| 1 |
孙宏军, 李腾, 李金霞, 等. 基于Kelvin-Helmholtz不稳定性和界面剪切作用的扰动波高预测模型[J]. 化工进展, 2024, 43(2): 609-618.
|
|
SUN Hongjun, LI Teng, LI Jinxia, et al. Disturbance wave height prediction model based on Kelvin-Helmholtz instability and interfacial shear[J]. Chemical Industry and Engineering Progress, 2024, 43(2): 609-618.
|
| 2 |
SCHUBRING D, SHEDD T A. Wave behavior in horizontal annular air-water flow[J]. International Journal of Multiphase Flow, 2008, 34(7): 636-646.
|
| 3 |
JU Peng, LIU Yang, YANG Xiaohong, et al. Wave characteristics of vertical upward adiabatic annular flow in pipes[J]. International Journal of Heat and Mass Transfer, 2019, 145: 118701.
|
| 4 |
KUMAR Ranganathan, GOTTMANN Matthias, SRIDHAR K R. Film thickness and wave velocity measurements in a vertical duct[J]. Journal of Fluids Engineering, 2002, 124(3): 634-642.
|
| 5 |
SETYAWAN Andriyanto, INDARTO, DEENDARLIANTO. The effect of the fluid properties on the wave velocity and wave frequency of gas-liquid annular two-phase flow in a horizontal pipe[J]. Experimental Thermal and Fluid Science, 2016, 71: 25-41.
|
| 6 |
WANG Mi, ZHENG Dandan, WU Yazhou. Experimental and modeling study on interfacial disturbance wave velocity in horizontal gas-liquid flow by ultrasonic method[J]. Experimental Thermal and Fluid Science, 2019, 109: 109908.
|
| 7 |
SUN Hongjun, LI Teng, LI Jinxia, et al. Generalization of disturbance wave velocity of vertical annular flow considering entrained droplets effect[J]. Experimental Thermal and Fluid Science, 2024, 151: 111102.
|
| 8 |
WANG Chao, ZHAO Ning, FENG Yue, et al. Interfacial wave velocity of vertical gas-liquid annular flow at different system pressures[J]. Experimental Thermal and Fluid Science, 2018, 92: 20-32.
|
| 9 |
SUN Hongjun, HUANG Yi, LI Jinxia, et al. Disturbance wave velocity model based on physics-guided backpropagation neural network[C]//2024 IEEE International Instrumentation and Measurement Technology Conference (I2MTC). Glasgow, United Kingdom: IEEE, 2024: 1-6.
|
| 10 |
WOLF A, JAYANTI S, HEWITT G F. Flow development in vertical annular flow[J]. Chemical Engineering Science, 2001, 56(10): 3221-3235.
|
| 11 |
DE JONG Pieter, GABRIEL Kamiel S. A preliminary study of two-phase annular flow at microgravity: Experimental data of film thickness[J]. International Journal of Multiphase Flow, 2003, 29(8): 1203-1220.
|
| 12 |
SAWANT Pravin, ISHII Mamoru, HAZUKU Tatsuya, et al. Properties of disturbance waves in vertical annular two-phase flow[J]. Nuclear Engineering & Design, 2008, 238(12):3528-3541.
|
| 13 |
AlAMU Mhunir Bayonle. Investigation of periodic structures in gas-liquid flow[D]. Nottingham: University of Nottingham, 2010.
|
| 14 |
DASGUPTA A, CHANDRAKER D K, KSHIRASAGAR S,et al. Experimental investigation on dominant waves in upward air-water two-phase flow in churn and annular regime[J]. Experimental Thermal and Fluid Science, 2017, 81:147-163.
|
| 15 |
MOREIRA Tiago Augusto, MORSE Roman William, DRESSLER Kristofer M, et al. Liquid-film thickness and disturbance-wave characterization in a vertical, upward, two-phase annular flow of saturated R245fa inside a rectangular channel[J]. International Journal of Multiphase Flow, 2020, 132:103412.
|
| 16 |
LI Jinxia, WANG Chao, DING Hongbing, et al. EMD and spectrum-centrobaric-correction-based analysis of vortex street characteristics in mist annular flow of wet gas[J]. IEEE Transactions on Instrumentation and Measurement, 2018, 67(5): 1150-1160.
|
| 17 |
LI Jinxia, WANG Chao, DING Hongbing, et al. Wet gas metering using a vortex cross-correlation meter based on fluctuating pressure measurement[J]. Journal of Petroleum Science and Engineering, 2020, 195: 107855.
|
| 18 |
AL-SARKHI A, SARICA C, MAGRINI K. Inclination effects on wave characteristics in annular gas-liquid flows[J]. AIChE Journal, 2012, 58(4): 1018-1029.
|