化工进展 ›› 2025, Vol. 44 ›› Issue (3): 1355-1367.DOI: 10.16085/j.issn.1000-6613.2024-0379
毕文涛1,2(
), 王学林1,2, 曲炜1, 王从新1(
), 田志坚1
收稿日期:2024-03-07
修回日期:2024-04-27
出版日期:2025-03-25
发布日期:2025-04-16
通讯作者:
王从新
作者简介:毕文涛(1996—),男,硕士研究生,研究方向为负载型双金属/分子筛催化剂在烷烃异构化反应中的应用。E-mail:biwentao@dicp.ac.cn。
基金资助:
BI Wentao1,2(
), WANG Xuelin1,2, QU Wei1, WANG Congxin1(
), TIAN Zhijian1
Received:2024-03-07
Revised:2024-04-27
Online:2025-03-25
Published:2025-04-16
Contact:
WANG Congxin
摘要:
以ZSM-22分子筛为载体,采用共浸渍法制备了Mg改性低Pt载量(Pt质量分数0.1%)的PtMg/ZSM-22催化剂,采用N2物理吸附、NH3程序升温脱附(NH3-TPD)、吡啶吸附红外光谱(Py-FTIR)、羟基红外光谱(OH-FTIR)和2,6-二叔丁基吡啶吸附红外光谱(2,6-DTBPy-FTIR)等手段对催化剂进行表征,结果表明Mg的引入降低了Pt/ZSM-22催化剂的比表面积和微孔体积,以及中强B酸量和总酸量。以正十二烷为模型原料,在固定床反应器上考察了催化剂的加氢异构化性能。反应结果表明,与未改性的Pt/Z22催化剂相比,引入Mg助剂后的Pt0.5Mg/ZSM-22催化剂上异构体选择性显著提升,实现84.3%的异构体收率。结合表征结果和反应评价,探讨了Mg助剂对催化剂孔道性质、酸性质以及异构化性能的影响。
中图分类号:
毕文涛, 王学林, 曲炜, 王从新, 田志坚. Mg改性对低铂载量Pt/ZSM-22烷烃加氢异构性能的影响[J]. 化工进展, 2025, 44(3): 1355-1367.
BI Wentao, WANG Xuelin, QU Wei, WANG Congxin, TIAN Zhijian. Effect of Mg-modification on the catalytic performance of Pt/ZSM-22 with low Pt content in n-alkane hydroisomerization[J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1355-1367.
| 样品 | 比表面积①/m2·g-1 | 微孔比表面积/m2·g-1 | 外比表面积/m2·g-1 | 微孔体积①/cm3·g-1 | Pt粒径②/nm | Pt分散度②/% | Pt粒径③/nm |
|---|---|---|---|---|---|---|---|
| Z22 | 184.4 | 144.3 | 40.1 | 0.071 | — | — | — |
| Pt/Z22 | 166.7 | 131.5 | 35.2 | 0.065 | 2.4 | 45.6 | 1.9 |
| Pt0.5Mg/Z22 | 108.3 | 70.1 | 38.2 | 0.034 | 1.7 | 67.6 | 1.6 |
| Pt1Mg/Z22 | 55.9 | 22.5 | 33.4 | 0.011 | 1.6 | 68.3 | 1.5 |
表1 催化剂的孔道性质,Pt颗粒的分散度和粒径
| 样品 | 比表面积①/m2·g-1 | 微孔比表面积/m2·g-1 | 外比表面积/m2·g-1 | 微孔体积①/cm3·g-1 | Pt粒径②/nm | Pt分散度②/% | Pt粒径③/nm |
|---|---|---|---|---|---|---|---|
| Z22 | 184.4 | 144.3 | 40.1 | 0.071 | — | — | — |
| Pt/Z22 | 166.7 | 131.5 | 35.2 | 0.065 | 2.4 | 45.6 | 1.9 |
| Pt0.5Mg/Z22 | 108.3 | 70.1 | 38.2 | 0.034 | 1.7 | 67.6 | 1.6 |
| Pt1Mg/Z22 | 55.9 | 22.5 | 33.4 | 0.011 | 1.6 | 68.3 | 1.5 |
| 样品 | 酸度/mmol·g-1 | ||
|---|---|---|---|
| 弱酸量 | 中强酸量 | 总酸量 | |
| Pt/Z22 | 0.27 | 0.22 | 0.49 |
| Pt0.5Mg/Z22 | 0.26 | 0.16 | 0.42 |
| Pt1Mg/Z22 | 0.26 | 0.15 | 0.41 |
表2 Mg改性前后催化剂的NH3-TPD结果
| 样品 | 酸度/mmol·g-1 | ||
|---|---|---|---|
| 弱酸量 | 中强酸量 | 总酸量 | |
| Pt/Z22 | 0.27 | 0.22 | 0.49 |
| Pt0.5Mg/Z22 | 0.26 | 0.16 | 0.42 |
| Pt1Mg/Z22 | 0.26 | 0.15 | 0.41 |
| 样品 | 酸类型/μmol·g-1 | 酸类型(150℃,B)/μmol·g-1 | χ | CM/CA | |||||
|---|---|---|---|---|---|---|---|---|---|
| 150℃ | 300℃ | ||||||||
| B | L | B/L | B | L | B/L | ||||
| Pt/Z22 | 112.7 | 22.5 | 5.0 | 95.6 | 15.7 | 6.1 | 8.7 | 0.08 | 0.024 |
| Pt0.5Mg/Z22 | 41.7 | 31.5 | 1.3 | 36.9 | 30.4 | 1.2 | 8.5 | 0.21 | 0.094 |
| Pt1Mg/Z22 | 11.6 | 36.1 | 0.3 | 7.7 | 23.8 | 0.3 | 6.8 | 0.59 | 0.453 |
表3 Mg改性前后催化剂的Py-FTIR和2,6-DTBPy-FTIR结果
| 样品 | 酸类型/μmol·g-1 | 酸类型(150℃,B)/μmol·g-1 | χ | CM/CA | |||||
|---|---|---|---|---|---|---|---|---|---|
| 150℃ | 300℃ | ||||||||
| B | L | B/L | B | L | B/L | ||||
| Pt/Z22 | 112.7 | 22.5 | 5.0 | 95.6 | 15.7 | 6.1 | 8.7 | 0.08 | 0.024 |
| Pt0.5Mg/Z22 | 41.7 | 31.5 | 1.3 | 36.9 | 30.4 | 1.2 | 8.5 | 0.21 | 0.094 |
| Pt1Mg/Z22 | 11.6 | 36.1 | 0.3 | 7.7 | 23.8 | 0.3 | 6.8 | 0.59 | 0.453 |
| 1 | AN Kwangjin, ALAYOGLU Selim, MUSSELWHITE Nathan, et al. Designed catalysts from Pt nanoparticles supported on macroporous oxides for selective isomerization of n-hexane[J]. Journal of the American Chemical Society, 2014, 136(19): 6830-6833. |
| 2 | PASTVOVA Jana, KAUCKY Dalibor, MORAVKOVA Jaroslava, et al. Effect of enhanced accessibility of acid sites in micromesoporous mordenite zeolites on hydroisomerization of n-hexane[J]. ACS Catalysis, 2017, 7(9): 5781-5795. |
| 3 | 郑仁垟. 金属-分子筛双功能催化剂的结构设计及其烷烃异构研究进展[J]. 化工进展, 2021, 40(7): 3785-3790. |
| ZHENG Renyang. Advances in structure design and alkane isomerization performance of metal-zeolite bifunctional catalyst[J]. Chemical Industry and Engineering Progress, 2021, 40(7): 3785-3790. | |
| 4 | Yuchao LYU, ZHAN Weilong, WANG Xiaoxing, et al. Regulation of synergy between metal and acid sites over the Ni-SAPO-11 catalyst for n-hexane hydroisomerization[J]. Fuel, 2020, 274: 117855. |
| 5 | Yuchao LYU, YU Zhumo, YANG Ye, et al. Metal-acid balance in the in-situ solid synthesized Ni/SAPO-11 catalyst for n-hexane hydroisomerization[J]. Fuel, 2019, 243: 398-405. |
| 6 | KIM Myoung Yeob, LEE Kyungho, CHOI Minkee. Cooperative effects of secondary mesoporosity and acid site location in Pt/SAPO-11 on n-dodecane hydroisomerization selectivity[J]. Journal of Catalysis, 2014, 319: 232-238. |
| 7 | 陈治平, 王苗苗, 韦晓艺, 等. 复合分子筛在烃类异构化反应中的应用研究进展[J]. 化工进展, 2022, 41(5): 2404-2415. |
| CHEN Zhiping, WANG Miaomiao, WEI Xiaoyi, et al. Application of composite molecular sieve in hydrocarbon isomerization[J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2404-2415. | |
| 8 | ALVAREZ F, RIBEIRO F R, PEROT G, et al. Hydroisomerization and hydrocracking of alkanes 7. influence of the balance between acid and hydrogenating functions on the transformation of n-decane on PtHY catalysts[J]. Journal of Catalysis, 1996, 162(2): 179-189. |
| 9 | Yoshio ONO. A survey of the mechanism in catalytic isomerization of alkanes[J]. Catalysis Today, 2003, 81(1): 3-16. |
| 10 | GUISNET Michel. “Ideal” bifunctional catalysis over Pt-acid zeolites[J]. Catalysis Today, 2013, 218: 123-134. |
| 11 | WANG Dongxu, LIU Jiancong, CHENG Xusheng, et al. Trace Pt clusters dispersed on SAPO-11 promoting the synergy of metal sites with acid sites for high-effective hydroisomerization of n-alkanes[J]. Small Methods, 2019, 3(5): 1800510. |
| 12 | CLAUDE Marion C, MARTENS Johan A. Monomethyl-branching of long n-alkanes in the range from decane to tetracosane on Pt/H-ZSM-22 bifunctional catalyst[J]. Journal of Catalysis, 2000, 190(1): 39-48. |
| 13 | PARMAR Snehalkumar, PANT Kamal K, JOHN Mathew, et al. Hydroisomerization of n-hexadecane over Pt/ZSM-22 framework: Effect of divalent cation exchange[J]. Journal of Molecular Catalysis A: Chemical, 2015, 404: 47-56. |
| 14 | CHEN Yujing, LI Chuang, CHEN Xiao, et al. Synthesis and characterization of iron-substituted ZSM-23 zeolite catalysts with highly selective hydroisomerization of n-hexadecane[J]. Industrial & Engineering Chemistry Research, 2018, 57(41): 13721-13730. |
| 15 | LEE Seung-Woo, Son-Ki IHM. Characteristics of magnesium-promoted Pt/ZSM-23 catalyst for the hydroisomerization of n-hexadecane[J]. Industrial & Engineering Chemistry Research, 2013, 52(44): 15359-15365. |
| 16 | PENG Yan, WANG Xuelin, WANG Congxin, et al. Boosting catalytic performance via electron transfer effect for hydroisomerization on a low-Pt-content PtCeOx/zeolite catalyst[J]. Chem Catalysis, 2023, 3(2): 100505. |
| 17 | XIONG Shuxiang, SUN Jiazheng, LI Huiyan, et al. The synthesis of hierarchical ZSM-22 zeolite with only the PHMB template for hydroisomerization of n-hexadecane[J]. Microporous and Mesoporous Materials, 2024, 365: 112895. |
| 18 | ZHANG Lei, GAO Yifei, BAI Xuerui, et al. Ni catalyst on ZSM-22 nanofibers bundles with good catalytic performance in the hydroisomerization of n-dodecane[J]. Fuel, 2024, 357: 129885. |
| 19 | 张海鹏, 王树振, 马梦茜, 等. ZSM-22分子筛合成及其正十二烷烃临氢异构化性能: 模板剂和动态晶化的影响[J]. 化工进展, 2024, 43(1): 414-421. |
| ZHANG Haipeng, WANG Shuzhen, MA Mengxi, et al. Synthesis of ZSM-22 molecular sieve and its n-dodecane hydroisomerization performance: Effect of template agent and dynamic crystallization[J]. Chemical Industry and Engineering Progress, 2024, 43(1): 414-421. | |
| 20 | HAYASAKA Kazuaki, LIANG Duoduo, HUYBRECHTS Ward, et al. Formation of ZSM-22 zeolite catalytic particles by fusion of elementary nanorods[J]. Chemistry, 2007, 13(36): 10070-10077. |
| 21 | Guang LYU, WANG Congxin, WANG Ping, et al. Pt/ZSM-22 with partially filled micropore channels as excellent shape-selective hydroisomerization catalyst[J]. ChemCatChem, 2019, 11(5): 1431-1436. |
| 22 | 余姮, 董焕能, 刘茜桐, 等. MgO修饰的HZSM-5分子筛对甲苯甲醇烷基化反应性能的影响[J]. 厦门大学学报(自然科学版), 2023, 62(1): 78-84. |
| YU Heng, DONG Huanneng, LIU Xitong, et al. Effects of MgO-modified HZSM-5 zeolites on the performance of alkylation reaction of toluene with methanol[J]. Journal of Xiamen University (Natural Science), 2023, 62(1): 78-84. | |
| 23 | KOKOTAILO G T, SCHLENKER J L, DWYER F G, et al. The framework topology of ZSM-22: A high silica zeolite[J]. Zeolites, 1985, 5(6): 349-351. |
| 24 | WANG Congxin, TIAN Zhijian, WANG Lei, et al. One-step hydrotreatment of vegetable oil to produce high quality diesel-range alkanes[J]. ChemSusChem, 2012, 5(10): 1974-1983. |
| 25 | Kinga GÓRA-MAREK, TARACH Karolina, CHOI Minkee. 2, 6-di-tert-butylpyridine sorption approach to quantify the external acidity in hierarchical zeolites[J]. The Journal of Physical Chemistry C, 2014, 118(23): 12266-12274. |
| 26 | SONG Hyunjoon, RIOUX Robert M, HOEFELMEYER James D, et al. Hydrothermal growth of mesoporous SBA-15 silica in the presence of PVP-stabilized Pt nanoparticles: Synthesis, characterization, and catalytic properties[J]. Journal of the American Chemical Society, 2006, 128(9): 3027-3037. |
| 27 | ALLIAN Ayman D, TAKANABE Kazuhiro, FUJDALA Kyle L, et al. Chemisorption of CO and mechanism of CO oxidation on supported platinum nanoclusters[J]. Journal of the American Chemical Society, 2011, 133(12): 4498-4517. |
| 28 | 辛勤, 罗孟飞. 现代催化研究方法[M]. 北京: 科学出版社, 2009: 290. |
| XIN Qin, LUO Mengfei. Modern catalytic research methods[M]. Beijing: Science Press, 2009: 290. | |
| 29 | MUKERJI R J, BOLINA A S, BROWN W A. A RAIRS and TPD investigation of the adsorption of CO on Pt{211}[J]. Surface Science, 2003, 527(1/2/3): 198-208. |
| 30 | BISCHOFF H, JAEGER N I, SCHULZ-EKLOFF G. FTIR study of the particle size dependent chemisorption of CO on Pt dispersed within a faujasite matrix[J]. Zeitschrift Für Physikalische Chemie, 1990, 2710(1): 1093-1102. |
| 31 | MAO Dongsen, YANG Weimin, XIA Jianchao, et al. Highly effective hybrid catalyst for the direct synthesis of dimethyl ether from syngas with magnesium oxide-modified HZSM-5 as a dehydration component[J]. Journal of Catalysis, 2005, 230(1): 140-149. |
| 32 | CORMA A, FORNÉS V, FORNI L, et al. 2, 6-di-tert-butyl-pyridine as a probe molecule to measure external acidity of zeolites[J]. Journal of Catalysis, 1998, 179(2): 451-458. |
| 33 | UNGUREANU A, HOANG T V, Trong ON D, et al. An investigation of the acid properties of UL-ZSM-5 by FTIR of adsorbed 2, 6-ditertbutylpyridine and aromatic transalkylation test reaction[J]. Applied Catalysis A: General, 2005, 294(1): 92-105. |
| 34 | Frédéric THIBAULT-STARZYK, STAN Irina, Sònia ABELLÓ, et al. Quantification of enhanced acid site accessibility in hierarchical zeolites—The accessibility index[J]. Journal of Catalysis, 2009, 264(1): 11-14. |
| 35 | DE LUCAS Antonio, RAMOS María Jesús, DORADO Fernando, et al. Influence of the Si/Al ratio in the hydroisomerization of n-octane over platinum and palladium beta zeolite-based catalysts with or without binder[J]. Applied Catalysis A: General, 2005, 289(2): 205-213. |
| 36 | CHOUDHURY Indranil R, HAYASAKA Kazuaki, THYBAUT Joris W, et al. Pt/H-ZSM-22 hydroisomerization catalysts optimization guided by Single-Event MicroKinetic modeling[J]. Journal of Catalysis, 2012, 290: 165-176. |
| 37 | BROSIUS Roald, KOOYMAN Patricia J, FLETCHER Jack C Q. Selective formation of linear alkanes from n-hexadecane primary hydrocracking in shape-selective MFI zeolites by competitive adsorption of water[J]. ACS Catalysis, 2016, 6(11): 7710-7715. |
| 38 | NIU Pengyu, LIU Ping, XI Hongjuan, et al. Design and synthesis of Pt/ZSM-22 catalysts for selective formation of iso-dodecane with branched chain at more central positions from n-dodecane hydroisomerization[J]. Applied Catalysis A: General, 2018, 562: 310-320. |
| 39 | MARTENS J A, JACOBS P A, WEITKAMP J. Attempts to rationalize the distribution of hydrocracked products. I qualitative description of the primary hydrocracking modes of long chain paraffins in open zeolites[J]. Applied Catalysis, 1986, 20(1/2): 239-281. |
| [1] | 张馨儿, 裴刘军, 周雨蝶, 靳凯丽, 王际平. 基于TiO2的光催化剂利用太阳能裂解水制氢研究进展[J]. 化工进展, 2025, 44(3): 1298-1308. |
| [2] | 刘俊杰, 吴建民, 孙启文, 王建成, 孙燕. 茂金属催化线性α-烯烃聚合获取高分子量产物研究进展[J]. 化工进展, 2025, 44(3): 1309-1322. |
| [3] | 朱国瑜, 葛棋, 付名利. 甲醇重整制氢催化剂耐久性评价和寿命预测方法[J]. 化工进展, 2025, 44(3): 1338-1346. |
| [4] | 左骥, 罗莉, 谢永锴, 陈文尧, 钱刚, 周兴贵, 段学志. 甲醇无氧脱氢制甲醛Cu催化剂的粒径效应[J]. 化工进展, 2025, 44(3): 1347-1354. |
| [5] | 张琪, 王涛, 张雪冰, 李为真, 程萌, 张魁, 吕毅军, 门卓武. 合成气/CO2转化制高级醇Fe基催化剂研究进展[J]. 化工进展, 2025, 44(3): 1323-1337. |
| [6] | 陶金泉, 贾亦静, 白天瑜, 姚荣鹏, 黄文斌, 崔岩, 周亚松, 魏强. Silicalite-1分子筛的低成本合成及其MTP催化性能[J]. 化工进展, 2025, 44(3): 1550-1558. |
| [7] | 杨璐, 魏海琴, 袁浩博, 高志华, 黄伟, 王晓东. 合成液中水含量调控Ge-ZSM-5膜的乙二醇脱水性能[J]. 化工进展, 2025, 44(2): 982-990. |
| [8] | 张琪, 王涛, 张雪冰, 李为真, 冯波, 蒋智慧, 吕毅军, 门卓武. 合成气制高级醇Co基催化剂研究进展[J]. 化工进展, 2025, 44(2): 773-787. |
| [9] | 李知行, 代卫炯, 刘相洋, 王飞, 李瑞丰. ZSM-5分子筛结构与反应性的研究进展[J]. 化工进展, 2025, 44(2): 788-808. |
| [10] | 贾亦静, 陶金泉, 黄文斌, 刘昊然, 李蓉蓉, 姚荣鹏, 白天瑜, 魏强, 周亚松. CO2加氢制低碳烯烃Fe基催化剂研究进展[J]. 化工进展, 2025, 44(2): 820-833. |
| [11] | 廖旭, 王玮, 黄文婷, 熊文涛, 王泽宇, 覃佐东, 林金清. 生物质基催化剂在二氧化碳转化为环状碳酸酯中的研究进展[J]. 化工进展, 2025, 44(2): 834-846. |
| [12] | 李章良, 杨月珠, 伍传田, 吕源财. 活性炭纤维毡负载N-TiO2/MoS2/N-TiO2固定化漆酶降解双酚A[J]. 化工进展, 2025, 44(2): 887-898. |
| [13] | 李琢宇, 余美琪, 陈孝彦, 胡若晖, 王庆宏, 陈春茂, 詹亚力. 炼油废催化剂吸附去除水中硝基苯的特性与机制[J]. 化工进展, 2025, 44(2): 1076-1087. |
| [14] | 李晓倩, 任申勇, 刘璐, 杨驰, 申宝剑, 徐春明. Fe物种对NiMo基催化剂的调控及加氢脱硫性能的影响[J]. 化工进展, 2025, 44(2): 867-878. |
| [15] | 杨帆, 赵溢涛, 朱学栋, 王达锐. 三元尖晶石与孪晶ZSM-5分子筛在苯与二氧化碳甲基化中的应用[J]. 化工进展, 2025, 44(2): 856-866. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |