3] | 任晓光,郑建东, 宋永吉. 不同方法制备K2MnAl11O19六铝酸盐催化剂及其甲烷的燃烧活性 [J]. 化工进展, 2007, 26(9): 1319-. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |