化工进展 ›› 2025, Vol. 44 ›› Issue (4): 2274-2284.DOI: 10.16085/j.issn.1000-6613.2024-0567
丁威1,2(
), 包申旭1,2(
), 辛椿福1,2, 王占昊1,2, 张宏伟1,2, 匡步肖3
收稿日期:2024-04-07
修回日期:2024-05-24
出版日期:2025-04-25
发布日期:2025-05-07
通讯作者:
包申旭
作者简介:丁威(1995—),男,博士研究生,研究方向为湿法冶金。E-mail:dingwei@mails.swust.edu.cn。
基金资助:
DING Wei1,2(
), BAO Shenxu1,2(
), XIN Chunfu1,2, WANG Zhanhao1,2, ZHANG Hongwei1,2, KUANG Buxiao3
Received:2024-04-07
Revised:2024-05-24
Online:2025-04-25
Published:2025-05-07
Contact:
BAO Shenxu
摘要:
我国磷资源丰富,但大部分是中低品位磷矿,其高效开发利用是我国磷矿资源可持续发展的重大需求。本文对中低品位磷矿制备湿法磷酸及净化技术的研究现状进行了系统梳理和归纳,详细介绍了中低品位磷矿的预处理技术、湿法磷酸制备技术和湿法磷酸净化技术等方面最新的研究进展,分析了它们的优缺点和存在的技术难点。最后,对中低品位磷矿制备湿法磷酸及净化技术所面临的挑战进行了总结,未来应加强对原矿预处理技术、磷石膏源头除杂技术和新型净化技术的研究,以提高磷酸产品的纯度和质量,实现磷矿资源的可持续利用。
中图分类号:
丁威, 包申旭, 辛椿福, 王占昊, 张宏伟, 匡步肖. 中低品位磷矿制备湿法磷酸及净化技术研究进展[J]. 化工进展, 2025, 44(4): 2274-2284.
DING Wei, BAO Shenxu, XIN Chunfu, WANG Zhanhao, ZHANG Hongwei, KUANG Buxiao. Research progress on preparation and purification technology of wet-process phosphoric acid from middle-low-grade phosphorus ore[J]. Chemical Industry and Engineering Progress, 2025, 44(4): 2274-2284.
| 工艺 | 优势 | 弊端 | 应用地区 |
|---|---|---|---|
| 硫酸法 | 成本低廉、工艺成熟、操作工艺简单、生产比较稳定、适合大规模工业化生产 | 原料磷矿品位要求较高;副产物磷石膏产量大,难以有效利用;废液处理复杂 | 美国、中国等 |
| 盐酸法 | 酸解反应快、不会产生磷石膏固废、对矿石适应性强 | 后续Ca2+、Cl-与磷酸分离困难;副产物CaCl2废液难以综合利用;反应条件苛刻,对设备腐蚀较为严重 | 以色列、中国、巴西等 |
| 硝酸法 | 浸出效率高、不会产生磷石膏固废、副产品硝酸钙容易利用 | 受硝酸价格影响;能耗高;工艺成熟度不高,在工业领域的应用较少 | 欧洲、中国等 |
表1 湿法磷酸不同制备工艺的比较
| 工艺 | 优势 | 弊端 | 应用地区 |
|---|---|---|---|
| 硫酸法 | 成本低廉、工艺成熟、操作工艺简单、生产比较稳定、适合大规模工业化生产 | 原料磷矿品位要求较高;副产物磷石膏产量大,难以有效利用;废液处理复杂 | 美国、中国等 |
| 盐酸法 | 酸解反应快、不会产生磷石膏固废、对矿石适应性强 | 后续Ca2+、Cl-与磷酸分离困难;副产物CaCl2废液难以综合利用;反应条件苛刻,对设备腐蚀较为严重 | 以色列、中国、巴西等 |
| 硝酸法 | 浸出效率高、不会产生磷石膏固废、副产品硝酸钙容易利用 | 受硝酸价格影响;能耗高;工艺成熟度不高,在工业领域的应用较少 | 欧洲、中国等 |
| 萃取剂 | 湿法磷酸 种类 | 萃取率 | 参考 文献 |
|---|---|---|---|
| 磷酸三丁酯 | 硫酸法 | 单级萃取,H3PO4(约69.7%)、Fe3+(7.38%)、Al3+(6.64%)、Mg2+(4.02%)、Ca2+(11.8%) | [ |
| 正辛醇 | 硫酸法 | 三级逆流萃取,H3PO4(87.0%) | [ |
| 正己醇 | 硫酸法 | 三级逆流萃取,H3PO4(94.0%) | [ |
| 甲基异丁基酮和磷酸三丁酯 | 硫酸法 | 微通道连续萃取,H3PO4(99.40%)、SO42-(44.20%) | [ |
| 二丁基亚砜 | 硫酸法 | 单级萃取,H3PO4(76.80%) | [ |
| 磷酸三丁酯和异丙醚 | 盐酸法 | 三级逆流萃取,H3PO4(71.90%)、Ca2+(约37%)、Cl-(约32%) | [ |
| 磷酸三丁酯 | 盐酸法 | 四级逆流萃取,H3PO4(83.0%)、CaCl2(10.0%) | [ |
| 正丁醇和异丙醚 | 盐酸法 | 单级萃取,H3PO4(约65%)、Ca2+(约19%)、Cl-(约35%) | [ |
表2 磷酸萃取法萃取研究
| 萃取剂 | 湿法磷酸 种类 | 萃取率 | 参考 文献 |
|---|---|---|---|
| 磷酸三丁酯 | 硫酸法 | 单级萃取,H3PO4(约69.7%)、Fe3+(7.38%)、Al3+(6.64%)、Mg2+(4.02%)、Ca2+(11.8%) | [ |
| 正辛醇 | 硫酸法 | 三级逆流萃取,H3PO4(87.0%) | [ |
| 正己醇 | 硫酸法 | 三级逆流萃取,H3PO4(94.0%) | [ |
| 甲基异丁基酮和磷酸三丁酯 | 硫酸法 | 微通道连续萃取,H3PO4(99.40%)、SO42-(44.20%) | [ |
| 二丁基亚砜 | 硫酸法 | 单级萃取,H3PO4(76.80%) | [ |
| 磷酸三丁酯和异丙醚 | 盐酸法 | 三级逆流萃取,H3PO4(71.90%)、Ca2+(约37%)、Cl-(约32%) | [ |
| 磷酸三丁酯 | 盐酸法 | 四级逆流萃取,H3PO4(83.0%)、CaCl2(10.0%) | [ |
| 正丁醇和异丙醚 | 盐酸法 | 单级萃取,H3PO4(约65%)、Ca2+(约19%)、Cl-(约35%) | [ |
| 方法 | 优势 | 弊端 |
|---|---|---|
| 溶剂萃取法 | 分离效果好、适应性强和处理量大 | 工艺流程烦琐、副产品萃余液难处理 |
| 离子交换法 | 工艺简单、可控性强、所得净化酸纯度较高 | 树脂的用量大、需要定期再生、生产成本较高 |
| 沉淀法 | 设备简单、能够选择性消除金属、反应速度快 | 药耗量大、除杂效果有限、副产品污泥量大,处置成本高 |
| 吸附法 | 吸附剂成本低,对多种杂质有效,适用范围广 | 再生成本高、吸附剂需进行处置 |
| 膜分离法 | 传质效率高、选择性好、去除率高 | 运行成本高、稳定性存在问题、寿命短 |
| 结晶法 | 工艺简单、流程短、产品纯度高 | 需多次反复结晶、生产效率低、产量低 |
表3 湿法磷酸不同净化方法的优缺点
| 方法 | 优势 | 弊端 |
|---|---|---|
| 溶剂萃取法 | 分离效果好、适应性强和处理量大 | 工艺流程烦琐、副产品萃余液难处理 |
| 离子交换法 | 工艺简单、可控性强、所得净化酸纯度较高 | 树脂的用量大、需要定期再生、生产成本较高 |
| 沉淀法 | 设备简单、能够选择性消除金属、反应速度快 | 药耗量大、除杂效果有限、副产品污泥量大,处置成本高 |
| 吸附法 | 吸附剂成本低,对多种杂质有效,适用范围广 | 再生成本高、吸附剂需进行处置 |
| 膜分离法 | 传质效率高、选择性好、去除率高 | 运行成本高、稳定性存在问题、寿命短 |
| 结晶法 | 工艺简单、流程短、产品纯度高 | 需多次反复结晶、生产效率低、产量低 |
| 1 | 自然资源部. 中国矿产资源报告2022[J]. 自然资源情报, 2023(1): 2. |
| Ministry of Natural Resources. China mineral resources report 2022[J]. Natural Resource Information, 2023(1): 2. | |
| 2 | WANG Bo, ZHOU Zhixin, XU Dehua, al. A new enrichment method of medium-low grade phosphate ore with high silicon content[J]. Minerals Engineering, 2022, 181: 107548. |
| 3 | 苗俊艳, 王艳语, 许秀成. 中低品位磷矿及磷尾矿的综合利用现状[J]. 硫磷设计与粉体工程, 2019(6): 11-13, 27, 4. |
| MIAO Junyan, WANG Yanyu, XU Xiucheng. Current utilization of medium- and low-grade phosphate ore and tailing[J]. Sulphur Phosphorus & Bulk Materials Handling Related Engineering, 2019(6): 11-13, 27, 4. | |
| 4 | LUO Biwei, LI Pengfei, LI Yan, et al. Optimization of medium-low-grade phosphorus rock carbothermal reduction process by response surface methodology[J]. Green Processing and Synthesis, 2020, 9(1): 349-358. |
| 5 | 姚远, 井红权, 尹玉婷, 等. “双碳” 背景下热法黄磷生产技术研究现状及建议[J]. 化工进展, 2024, 43(4): 2104-2116. |
| YAO Yuan, JING Hongquan, YIN Yuting, et al. Research status and suggestions of yellow hosphorus production technology by thermal processing under peak carbon dioxide emission and carbon neutrality[J]. Chemical Industry and Engineering Progress, 2024, 43(4): 2104-2116. | |
| 6 | LIU Xinxin, WU Fenghui, QU Guangfei, et al. Application prospect of advanced oxidation technology in wet process phosphoric acid production[J]. Journal of Environmental Chemical Engineering, 2022, 10(6): 108868. |
| 7 | 卯松. 贵州织金磷矿稀土赋存状态及加工过程中稀土富集机理研究[D]. 贵阳: 贵州大学, 2023. |
| MAO Song. Occurrence state and enrichment mechanism of rare earth during processing of Zhijin phosphate ore in Guizhou, China[D]. Guiyang: Guizhou University, 2023. | |
| 8 | 梁世军. 磷矿的选矿技术及原理分析[J]. 化工设计通讯, 2023, 49(12): 26-28. |
| LIANG Shijun. Mineral processing technology and principle analysis of phosphate ore[J]. Chemical Engineering Design Communications, 2023, 49(12): 26-28. | |
| 9 | 中低品位磷矿浮选技术获推广[J]. 化工进展, 2014, 33(8): 2071. |
| The flotation technology of middle and low grade phosphate ores has been popularized[J]. Chemical Industry and Engineering Progress, 2014, 33(8): 2071. | |
| 10 | 杨晓健, 胡国涛, 王诗瀚. 中低品位磷矿脱镁技术研究进展[J]. 矿产保护与利用, 2022, 42(2): 67-73. |
| YANG Xiaojian, HU Guotao, WANG Shihan. Research progress of magnesium removal technology from medium and low grade phosphate rocks[J]. Conservation and Utilization of Mineral Resources, 2022, 42(2): 67-73. | |
| 11 | 廖吉星, 项双龙. 磷矿浆化学浸提法脱镁工艺研究[J]. 磷肥与复肥, 2014, 29(5): 8-10. |
| LIAO Jixing, XIANG Shuanglong. Study on process of magnesium removal from phosphate rock slurry by chemical extraction method[J]. Phosphate & Compound Fertilizer, 2014, 29(5): 8-10. | |
| 12 | 肖勇, 杨秀山, 许德华, 等. 硝酸法处理中低品位高镁胶磷矿技术研究[J]. 无机盐工业, 2022, 54(1): 71-76. |
| XIAO Yong, YANG Xiushan, XU Dehua, et al. Study on treatment of medium and low grade high magnesium collophanite by nitric acid method[J]. Inorganic Chemicals Industry, 2022, 54(1): 71-76. | |
| 13 | 肖勇, 杨秀山, 许德华, 等. 中低品位磷矿脱镁技术研究进展[J]. 化工矿物与加工, 2021, 50(5): 42-48. |
| XIAO Yong, YANG Xiushan, XU Dehua, et al. Research progress on MgO removal technology for beneficiating middle to low P2O5 grade phosphate rock[J]. Industrial Minerals & Processing, 2021, 50(5): 42-48. | |
| 14 | SENGUL Hikmet, Kadir OZER A, Sahin GULABOGLU M. Beneficiation of Mardin-Mazıdaği (Turkey) calcareous phosphate rock using dilute acetic acid solutions[J]. Chemical Engineering Journal, 2006, 122(3): 135-140. |
| 15 | ZAFAR Zafar Iqbal, ASHRAF Mohammad. Selective leaching kinetics of calcareous phosphate rock in lactic acid[J]. Chemical Engineering Journal, 2007, 131(1/2/3): 41-48. |
| 16 | AMAR Hicham, BENZAAZOUA Mostafa, ELGHALI Abdellatif, et al. Waste rock reprocessing to enhance the sustainability of phosphate reserves: A critical review[J]. Journal of Cleaner Production, 2022, 381: 135151. |
| 17 | 梅毅. 节能减排、循环经济是热法基础磷加工发展的必由之路[J]. 磷肥与复肥, 2016, 31(7): 2. |
| MEI Yi. Energy saving, emission reduction and circular economy are the only way for the development of thermal basic phosphorus processing[J]. Phosphate & Compound Fertilizer, 2016, 31(7): 2. | |
| 18 | 杨文娟, 何宾宾, 朱桂华, 等. 磷矿制湿法磷酸技术综述[J]. 磷肥与复肥, 2022, 37(8): 26-28. |
| YANG Wenjuan, HE Binbin, ZHU Guihua, et al. Review on the technology of wet-process phosphoric acid from phosphate rock[J]. Phosphate & Compound Fertilizer, 2022, 37(8): 26-28. | |
| 19 | 朱干宇, 孟子衡, 李会泉, 等. 磷资源高效利用制备磷酸技术现状探讨[J]. 磷肥与复肥, 2023, 38(7): 24-30, 35. |
| ZHU Ganyu, MENG Ziheng, LI Huiquan, et al. Current status of phosphoric acid preparation technology for efficient utilization of phosphorus resources[J]. Phosphate & Compound Fertilizer, 2023, 38(7): 24-30, 35. | |
| 20 | 符义忠, 史鑫, 王学文, 等. 响应曲面法优化硝酸分解磷矿工艺[J]. 磷肥与复肥, 2023, 38(1): 24-28. |
| FU Yizhong, SHI Xin, WANG Xuewen, et al. Optimization of phosphate rock decomposition with nitric acid by response surface methodology[J]. Phosphate & Compound Fertilizer, 2023, 38(1): 24-28. | |
| 21 | 聂鹏飞, 何宾宾, 龚丽, 等. 某高硅低镁低品位磷矿硝酸法工艺参数研究[J]. 磷肥与复肥, 2021, 36(4): 7-9. |
| NIE Pengfei, HE Binbin, GONG Li, et al. Study on process parameters of nitric acid process for a low grade phosphate rock with high silicon and low magnesium[J]. Phosphate & Compound Fertilizer, 2021, 36(4): 7-9. | |
| 22 | 冉瑞泉, 金央, 刘辉, 等. 溶剂萃取法净化盐酸法湿法磷酸的研究进展[J]. 无机盐工业, 2021, 53(7): 18-22. |
| RAN Ruiquan, JIN Yang, LIU Hui, et al. Research progress purification of solvent extraction of wet-process phosphoric acid by hydrochloric acid route[J]. Inorganic Chemicals Industry, 2021, 53(7): 18-22. | |
| 23 | NIE Dengpan, XUE An, ZHU Mingyang, et al. Separation and recovery of associated rare earths from the Zhijin phosphorite using hydrochloric acid[J]. Journal of Rare Earths, 2019, 37(4): 443-450. |
| 24 | Li LYU, ZHENG Dongyao, TANG Shengwei, et al. Phosphate ore particles dissolution kinetics in hydrochloric acid based on a structure-related segmented model[J]. Powder Technology, 2021, 392: 141-149. |
| 25 | 郑东钥, 唐盛伟, 吕莉. 盐酸分解高硅混合型胶磷矿工艺研究[J]. 无机盐工业, 2021, 53(2): 81-83, 104. |
| ZHENG Dongyao, TANG Shengwei, Li LYU. Study on process of hydrochloric acid leaching high silicon mixed phosphate ore[J]. Inorganic Chemicals Industry, 2021, 53(2): 81-83, 104. | |
| 26 | FANG Keneng, XU Li, YANG Min, et al. One-step wet-process phosphoric acid by-product CaSO4 and its purification[J]. Separation and Purification Technology, 2023, 309: 123048. |
| 27 | 陶绍程, 何兵兵, 龙庆兰, 等. 尼日利亚某中品位磷矿二水法制磷酸实验研究[J]. 无机盐工业, 2021, 53(6): 160-163, 184. |
| TAO Shaocheng, HE Bingbing, LONG Qinglan, et al. Experimental study on phosphoric acid produced by dihydrate process from a middle-grade phosphate ore in Nigeria[J]. Inorganic Chemicals Industry, 2021, 53(6): 160-163, 184. | |
| 28 | 苏晓丹, 朱干宇, 李会泉, 等. 湿法磷酸半水工艺考察与石膏结晶过程研究[J]. 化工学报, 2023, 74(4): 1805-1817. |
| SU Xiaodan, ZHU Ganyu, LI Huiquan, et al. Optimization of wet process phosphoric acid hemihydrate process and crystallization of gypsum[J]. CIESC Journal, 2023, 74(4): 1805-1817. | |
| 29 | 苏晓丹. 半水-二水湿法磷酸工艺优化与磷石膏结晶调控研究[D]. 济南: 济南大学, 2023. |
| SU Xiaodan. Optimization of hemihydrate-dihydrate wet process phosphoric acid and control of phosphogypsum crystallization[D]. Jinan: University of Jinan, 2023. | |
| 30 | 饶轶晟, 杨晓健, 张红, 等. 湿法磷酸净化脱砷的研究现状[J]. 化工进展, 2020, 39(S1): 219-224. |
| RAO Yisheng, YANG Xiaojian, ZHANG Hong, et al. Research status of removal of arsenic by wet process phosphoric acid[J]. Chemical Industry and Engineering Progress, 2020, 39(S1): 219-224. | |
| 31 | 石通杉, 刘旭, 杨俊. 湿法磷酸净化技术研究现状及发展[J]. 磷肥与复肥, 2023, 38(6): 26-28, 52. |
| SHI Tongshan, LIU Xu, YANG Jun. Research status and development of purification technology for wet-process phosphoric acid[J]. Phosphate & Compound Fertilizer, 2023, 38(6): 26-28, 52. | |
| 32 | 王智娟, 韦昌桃. 湿法磷酸净化技术研究进展[J]. 化工矿物与加工, 2019, 48(10): 50-55. |
| WANG Zhijuan, WEI Changtao. Progress on research of purification technology for wet-process phosphoric acid[J]. Industrial Minerals & Processing, 2019, 48(10): 50-55. | |
| 33 | LIU Haozhou, YANG Jingxu, YANG Xiuying, et al. A non-aqueous phase extraction system using tributyl phosphate for H3PO4 separation from wet-process superphosphoric acid: Extraction equilibrium and mechanism[J]. Korean Journal of Chemical Engineering, 2022, 39(7): 1659-1672. |
| 34 | AMIN M I, ALI M M, KAMAL H M, et al. Recovery of high grade phosphoric acid from wet process acid by solvent extraction with aliphatic alcohols[J]. Hydrometallurgy, 2010, 105(1/2): 115-119. |
| 35 | MANSOURI Saba, VARMIRA Kambiz, AGHEL Babak. Continuous purification of wet-process phosphoric acid via microchannel[J]. Iranian Journal of Chemistry and Chemical Engineering, 2022, 41(1): 79-87. |
| 36 | CHEN Ming, LI Jun, JIN Yang, et al. Efficient solvent extraction of phosphoric acid with dibutyl sulfoxide[J]. Journal of Chemical Technology & Biotechnology, 2018, 93(2): 467-475. |
| 37 | WU Zaikun, SHE Liuxing, YE Peng, et al. Extraction of H3PO4 from low-grade phosphate rocks leachate of HCl-route by the mixture of TBP and IPE: Optimization, mass transfer and mechanism[J]. Journal of Molecular Liquids, 2023, 370: 120861. |
| 38 | ZHANG Shaojie, CHEN Yanxiao, ZHANG Tao, et al. Separation of H3PO4 from HCl-wet-processing phosphate rocks leach liquor by TBP: Extraction equilibria and mechanism study[J]. Separation and Purification Technology, 2020, 249: 117156. |
| 39 | WU Zaikun, PENG Ye, LI Jifan, et al. The mass transfer and mechanism of H3PO4 from low concentration HCl-route wet-process phosphoric acid by the mixture of n-butanol and isopropyl ether[J]. Separation and Purification Technology, 2022, 281: 119851. |
| 40 | LI Xing, LI Jun, LUO Jianhong, et al. Purification of wet process phosphoric acid by solvent extraction using cyclohexanol[J]. Solvent Extraction Research and Development, Japan, 2017, 24(1): 23-35. |
| 41 | CHEN Hang, SUN Ze, SONG Xingfu, et al. Efficient extraction of phosphoric acid with a trialkyl amine-based solvent mixture[J]. Journal of Chemical & Engineering Data, 2016, 61(1): 438-443. |
| 42 | GONG Xiaokang, HU Chao, JIN Yanru, et al. Preparation of refined phosphoric acid with recycling of raffinate acid by the extraction of metal impurities[J]. Journal of Cleaner Production, 2024, 434: 140158. |
| 43 | YU Jing, LIU Daijun. Extraction of magnesium from phosphoric acid using dinonylnaphthalene sulfonic acid[J]. Chemical Engineering Research and Design, 2010, 88(5/6): 712-717. |
| 44 | JIN Yang, MA Yujing, WENG Yanling, et al. Solvent extraction of Fe3+ from the hydrochloric acid route phosphoric acid by D2EHPA in kerosene[J]. Journal of Industrial and Engineering Chemistry, 2014, 20(5): 3446-3452. |
| 45 | 杨林, 唐聪, 张志业, 等. 一种湿法磷酸的净化工艺: CN106145076B[P]. 2018-02-02. |
| YANG Lin, TANG Cong, ZHANG Zhiye, et al. A purification process for wet-process phosphoric acid: CN106145076B[P]. 2018-02-02. | |
| 46 | 左永辉. 湿法磷酸中氟离子的提取研究[D]. 贵阳: 贵州大学, 2019. |
| ZUO Yonghui. Study on extraction of fluoride ion from wet-process phosphoric acid[D]. Guiyang: Guizhou University, 2019. | |
| 47 | WANG Baoqi, ZHOU Qinglie, CHEN Chuan, et al. Separation of phosphoric acid and magnesium from wet process phosphoric acid by solvent extraction[J]. Canadian Metallurgical Quarterly, 2023, 62(4): 791-802. |
| 48 | ZHOU Qinglie, WANG Baoqi, ZHEN Honggang, et al. Clean and efficient utilization of symbiotic elements in wet-process phosphoric acid: Study on high-value process of aluminum[J]. Solvent Extraction Research and Development, Japan, 2023, 30(2): 105-119. |
| 49 | 周清烈, 王宝琦, 张志业, 等. 萃取法脱除湿法磷酸金属阳离子新工艺开发[J]. 无机盐工业, 2023, 55(3): 84-91. |
| ZHOU Qinglie, WANG Baoqi, ZHANG Zhiye, et al. Development of new process of removing metal cations from wet-process phosphoric acid by extraction[J]. Inorganic Chemicals Industry, 2023, 55(3): 84-91. | |
| 50 | 刘安荣, 李敬, 王振杰, 等. 离子交换法脱除湿法磷酸中铁、铝杂质的研究[J]. 化工矿物与加工, 2019, 48(5): 57-59. |
| LIU Anrong, LI Jing, WANG Zhenjie, et al. Removal of iron and aluminum impurities in wet-process phosphoric acid by ion exchange[J]. Industrial Minerals & Processing, 2019, 48(5): 57-59. | |
| 51 | LENG Xinke, ZHONG Yanjun, XU Dehua, et al. Mechanism and kinetics study on removal of iron from phosphoric acid by cation exchange resin[J]. Chinese Journal of Chemical Engineering, 2019, 27(5): 1050-1057. |
| 52 | 颜学芳, 甄红刚, 杨林. 用Sinco-430阳离子交换树脂从磷酸中选择性脱除镁铝离子[J]. 湿法冶金, 2022, 41(5): 452-456, 464. |
| YAN Xuefang, ZHEN Honggang, YANG Lin. Selective removal of magnesium and aluminum ions from phosphoric acid by Sinco-430 cation exchange resin[J]. Hydrometallurgy of China, 2022, 41(5): 452-456, 464. | |
| 53 | ZHEN Honggang, YAN Xuefang, CHEN Chaojiu, et al. Removal of Fe(Ⅲ)/Al(Ⅲ)/Mg(Ⅱ) by phosphonic group functionalized resin in wet-process phosphoric acid: Mechanism and intrinsic selectivity[J]. Environmental Science and Pollution Research, 2023, 30(30): 74754-74770. |
| 54 | ABDEL-GHAFAR H M, ABDEL-AAL E A, IBRAHIM M A M, et al. Purification of high iron wet-process phosphoric acid via oxalate precipitation method[J]. Hydrometallurgy, 2019, 184: 1-8. |
| 55 | HE Binbin, ZHU Yuanzhi, XIE Delong, et al. Removal of Al3+ and Mg2+ ions in wet-process phosphoric acid via the formation of aluminofluoride complexes[J]. Environmental Technology, 2023, 44(7): 936-947. |
| 56 | KOUZBOUR Sanaa, GOURICH Bouchaib, GROS Fabrice, et al. Purification of industrial wet phosphoric acid solution by sulfide precipitation in batch and continuous modes: Performance analysis, kinetic modeling, and precipitate characterization[J]. Journal of Cleaner Production, 2022, 380: 135072. |
| 57 | HE Binbin, ZHU Yuanzhi, ZU Yun, et al. Efficient and cost-effective fluorine recovery from liquid-phase wet-process phosphoric acid via two-step precipitation method[J]. Separation and Purification Technology, 2023, 325: 124687. |
| 58 | 张逸, 刘东昊, 丁一刚. 膜技术分离稀土金属元素的研究进展[J]. 化工进展, 2022, 41(10): 5567-5577. |
| ZHANG Yi, LIU Donghao, DING Yigang. Research progress of membrane technology for the separation of rare earth elements[J]. Chemical Industry and Engineering Progress, 2022, 41(10): 5567-5577. | |
| 59 | 何兵兵, 刘旭, 谢娟, 等. 扩散渗析膜分离技术在湿法磷酸净化中的应用研究[J]. 化工矿物与加工, 2023, 52(4): 22-26, 62. |
| HE Bingbing, LIU Xu, XIE Juan, et al. Study on membrane separation technology by diffusion dialysis in purification of wet-process phosphoric acid[J]. Industrial Minerals & Processing, 2023, 52(4): 22-26, 62. | |
| 60 | 陈相, 何兵兵, 杨俊, 等. 膜分离低成本净化湿法磷酸中试试验研究[J]. 磷肥与复肥, 2022, 37(9): 26-29. |
| CHEN Xiang, HE Bingbing, YANG Jun, et al. Pilot study on low cost purification of WPA by membrane separation[J]. Phosphate & Compound Fertilizer, 2022, 37(9): 26-29. | |
| 61 | 符义忠, 许磊, 姜威, 等. 采用超滤膜过滤净化磷酸试验探索[J]. 磷肥与复肥, 2023, 38(3): 23-24. |
| FU Yizhong, XU Lei, JIANG Wei, et al. Exploration on filtration of purified phosphoric acid by ultrafiltration membrane[J]. Phosphate & Compound Fertilizer, 2023, 38(3): 23-24. | |
| 62 | 段晓玲. 聚砜阴离子交换膜的制备及其对磷酸的电渗析净化作用[D]. 武汉: 华中科技大学, 2018. |
| DUAN Xiaoling. Polysulfone anion exchange membranes and their application for electrodialysis purifying phosphoric acid[D]. Wuhan: Huazhong University of Science and Technology, 2018. | |
| 63 | 纪镁铃, 黄春梅, 李燕玲. 一种基于离子交换膜的湿法磷酸萃余酸净化工艺: CN111204725A[P]. 2020-05-29. |
| JI Meiling, HUANG Chunmei, LI Yanling. A wet method based on ion exchange membrane: CN111204725A[P]. 2020-05-29. | |
| 64 | 陈爱梅, 朱家文, 武斌, 等. 熔融悬浮结晶法提纯湿法磷酸[J]. 化学工程, 2012, 40(8): 52-56. |
| CHEN Aimei, ZHU Jiawen, WU Bin, et al. Purification of wet-process phosphoric acid by melt suspension crystallization[J]. Chemical Engineering (China), 2012, 40(8): 52-56. | |
| 65 | 余留洋, 刘书博, 贾晟哲, 等. 电子级磷酸的纯化精制技术发展现状与研究进展[J]. 化工学报, 2024, 75(1): 1-19. |
| YU Liuyang, LIU Shubo, JIA Shengzhe, et al. Current status and research progress of purification technology of electronic grade phosphoric acid[J]. CIESC Journal, 2024, 75(1): 1-19. |
| [1] | 刘传磊, 陈宇翔, 郭冠初, 赵起越, 姜豪, 孙辉, 沈本贤. 烷氧基丙胺类新型溶剂分子设计及其脱除高酸性天然气中硫醇[J]. 化工进展, 2025, 44(1): 184-191. |
| [2] | 张蕾, 杜红英, 冯文浩, 郭军康. 基于二维光热材料的界面太阳能光热蒸发系统优化[J]. 化工进展, 2024, 43(8): 4571-4586. |
| [3] | 张瑞, 寇悦, 孙鹤, 王辰予, 李琢宇, 王庆宏, 陈春茂. 汽提净化水回用原油电脱盐过程的溶解性有机物转移特征[J]. 化工进展, 2024, 43(4): 2153-2160. |
| [4] | 程春晖, 明淑君, 庞磊, 田士东, 李克伦, 李涛. 基于煤层气甲烷富集的固体多孔材料研究进展[J]. 化工进展, 2024, 43(11): 6215-6232. |
| [5] | 盛维武, 程永攀, 陈强, 李小婷, 魏嘉, 李琳鸽, 陈险峰. 微气泡和微液滴双强化脱硫反应器操作分析[J]. 化工进展, 2023, 42(S1): 142-147. |
| [6] | 张杰, 王放放, 夏忠林, 赵光金, 马双忱. “双碳”目标下SF6排放现状、减排手段分析及未来展望[J]. 化工进展, 2023, 42(S1): 447-460. |
| [7] | 程荣, 邓子祺, 夏锦程, 李江, 石磊, 郑祥. 光催化系统灭活微生物气溶胶的研究进展[J]. 化工进展, 2023, 42(2): 957-968. |
| [8] | 李冬燕, 周剑, 江倩, 苗凯, 倪诗莹, 邹栋. 碳化硅陶瓷膜的制备及其应用进展[J]. 化工进展, 2023, 42(12): 6399-6408. |
| [9] | 王毅斌, 马佳慧, 林翅, 冯敬武, 谭厚章, 贺力海, 杨建伟. 电石炉净化灰矿化模拟烟气中CO2特性分析[J]. 化工进展, 2023, 42(11): 6086-6092. |
| [10] | 辛江, 张来勇, 赵唯, 隋蕾. 乙烯装置急冷系统设计及优化方法[J]. 化工进展, 2022, 41(10): 5169-5174. |
| [11] | 刘树根, 任林, 苏福家, 董占能. 磷化氢生物净化体系的微生物特性及过程强化[J]. 化工进展, 2021, 40(7): 4055-4063. |
| [12] | 聂煜东, 李金, 张贤明. 水处理过程中膜污染问题及其预处理技术研究进展[J]. 化工进展, 2021, 40(4): 2278-2289. |
| [13] | 饶轶晟, 杨晓健, 张红, 胡国涛. 湿法磷酸净化脱砷的研究现状[J]. 化工进展, 2020, 39(S1): 219-224. |
| [14] | 杨超越, 易铧, 刘可, 何金龙, 倪伟, 常宏岗, 胡超, 胡天友, 陈世明, 陈文科. 高效有机硫脱除溶剂CT8-24的工业应用[J]. 化工进展, 2020, 39(8): 3371-3379. |
| [15] | 郑婷婷, 王国栋, 顾绍晶, 王成雄, 杨冬霞, 陆炳, 葛蕴珊, 赵云昆. 汽车尾气净化三效催化剂中N2O和NH3的生成及控制研究进展[J]. 化工进展, 2020, 39(6): 2399-2410. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |