化工进展 ›› 2025, Vol. 44 ›› Issue (10): 6102-6114.DOI: 10.16085/j.issn.1000-6613.2025-0259
• 资源与环境化工 • 上一篇
收稿日期:2025-02-21
修回日期:2025-04-10
出版日期:2025-10-25
发布日期:2025-11-10
通讯作者:
刘雪瑜
作者简介:张娟娟(1989—),女,博士,副研究员,研究方向为环境催化材料与水污染控制技术。E-mail:zhang.juanjuan@craes.org.cn。
基金资助:
ZHANG Juanjuan(
), LING Yu, LI Jiaxi, LIU Xueyu(
)
Received:2025-02-21
Revised:2025-04-10
Online:2025-10-25
Published:2025-11-10
Contact:
LIU Xueyu
摘要:
采用热聚合法制备了苝四羧酸二酐(PTCDA)修饰的石墨相氮化碳(g-C3N4)光催化剂(PI-g-C3N4),并研究其光催化降解苯酚(phenol,缩写为Ph)的效果及其可能的光催化反应机制。采用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线衍射(XRD)、傅里叶变换红外吸收光谱(FTIR)、X射线光电子能谱仪(XPS)、UV-Vis漫反射光谱(UV-Vis-DRS)、光电流分析、莫特-肖特基(Mott-Schottky,M-S)曲线等方法对制备的PI-g-C3N4光催化剂进行表征。考察了不同催化剂、催化剂投加量、不同溶液初始pH、不同实际水体对光催化降解Ph的影响。结果表明,当利用氙灯(配置波长大于400nm的滤光片)作为光源,催化剂PI-g-C3N4投加量为1.0g/L、污染物Ph初始浓度为10mg/L、反应120min时,Ph的去除率可达91%,且降解Ph的速率常数为0.02min-1,是单独g-C3N4或PTCDA降解Ph的10倍和250倍。催化剂投加量和碱性条件均有利于Ph的降解。自由基淬灭实验和电子自旋共振实验结果证明,该体系中光生空穴(h+)、超氧自由基(O2•-)和过氧化氢(H2O2)是降解Ph的主要活性物种。PI-g-C3N4为S型异质结构,通过π-π共轭相互作用将PTCDA与g-C3N4结合,有效促进了光生电子-空穴对的分离,实现了光催化降解Ph的性能提升。最后,催化剂循环利用实验证明了制备的PI-g-C3N4光催化剂具有较好的重复利用性。本研究旨在为光催化材料在环境污染治理领域提供新思路和新方法。
中图分类号:
张娟娟, 凌裕, 黎佳茜, 刘雪瑜. PI-g-C3N4光催化剂的制备及其光催化降解苯酚性能[J]. 化工进展, 2025, 44(10): 6102-6114.
ZHANG Juanjuan, LING Yu, LI Jiaxi, LIU Xueyu. Preparation of PI-g-C3N4 photocatalyst and its photocatalytic degradation performance of phenol[J]. Chemical Industry and Engineering Progress, 2025, 44(10): 6102-6114.
| 催化剂类型 | 改性策略 | 降解率/% | 反应时间/min | 速率常数/min-1 | 主要改进机制 | 参考文献 |
|---|---|---|---|---|---|---|
| PI-g-C3N4 | PTCDA与g-C3N4酰胺反应复合 | 91 | 120 | 0.020 | S型电荷传输,增强界面电荷分离 | 本研究 |
| CoPC/g-C3N4 | 金属掺杂 | 82 | 240 | 0.015 | 窄化带隙,提升光响应范围 | [ |
| S/g-C3N4 | 非金属掺杂 | 56 | 90 | 0.009 | 窄化带隙,提升光响应范围 | [ |
| Bi2O3/g-C3N4 | 异质结复合 | 36.6 | 75 | 0.006 | 促进光生电子-空穴对分离 | [ |
表1 不同光催化材料对比分析表
| 催化剂类型 | 改性策略 | 降解率/% | 反应时间/min | 速率常数/min-1 | 主要改进机制 | 参考文献 |
|---|---|---|---|---|---|---|
| PI-g-C3N4 | PTCDA与g-C3N4酰胺反应复合 | 91 | 120 | 0.020 | S型电荷传输,增强界面电荷分离 | 本研究 |
| CoPC/g-C3N4 | 金属掺杂 | 82 | 240 | 0.015 | 窄化带隙,提升光响应范围 | [ |
| S/g-C3N4 | 非金属掺杂 | 56 | 90 | 0.009 | 窄化带隙,提升光响应范围 | [ |
| Bi2O3/g-C3N4 | 异质结复合 | 36.6 | 75 | 0.006 | 促进光生电子-空穴对分离 | [ |
| [1] | WANG Jiayu, CHAN Faith Ka Shun, JOHNSON Matthew F, et al. Material cycles, environmental emissions, and ecological risks of bisphenol A (BPA) in China and implications for sustainable plastic management[J]. Environmental Science & Technology, 2025, 59(3): 1631-1646. |
| [2] | WANG Jiacheng, ZHANG Lidan, HE Yujie, et al. Biodegradation of phenolic pollutants and bioaugmentation strategies: A review of current knowledge and future perspectives[J]. Journal of Hazardous Materials, 2024, 469: 133906. |
| [3] | VASILJEVIC Tijana, HARNER Tom. Bisphenol A and its analogues in outdoor and indoor air: Properties, sources and global levels[J]. Science of the Total Environment, 2021, 789: 148013. |
| [4] | 高鹏, 徐璐, 辛宁, 等. 焦化废水污染控制技术研究进展[J]. 环境工程技术学报, 2016, 6(4): 357-362. |
| GAO Peng, XU Lu, XIN Ning, et al. Advances in research on coking wastewater control technologies[J]. Journal of Environmental Engineering Technology, 2016, 6(4): 357-362. | |
| [5] | YUE Bin, ZHOU Yan, XU Jingyu, et al. Photocatalytic degradation of aqueous 4-chlorophenol by silica-immobilized polyoxometalates[J]. Environmental Science & Technology, 2002, 36(6): 1325-1329. |
| [6] | CHEN Sha, HUANG Danlian, ZENG Guangming, et al. In-situ synthesis of facet-dependent BiVO4/Ag3PO4/PANI photocatalyst with enhanced visible-light-induced photocatalytic degradation performance: Synergism of interfacial coupling and hole-transfer[J]. Chemical Engineering Journal, 2020, 382: 122840. |
| [7] | YU Fang, TIAN Fengyu, ZOU Haowen, et al. ZnO/biochar nanocomposites via solvent free ball milling for enhanced adsorption and photocatalytic degradation of methylene blue[J]. Journal of Hazardous Materials, 2021, 415: 125511. |
| [8] | 周永, 江芳, 张晋华, 等. 载银TiO2纳米管的制备及其光催化降解硝基苯废水[J]. 环境工程技术学报, 2012, 2(6): 480-484. |
| ZHOU Yong, JIANG Fang, ZHANG Jinhua, et al. Preparation of Ag-doped titania nanotube and its photocatalytic degradation performance for nitrobenzene wastewater[J]. Journal of Environmental Engineering Technology, 2012, 2(6): 480-484. | |
| [9] | 马香港, 丁远, 张俊格, 等. 改性g-C3N4光催化降解双酚A的研究进展[J]. 化工进展, 2024, 43(11): 6271-6292. |
| MA Xianggang, DING Yuan, ZHANG Junge, et al. Progress of photocatalytic degradation of bisphenol A by modified g-C3N4 [J]. Chemical Industry and Engineering Progress, 2024, 43(11): 6271-6292. | |
| [10] | CHONG Mengnan, JIN Bo, CHOW Christopher W K, et al. Recent developments in photocatalytic water treatment technology: A review[J]. Water Research, 2010, 44(10): 2997-3027. |
| [11] | WANG Yimeng, MA Hecheng, LIU Jianjun, et al. Broad-spectrum hybrid-driven triple-interface Z-Scheme 1T/2H phase sailboat-like molybdenum disulfide (MoS2)/protonated N-defect nanoporous graphitic carbon nitride (g-C3N4) nanosheets piezo-photocatalyst: Superior degradation and hydrogen evolution[J]. Journal of Colloid and Interface Science, 2024, 665: 655-680. |
| [12] | 曾军建, 杜轶君, 何静, 等. 石墨相氮化碳的制备及在染料降解膜中的应用进展[J]. 化工进展, 2025, 44(10): 5899-5910. |
| ZENG Junjian, DU Yijun, HE Jing, et al. Progress in the synthesis of graphitic carbon nitride and its application in dye degradation membranes[J]. Chemical Industry and Engineering Progress, 2025, 44(10): 5899-5910. | |
| [13] | TAN Yushan, CHEN Weirui, LIAO Gaozu, et al. Role of metal-N-C electron transport channel within g-C3N4 for promoting water purification of photocatalytic ozonation[J]. Applied Catalysis B: Environment and Energy, 2024, 351: 124005. |
| [14] | 宋亚丽, 李紫燕, 杨彩荣, 等. 非金属元素掺杂石墨相氮化碳光催化材料的研究进展[J]. 化工进展, 2023, 42(10): 5299-5309. |
| SONG Yali, LI Ziyan, YANG Cairong, et al. Research progress of non-metallic element doped graphitic carbon nitride photocatalytic materials[J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5299-5309. | |
| [15] | YOU Qinglun, ZHANG Chunsheng, CAO Min, et al. Defects controlling, elements doping, and crystallinity improving triple-strategy modified carbon nitride for efficient photocatalytic diclofenac degradation and H2O2 production[J]. Applied Catalysis B: Environmental, 2023, 321: 121941. |
| [16] | 黄建辉, 林文婷, 谢丽燕, 等. 石墨相氮化碳-碘氧化铋层状异质结的构建及其光催化杀菌性能[J]. 环境科学, 2017, 38(9): 3979-3986. |
| HUANG Jianhui, LIN Wenting, XIE Liyan, et al. Construction of graphitic carbon nitride-bismuth oxyiodide layered heterostructures and their photocatalytic antibacterial performance[J]. Environmental Science, 2017, 38(9): 3979-3986. | |
| [17] | CHEN Long, MAIGBAY Michael A, LI Miao, et al. Synthesis and modification strategies of g-C3N4 nanosheets for photocatalytic applications[J]. Advanced Powder Materials, 2024, 3(1): 100150. |
| [18] | ZHANG Juanjuan, ZHAO Xu, WANG Yanbin, et al. Peroxymonosulfate-enhanced visible light photocatalytic degradation of bisphenol A by perylene imide-modified g-C3N4 [J]. Applied Catalysis B: Environmental, 2018, 237: 976-985. |
| [19] | ZHAO Feiping, LIU Yongpeng, HAMMOUDA Samia BEN, et al. MIL-101(Fe)/g-C3N4 for enhanced visible-light-driven photocatalysis toward simultaneous reduction of Cr(Ⅵ) and oxidation of bisphenol A in aqueous media[J]. Applied Catalysis B: Environmental, 2020, 272: 119033. |
| [20] | ROBB Maxwell J, NEWTON Brandon, FORS Brett P, et al. One-step synthesis of unsymmetrical N-alkyl-N’-aryl perylene diimides[J]. The Journal of Organic Chemistry, 2014, 79(13): 6360-6365. |
| [21] | NAGARAJAN Kalaivanan, MALLIA Ajith R, MURALEEDHARAN Keerthi, et al. Enhanced intersystem crossing in core-twisted aromatics[J]. Chemical Science, 2017, 8(3): 1776-1782. |
| [22] | AVLASEVICH Yuri, LI Chen, Klaus MÜLLEN. Synthesis and applications of core-enlarged perylene dyes[J]. Journal of Materials Chemistry, 2010, 20(19): 3814-3826. |
| [23] | WEI Yunxia, MA Mingguang, LI Wenlu, et al. Enhanced photocatalytic activity of PTCDI-C60 via π-π interaction[J]. Applied Catalysis B: Environmental, 2018, 238: 302-308. |
| [24] | DONG Guohui, YANG Liping, WANG Fu, et al. Removal of nitric oxide through visible light photocatalysis by g-C3N4 modified with perylene imides[J]. ACS Catalysis, 2016, 6(10): 6511-6519. |
| [25] | 朱娜, 王星阳, 焦俊恒, 等. 基于g-C3N4研究环境中甲氧苄啶的光降解行为及其毒性[J]. 环境科学, 2022, 43(12): 5832-5839. |
| ZHU Na, WANG Xingyang, JIAO Junheng, et al. Photodegradation behaviors and toxicity characteristics of trimethoprim into different environmental media with the presence of g-C3N4 [J]. Environmental Science, 2022, 43(12): 5832-5839. | |
| [26] | DONG Guohui, ZHANG Lizhi. Synthesis and enhanced Cr(Ⅵ) photoreduction property of formate anion containing graphitic carbon nitride[J]. The Journal of Physical Chemistry C, 2013, 117(8): 4062-4068. |
| [27] | WANG Yanbin, ZHAO Xu, CAO Di, et al. Peroxymonosulfate enhanced visible light photocatalytic degradation bisphenol A by single-atom dispersed Ag mesoporous g-C3N4 hybrid[J]. Applied Catalysis B: Environmental, 2017, 211: 79-88. |
| [28] | 马晓明, 信帅帅, 张春蕾, 等. g-C3N4/TiO2纳米管阵列光阳极的制备及其光电催化降解邻氯硝基苯[J]. 环境科学学报, 2022, 42(8): 166-178. |
| MA Xiaoming, XIN Shuaishuai, ZHANG Chunlei, et al. Preparation of g-C3N4/TiO2 nanotube arrays photoanode for photoelectrocatalytic degradation of o-chloronitrobenzene[J]. Acta Scientiae Circumstantiae, 2022, 42(8): 166-178. | |
| [29] | TANG Dandan, ZHANG Gaoke. Fabrication of AgFeO2/g-C3N4 nanocatalyst with enhanced and stable photocatalytic performance[J]. Applied Surface Science, 2017, 391: 415-422. |
| [30] | 白佳琦, 崔雨琦, 唐清文, 等. 石墨相氮化碳光催化剂的制备、改性及其在水处理中的应用[J]. 环境科学学报, 2022, 42(2): 69-80. |
| BAI Jiaqi, CUI Yuqi, TANG Qingwen, et al. Preparation and modification of graphite-phase carbon nitride photocatalyst and its application in water treatment[J]. Acta Scientiae Circumstantiae, 2022, 42(2): 69-80. | |
| [31] | 赵卫峰, 郝宁, 张改, 等. 苝四羧酸二酰亚胺修饰增强g-C3N4光催化性能[J]. 材料工程, 2022, 50(3): 98-106. |
| ZHAO Weifeng, HAO Ning, ZHANG Gai, et al. Perylene tetracarboxylic bisimide decorated g-C3N4 with enhanced photocatalytic activity[J]. Journal of Materials Engineering, 2022, 50(3): 98-106. | |
| [32] | DING Dr Zhengxin, CHEN Xiufang, ANTONIETTI Prof Markus, et al. Synthesis of transition metal-modified carbon nitride polymers for selective hydrocarbon oxidation[J]. ChemSusChem, 2011, 4(2): 274-281. |
| [33] | HUANG Zeai, SUN Qiong, LV Kangle, et al. Effect of contact interface between TiO2 and g-C3N4 on the photoreactivity of g-C3N4/TiO2 photocatalyst: (001) vs. (101) facets of TiO2 [J]. Applied Catalysis B: Environmental, 2015, 164: 420-427. |
| [34] | QIN Zongyi, ZHANG Jin, ZHOU Hong, et al. Degradation of polyimide induced by nitrogen laser irradiation[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2000, 170(3/4): 406-412. |
| [35] | RANGAN Sylvie, RUGGIERI Charles, BARTYNSKI Robert, et al. Adsorption geometry and energy level alignment at the PTCDA/TiO2(110) interface[J]. The Journal of Physical Chemistry B, 2018, 122(2): 534-542. |
| [36] | LI Jianghua, SHEN Biao, HONG Zhenhua, et al. A facile approach to synthesize novel oxygen-doped g-C3N4 with superior visible-light photoreactivity[J]. Chemical Communications, 2012, 48(98): 12017-12019. |
| [37] | LI Yuhan, Wingkei HO, Kangle LYU, et al. Carbon vacancy-induced enhancement of the visible light-driven photocatalytic oxidation of NO over g-C3N4 nanosheets[J]. Applied Surface Science, 2018, 430: 380-389. |
| [38] | DONG Shuying, XIA Longji, GUO Teng, et al. Controlled synthesis of flexible graphene aerogels macroscopic monolith as versatile agents for wastewater treatment[J]. Applied Surface Science, 2018, 445: 30-38. |
| [39] | WU Fei, HUANG Huawang, XU Tiefeng, et al. Visible-light-assisted peroxymonosulfate activation and mechanism for the degradation of pharmaceuticals over pyridyl-functionalized graphitic carbon nitride coordinated with iron phthalocyanine[J]. Applied Catalysis B: Environmental, 2017, 218: 230-239. |
| [40] | MITRA Anuradha, HOWLI Promita, Dipayan SEN, et al. Cu2O/g-C3N4 nanocomposites: An insight into the band structure tuning and catalytic efficiencies[J]. Nanoscale, 2016, 8(45): 19099-19109. |
| [41] | LU Jinsuo, WANG Yujing, LIU Fei, et al. Fabrication of a direct Z-scheme type WO3/Ag3PO4 composite photocatalyst with enhanced visible-light photocatalytic performances[J]. Applied Surface Science, 2017, 393(1): 180-190. |
| [42] | HUANG Hongwei, LI Xiaowei, WANG Jinjian, et al. Anionic group self-doping as a promising strategy: Band-gap engineering and multi-functional applications of high-performance CO3 2--doped Bi2O2CO3 [J]. ACS Catalysis, 2015, 5(7): 4094-4103. |
| [43] | DONG Guohui, Wingkei HO, LI Yuhan, et al. Facile synthesis of porous graphene-like carbon nitride (C6N9H3) with excellent photocatalytic activity for NO removal[J]. Applied Catalysis B: Environmental, 2015, 174-175: 477-485. |
| [44] | 贾建岗, 何淑媛. CoPC/g-C3N4的制备及其光催化降解苯酚性能研究[J]. 现代化工, 2024, 44(10): 180-185. |
| JIA Jiangang, HE Shuyuan. Preparation of CoPC/g-C3N4and study on its performance in photocatalytic degradation of phenol[J]. Modern Chemical Industry, 2024, 44(10): 180-185. | |
| [45] | Haiqin LYU, HUANG Ying, KOODALI Ranjit T, et al. Synthesis of sulfur-doped 2D graphitic carbon nitride nanosheets for efficient photocatalytic degradation of phenol and hydrogen evolution[J]. ACS Applied Materials & Interfaces, 2020, 12(11): 12656-12667. |
| [46] | WANG Qi, LI Ningyi, TAN Meng, et al. Novel dual Z-scheme Bi/BiOI-Bi2O3-C3N4 heterojunctions with synergistic boosted photocatalytic degradation of phenol[J]. Separation and Purification Technology, 2023, 307: 122733. |
| [47] | XU Kaijie, CUI Kangping, CUI Minshu, et al. Carbonyl heterocycle modified mesoporous carbon nitride in photocatalytic peroxydisulfate activation for enhanced ciprofloxacin removal: Performance and mechanism[J]. Journal of Hazardous Materials, 2023, 444: 130412. |
| [48] | 李亚男, 郭凯, 王嘉琪, 等. 煤气化渣活化过二硫酸盐和过一硫酸盐降解苯酚的比较[J]. 化工进展, 2024, 43(6): 3503-3512. |
| LI Yanan, GUO Kai, WANG Jiaqi, et al. Comparison of phenol degradation by persulfate and peroxymonosulfate activated with coal gasification slag[J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3503-3512. | |
| [49] | LAU Tim K, CHU Wei, GRAHAM Nigel J D. The aqueous degradation of butylated hydroxyanisole by UV/S2O8 2-: Study of reaction mechanisms via dimerization and mineralization[J]. Environmental Science and Technology, 2007, 41(2): 613-619. |
| [50] | 张少朋, 陈瑀, 白淑琴, 等. 氯氧铁非均相催化过氧化氢降解罗丹明B[J]. 环境科学, 2019, 40(11): 5009-5014. |
| ZHANG Shaopeng, CHEN Yu, BAI Shuqin, et al. Catalytic degradation of rhodamine B by FeOCl activated hydrogen peroxide[J]. Environmental Science, 2019, 40(11): 5009-5014. | |
| [51] | FANG Guodong, DIONYSIOU Dionysios D, AL-ABED Souhail R, et al. Superoxide radical driving the activation of persulfate by magnetite nanoparticles: Implications for the degradation of PCBs[J]. Applied Catalysis B: Environmental, 2013, 129: 325-332. |
| [52] | DONG Shuying, CUI Yanrui, WANG Yifei, et al. Designing three-dimensional acicular sheaf shaped BiVO4/reduced graphene oxide composites for efficient sunlight-driven photocatalytic degradation of dye wastewater[J]. Chemical Engineering Journal, 2014, 249: 102-110. |
| [1] | 王文君, 刘瑞鑫, 王军, 张庆磊, 侯立安. 浅析二氧化钛材料可见光降解室内VOCs的研究进展[J]. 化工进展, 2025, 44(9): 5351-5362. |
| [2] | 周美梅, 何家慧, 向婉婷, 尚佳欣, 魏心语, 孙蜜蜜, 邹伟, 罗平平. 电纺PVA/SiO2纳米纤维负载A-TiO2/BiOBr增强可见光催化活性[J]. 化工进展, 2025, 44(6): 3084-3092. |
| [3] | 肖立, 岐少鹏, 周昆, 薄雅楠, 王秀林, 姚辉超, 戴若云, 隋依言. 缺陷态TiO2-x -Au团簇复合结构设计实现高效可见光驱动CO2还原[J]. 化工进展, 2025, 44(6): 3062-3071. |
| [4] | 张绎如, 韩东梅, 马伟芳. 铁基复合卤氧化铋磁性材料强化可见光催化处理难降解有机废水研究进展[J]. 化工进展, 2025, 44(4): 2258-2273. |
| [5] | 张佩, 高莉宁, 丁思晴, 李立, 祝锡爇, 何锐. g-C3N4/TiO2异质结光催化剂的制备及其对NO的降解性能[J]. 化工进展, 2025, 44(4): 2045-2056. |
| [6] | 马晓宇, 张岩, 周阿武, 李涵冰, 杨飞华, 李建荣. MOF-on-MOF复合材料制备与光催化性能的研究进展[J]. 化工进展, 2025, 44(3): 1417-1431. |
| [7] | 张馨儿, 裴刘军, 周雨蝶, 靳凯丽, 王际平. 基于TiO2的光催化剂利用太阳能裂解水制氢研究进展[J]. 化工进展, 2025, 44(3): 1298-1308. |
| [8] | 方碧瑶, 邱健豪, 李伊馨, 姚建峰. 木质纤维素基生物质炭改性半导体及其光催化应用[J]. 化工进展, 2025, 44(2): 957-970. |
| [9] | 曾军建, 杜轶君, 何静, 薛立新. 石墨相氮化碳的制备及在染料降解膜中的应用进展[J]. 化工进展, 2025, 44(10): 5899-5910. |
| [10] | 赵文武, 刘进强, 周海静, 刘剑, 郝斌. 层状Bi2WO6的合成及氧空位在光降解四环素中的作用机理[J]. 化工进展, 2025, 44(10): 5859-5870. |
| [11] | 刘炜, 张敏, 朱照琪, 王毅, 梁卫东, 孙寒雪. 黑色二氧化钛纳米材料的构筑及其应用现状[J]. 化工进展, 2025, 44(1): 341-353. |
| [12] | 蒋莉萍, 张雪乔, 钟晓娟, 魏于凡, 肖利, 郭旭晶, 羊依金. 钒渣酸浸提铁工艺优化及复合光催化剂的制备[J]. 化工进展, 2025, 44(1): 538-548. |
| [13] | 吴泽亮, 管琦卉, 陈世霞, 王珺. 炔烃选择性加氢制烯烃反应的研究进展[J]. 化工进展, 2024, 43(8): 4366-4381. |
| [14] | 付涛, 李立, 高莉宁, 朱富维, 曹炜烨, 陈华鑫. 水泥基硼掺杂石墨相氮化碳降解NO[J]. 化工进展, 2024, 43(8): 4403-4410. |
| [15] | 毛华恺, 余洋, 张悦, 夏广坤, 吴赟韬, 楼乐瑶, 牛文娟, 刘念. 生物炭光催化氧化-吸附协同降解亚硝酸盐[J]. 化工进展, 2024, 43(8): 4757-4765. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |