化工进展 ›› 2025, Vol. 44 ›› Issue (10): 5926-5940.DOI: 10.16085/j.issn.1000-6613.2024-1364
• 资源与环境化工 • 上一篇
付骏1,2(
), 徐纯刚1,2(
), 李云昊1,2, 李小森2
收稿日期:2024-08-20
修回日期:2024-09-16
出版日期:2025-10-25
发布日期:2025-11-10
通讯作者:
徐纯刚
作者简介:付骏(2001—),男,硕士研究生,研究方向为盐水体系中CO2水合物的形成机理。E-mail:fujun19086@mail.ustc.edu.cn。
基金资助:
FU Jun1,2(
), XU Chungang1,2(
), LI Yunhao1,2, LI Xiaosen2
Received:2024-08-20
Revised:2024-09-16
Online:2025-10-25
Published:2025-11-10
Contact:
XU Chungang
摘要:
由于气候变化的挑战和“碳达峰、碳中和”战略的迫切需要,水合物法CO2封存技术(HCS)得到了越来越多研究者的关注。该方法旨在将CO2注入具有低温和高压的地质环境(例如海洋深处)中形成固态水合物,完成碳封存。为了实现HCS技术的大规模应用,需要对盐水体系CO2水合物的生成机理和行为进行深入研究。本文从反应机理的角度出发,梳理和总结了NaCl对CO2水合物生成和HCS技术实际应用的影响,介绍了现有的海洋水合物封存项目,对科研工作中常用的微观分析手段和动力学分子模拟进行了综述。分析发现,对于盐水体系中CO2水合物形成机理的研究还不够充分,现有的分析手段难以到达所需的微观尺度。为了HCS技术得到长足有效的发展和未来的大规模应用,提高CO2封存效率和稳定性,需要全面、精确地研究各种影响因素的作用机理,将更多的分析手段应用到反应机理的研究中,本文基于此提出了可能的研究方向和新思路。
中图分类号:
付骏, 徐纯刚, 李云昊, 李小森. 盐水体系中CO2水合物形成与碳封存研究进展[J]. 化工进展, 2025, 44(10): 5926-5940.
FU Jun, XU Chungang, LI Yunhao, LI Xiaosen. Research progress on CO2 hydrate formation and carbon sequestration in brine systems[J]. Chemical Industry and Engineering Progress, 2025, 44(10): 5926-5940.
| [20] | YANG She Hern Bryan, BABU Ponnivalavan, CHUA Sam Fu Sheng, et al. Carbon dioxide hydrate kinetics in porous media with and without salts[J]. Applied Energy, 2016, 162: 1131-1140. |
| [21] | LU Hailong, MATSUMOTO Ryo, TSUJI Yoshihiro, et al. Anion plays a more important role than cation in affecting gas hydrate stability in electrolyte solution? —A recognition from experimental results[J]. Fluid Phase Equilibria, 2001, 178(1/2): 225-232. |
| [22] | 王英梅, 牛爱丽, 张兆慧,等. 二氧化碳水合物快速生成方法研究进展[J]. 化工进展, 2021, 40(S2): 117-125. |
| WANG Yingmei, NIU Aili, ZHANG Zhaohui, et al. Review of rapid generation methods of carbon dioxide hydrate[J]. Chemical Industry and Engineering Progress, 2021, 40(S2): 117-125. | |
| [23] | Junghoon MOK, CHOI Wonjung, KIM Sungwoo, et al. NaCl-induced enhancement of thermodynamic and kinetic CO2 selectivity in CO2 + N2 hydrate formation and its significance for CO2 sequestration[J]. Chemical Engineering Journal, 2023, 451: 138633. |
| [24] | ZHAO Yue, ZENG Fansen, ZHAO Dachuan, et al. Molecular study on carbon dioxide hydrate formation in salty water[J]. Crystal Growth & Design, 2023, 23(11): 8361-8369. |
| [25] | JING Xianwu, LUO Qin, CUI Xuefeng, et al. Molecular dynamics simulation of CO2 hydrate growth in salt water[J]. Journal of Molecular Liquids, 2022, 366: 120237. |
| [26] | LIU Chanjuan, ZHOU Xuebing, LIANG Deqing. Molecular insight into carbon dioxide hydrate formation from saline solution[J]. RSC Advances, 2021, 11(50): 31583-31589. |
| [27] | PALODKAR Avinash V, JANA Amiya K. Growth and decomposition mechanism of clathrate hydrates in the presence of porous media and seawater: Experimental validation[J]. Energy & Fuels, 2019, 33(2): 1433-1443. |
| [28] | MEKALA Prathyusha, BABU Ponnivalavan, SANGWAI Jitendra S, et al. Formation and dissociation kinetics of methane hydrates in seawater and silica sand[J]. Energy & Fuels, 2014, 28(4): 2708-2716. |
| [29] | YI Lizhi, LIANG Deqing, ZHOU Xuebing, et al. Molecular dynamics simulations of carbon dioxide hydrate growth in electrolyte solutions of NaCl and MgCl2 [J]. Molecular Physics, 2014, 112(24): 3127-3137. |
| [30] | KOIDE H, TAKAHASHI M, SHINDO Y, et al. Hydrate formation in sediments in the sub-seabed disposal of CO2 [J]. Energy, 1997, 22(2/3): 279-283. |
| [31] | WHITE D J, BURROWES G, DAVIS T, et al. Greenhouse gas sequestration in abandoned oil reservoirs: The International Energy Agency Weyburn pilot project[J]. GSA Today, 2004, 14(7): 4. |
| [32] | Fahed QURESHI M, KHANDELWAL Himanshu, USADI Adam, et al. CO2 hydrate stability in oceanic sediments under brine conditions[J]. Energy, 2022, 256: 124625. |
| [33] | BREWER Peter G, FRIEDERICH Gernot, PELTZER Edward T, et al. Direct experiments on the ocean disposal of fossil fuel CO2 [J]. Science, 1999, 284(5416): 943-945. |
| [34] | HOUSE Kurt Zenz, SCHRAG Daniel P, HARVEY Charles F, et al. Permanent carbon dioxide storage in deep-sea sediments[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(33): 12291-12295. |
| [35] | TAKESHI Komai, SAKAMOTO Yasuhide, KAWAMURA Taro, et al. "Formation kinetics of CO2 gas hydrates in sandy sediment and change of permeability during crystal growth-carbon capture and storage system using gas hydrates[C]//Proc. of the 6th Intern. Conf. on Gas Hydrates. Vancouver, 2008. |
| [36] | YANG Mingjun, SONG Yongchen, LIU Yu, et al. Equilibrium conditions for CO2 hydrate in porous medium[J]. The Journal of Chemical Thermodynamics, 2011, 43(3): 334-338. |
| [37] | MEKALA Prathyusha, BUSCH Marc, MECH Deepjyoti, et al. Effect of silica sand size on the formation kinetics of CO2 hydrate in porous media in the presence of pure water and seawater relevant for CO2 sequestration[J]. Journal of Petroleum Science and Engineering, 2014, 122: 1-9. |
| [38] | REHMAN Amirun Nissa, PENDYALA Rajashekhar, Bhajan LAL. Effect of brine on the kinetics of Carbon dioxide hydrate formation and dissociation in porous media[J]. Materials Today: Proceedings, 2021, 47: 1366-1370. |
| [39] | 陈小龙, 狄乾斌, 侯智文, 等. 海洋碳汇研究进展及展望[J]. 资源科学, 2023, 45(8): 1619-1633. |
| CHEN Xiaolong, DI Qianbin, HOU Zhiwen, et al. Research progress and prospect of marine carbon sink[J]. Resources Science, 2023, 45(8): 1619-1633. | |
| [40] | PAWAR Rajesh J, BROMHAL Grant S, William CAREY J, et al. Recent advances in risk assessment and risk management of geologic CO2 storage[J].International Journal of Greenhouse Gas Control, 2025, 40: 292-311. |
| [41] | LING Zhenyang, PAN Junyu, KONTCHOUO Félix Mérimé Bkangmo, et al. Current situation of marine CO2 sequestration and analysis of related environmental issues[J]. Fuel, 2024, 366: 131288. |
| [1] | GOLLEDGE N R, KOWALEWSKI D E, NAISH T R, et al. The multi-millennial Antarctic commitment to future sea-level rise[J]. Nature, 2015, 526: 421-425. |
| [2] | IEA. CO2 Emissions in 2023[EB/OL]. Paris: IEA, 2024. (2024-03-01)[2024-08-19]. . |
| [3] | GOUGH Clair, MANDER Sarah, HASZELDINE Stuart. A roadmap for carbon capture and storage in the UK[J]. International Journal of Greenhouse Gas Control, 2010, 4(1): 1-12. |
| [4] | DAVIS Steven J, LEWIS Nathan S, SHANER Matthew, et al. Net-zero emissions energy systems[J]. Science, 2018, 360(6396): eaas9793. |
| [5] | OZAKI Masahiko, FUJIOKA Yuichi, TAKEUCHI Kazuhisa, et al. Length of vertical pipes for deep-ocean sequestration of CO2 in rough seas[J]. Energy, 1997, 22(2/3): 229-237. |
| [6] | Mai BUI, ADJIMAN Claire S, BARDOW André, et al. Carbon capture and storage (CCS): The way forward[J]. Energy & Environmental Science, 2018, 11(5): 1062-1176. |
| [7] | LI Lei, ZHAO Ning, WEI Wei, et al. A review of research progress on CO2 capture, storage, and utilization in Chinese Academy of Sciences[J]. Fuel, 2013, 108: 112-130. |
| [8] | ZHOU Xiang, LI Xiuluan, SHEN Dehuang, et al. CO2 huff-n-puff process to enhance heavy oil recovery and CO2 storage: An integration study[J]. Energy, 2022, 239: 122003. |
| [9] | KOU Zuhao, WANG Tongtong, CHEN Zhuoting, et al. A fast and reliable methodology to evaluate maximum CO2 storage capacity of depleted coal seams: A case study[J]. Energy, 2021, 231: 120992. |
| [10] | CHEN Bailian, PAWAR Rajesh J. Characterization of CO2 storage and enhanced oil recovery in residual oil zones[J]. Energy, 2019, 183: 291-304. |
| [11] | TENG Yihua, ZHANG Dongxiao. Long-term viability of carbon sequestration in deep-sea sediments[J]. Science Advances, 2018, 4(7): eaao6588. |
| [12] | ARJMANDI Mosayyeb, CHAPOY Antonin, TOHIDI Bahman. Equilibrium data of hydrogen, methane, nitrogen, carbon dioxide, and natural gas in semi-clathrate hydrates of tetrabutyl ammonium bromide[J]. Journal of Chemical & Engineering Data, 2007, 52(6): 2153-2158. |
| [42] | TENG H, YAMASAKI A. Can CO2 hydrate deposited in the ocean always reach the seabed?[J]. Energy Conversion and Management, 1998, 39(10): 1045-1051. |
| [43] | OHGAKI Kazunari, TAKANO Kiyoteru, SANGAWA Hiroyuki, et al. Methane exploitation by carbon dioxide from gas hydrates. Phase equilibria for CO2-CH4 mixed hydrate system[J]. Journal of Chemical Engineering of Japan, 1996, 29(3): 478-483. |
| [44] | SMITH Duane H, SESHADRI Kal, WILDER Joseph W. Assessing the thermodynamic feasibility of the conversion of methane hydrate into carbon dioxide hydrate in porous media[R]. United States: U.S. Department of Energy, National Energy Technology Laboratory, 2001. |
| [45] | ZHOU Shouwei, ZHAO Jinzhou, LI Qingping, et al. Optimal design of the engineering parameters for the first global trial production of marine natural gas hydrates through solid fluidization[J]. Natural Gas Industry B, 2018, 5(2): 118-131. |
| [46] | COLLETT T S, LEWIS R E, WINTERS W J, et al. Downhole well log and core montages from the mount elbert gas hydrate stratigraphic test well, Alaska north slope[J]. Marine and Petroleum Geology, 2011, 28(2): 561-577. |
| [47] | HESS Berk, KUTZNER Carsten, VAN DER SPOEL David, et al. GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation[J]. Journal of Chemical Theory and Computation, 2008, 4(3): 435-447. |
| [48] | ABASCAL J F, SANZ E, GARCÍA FERNÁNDEZ R, et al. A potential model for the study of ices and amorphous water: TIP4P/Ice[J]. The Journal of Chemical Physics, 2005, 122(23): 234511. |
| [49] | POTOFF Jeffrey J, Ilja SIEPMANN J. Vapor-liquid equilibria of mixtures containing alkanes, carbon dioxide, and nitrogen[J]. AIChE Journal, 2001, 47(7): 1676-1682. |
| [50] | CYGAN Randall T, LIANG Jianjie, KALINICHEV Andrey G. Molecular models of hydroxide, oxyhydroxide, and clay phases and the development of a general force field[J]. The Journal of Physical Chemistry B, 2004, 108(4): 1255-1266. |
| [51] | ESSMANN Ulrich, PERERA Lalith, BERKOWITZ Max L, et al. A smooth particle mesh Ewald method[J]. The Journal of Chemical Physics, 1995, 103(19): 8577-8593. |
| [52] | Shūichi NOSÉ. A molecular dynamics method for simulations in the canonical ensemble[J]. Molecular Physics, 1984, 52(2): 255-268. |
| [53] | PARRINELLO M, RAHMAN A. Crystal structure and pair potentials: A molecular-dynamics study[J]. Physical Review Letters, 1980, 45(14): 1196-1199. |
| [13] | WEATHERALL Pauline, MARKS K M, JAKOBSSON Martin, et al. A new digital bathymetric model of the world’s oceans[J]. Earth and Space Science, 2015, 2(8): 331-345. |
| [14] | ZHENG Junjie, CHONG ZHENG rong, Fahed QURESHI M, et al. Carbon dioxide sequestration via gas hydrates: A potential pathway toward decarbonization[J]. Energy & Fuels, 2020, 34(9): 10529-10546. |
| [15] | Fahed QURESHI M, ZHENG Junjie, KHANDELWAL Himanshu, et al. Laboratory demonstration of the stability of CO2 hydrates in deep-oceanic sediments[J]. Chemical Engineering Journal, 2022, 432: 134290. |
| [16] | ZHANG Fengyuan, WANG Xiaolin, LOU Xia, et al. The effect of sodium dodecyl sulfate and dodecyltrimethylammonium chloride on the kinetics of CO2 hydrate formation in the presence of tetra-n-butyl ammonium bromide for carbon capture applications[J]. Energy, 2021, 227: 120424. |
| [17] | LU Hailong, MATSUMOTO Ryo. Experimental studies on the possible influences of composition changes of pore water on the stability conditions of methane hydrate in marine sediments[J]. Marine Chemistry, 2005, 93(2/3/4): 149-157. |
| [18] | 丁麟, 史博会, 吕晓方, 等. 天然气水合物形成与生长影响因素综述[J]. 化工进展, 2016, 35(1): 57-64. |
| DING Lin, SHI Bohui, Xiaofang LYU, et al. Review of influence factors of natural gas hydrate formation and growth[J]. Chemical Industry and Engineering Progress, 2016, 35(1): 57-64. | |
| [19] | NGUYEN Ngoc N, NGUYEN Anh V. Hydrophobic effect on gas hydrate formation in the presence of additives[J]. Energy & Fuels, 2017, 31(10): 10311-10323. |
| [54] | ZERON I M, ABASCAL J L F, VEGA C. A force field of Li+, Na+, K+, Mg2+, Ca2+, Cl-, and SO 4 2 - in aqueous solution based on the TIP4P/2005 water model and scaled charges for the ions[J]. 2019, 151(13): 134504. |
| [55] | PHAN Anh, STRIOLO Alberto. Chemical promoter performance for CO2 hydrate growth: A molecular perspective[J]. Energy & Fuels, 2023, 37(8): 6002-6011. |
| [56] | XU Jiafang, DU Shuai, HAO Yongchao, et al. Molecular simulation study of methane hydrate formation mechanism in NaCl solutions with different concentrations[J]. Chemical Physics, 2021, 551: 111323. |
| [57] | ZHANG Zhigang, DUAN Zhenhao. An optimized molecular potential for carbon dioxide[J]. The Journal of Chemical Physics, 2005, 122(21): 214507. |
| [58] | GENG Chunyu, WEN Hao, ZHOU Han. Molecular simulation of the potential of methane reoccupation during the replacement of methane hydrate by CO2 [J]. The Journal of Physical Chemistry A, 2009, 113(18): 5463-5469. |
| [59] | IWAI Yoshio, NAKAMURA Hiroki, HIRATA Masashi. Molecular dynamics simulation of replacement of methane hydrate with carbon dioxide[J]. Molecular Simulation, 2012, 38(6): 481-490. |
| [60] | YEZDIMER Eric M, CUMMINGS Peter T, CHIALVO Ariel A. Determination of the Gibbs free energy of gas replacement in SI clathrate hydrates by molecular simulation[J]. Journal of Physical Chemistry A, 2002, 106(34): 7982-7987. |
| [61] | CIRCONE Susan, STERN Laura A, KIRBY Stephen H, et al. CO2 hydrate: Synthesis, composition, structure, dissociation behavior, and a comparison to structure Ⅰ CH4 hydrate[J]. The Journal of Physical Chemistry B, 2003, 107(23): 5529-5539. |
| [62] | FALENTY Andrzej, KUHS Werner F. “Self-preservation” of CO2 gas hydrates—Surface microstructure and ice perfection[J]. The Journal of Physical Chemistry B, 2009, 113(49): 15975-15988. |
| [63] | ROSSI Andrea, CIULLA Michele, CANALE Valentino, et al. Constant pressure CO2 replacement of CH4 in different hydrate environments: Structure and morphology[J]. Energy & Fuels, 2023, 37(23): 18968-18976. |
| [64] | LIU Lu, YAO Yuanxin, ZHOU Xuebing, et al. Improved formation kinetics of carbon dioxide hydrate in brine induced by sodium dodecyl sulfate[J]. Energies, 2021, 14(8): 2094. |
| [65] | LU Jingsheng, LI Dongliang, LIANG Deqing, et al. Microcosmic characteristics of hydrate formation and decomposition in the different particle size sediments captured by cryo-sem[J]. SSRN Electronic Journal, 2021, 10(6): 769. |
| [66] | HUANG Xin, LI Zhenchao, DENG Yajun, et al. Effect of micro- and nanobubbles on the crystallization of THF hydrate based on the observation by atomic force microscopy[J]. The Journal of Physical Chemistry C, 2020, 124(25): 13966-13975. |
| [67] | HUANG Xin, DENG Yajun, LI Zhenchao, et al. Study of THF hydrate crystallization based on in situ observation with atomic force microscopy[J]. Crystal Growth & Design, 2020, 20(5): 2921-2929. |
| [68] | LOVESEY Stephen W. Theory of neutron scattering from condensed matter[M]. Oxford: Oxford University Press,1984:150. |
| [69] | HOSHIKAWA Akinori, MATSUKAWA Takeshi, ISHIGAKI Toru. Evaluation of filling rate of methane in methane-propane hydrate by neutron powder diffraction[J]. Physica B: Condensed Matter, 2018, 551: 274-277. |
| [70] | MAO Wendy L, MAO Ho-Kwang, GONCHAROV Alexander F, et al. Hydrogen clusters in clathrate hydrate[J]. Science, 2002, 297(5590): 2247-2249. |
| [71] | STACKELBERG M V, MÜLLER H R. On the structure of gas hydrates[J]. The Journal of Chemical Physics, 1951, 19(10): 1319-1320. |
| [72] | UDACHIN Konstantin A, RATCLIFFE Christopher I, RIPMEESTER John A. Single crystal diffraction studies of structure Ⅰ, Ⅱ and H hydrates: Structure, cage occupancy and composition[J]. Journal of Supramolecular Chemistry, 2002, 2(4/5): 405-408. |
| [73] | TAKEYA Satoshi, HORI Akira, HONDOH Takeo, et al. Freezing-memory effect of water on nucleation of CO2 hydrate crystals[J]. The Journal of Physical Chemistry B, 2000, 104(17):4164-4168. |
| [74] | TAKEYA Satoshi, HONDOH Takeo, UCHIDA Tsutomu. In situ observation of CO2 hydrate by X-ray diffraction[J]. Annals of the New York Academy of Sciences, 2000, 912(1): 973-982. |
| [75] | UDACHIN Konstantin A, RATCLIFFE Christopher I, RIPMEESTER John A. Structure, composition, and thermal expansion of CO2 hydrate from single crystal X-ray diffraction measurements[J]. The Journal of Physical Chemistry B, 2001, 105(19): 4200-4204. |
| [76] | Amadeu K SUM, BURRUSS Robert C, SLOAN E Dendy. Measurement of clathrate hydrates via Raman spectroscopy[J]. The Journal of Physical Chemistry B, 1997, 101(38): 7371-7377. |
| [77] | TRUONG-LAM Hai S, SEO SeongDeok, KIM Suhkmann, et al. In situ Raman study of the formation and dissociation kinetics of methane and methane/propane hydrates[J]. Energy & Fuels, 2020, 34(5): 6288-6297. |
| [78] | HOLZAMMER Christine C, BRAEUER Andreas S. Raman spectroscopic study of the effect of aqueous salt solutions on the inhibition of carbon dioxide gas hydrates[J]. The Journal of Physical Chemistry B, 2019, 123(10): 2354-2361. |
| [79] | LI Huijuan, STANWIX Paul, AMAN Zachary, et al. Raman spectroscopic studies of clathrate hydrate formation in the presence of hydrophobized particles[J]. The Journal of Physical Chemistry A, 2016, 120(3): 417-424. |
| [80] | KADOBAYASHI Hirokazu, HIRAI Hisako, OHFUJI Hiroaki, et al. Structural evolution of methane hydrate under pressures up to 134 GPa[J]. The Journal of Chemical Physics, 2020, 152(19): 194308. |
| [81] | HOLZAMMER Christine, SCHICKS Judith M, WILL Stefan, et al. Influence of sodium chloride on the formation and dissociation behavior of CO2 gas hydrates[J]. The Journal of Physical Chemistry B, 2017, 121(35): 8330-8337. |
| [82] | CHAZALLON Bertrand, ZISKIND Michael, CARPENTIER Yvain, et al. CO2 capture using semi-clathrates of quaternary ammonium salt: Structure change induced by CO2 and N2 enclathration[J]. The Journal of Physical Chemistry B, 2014, 118(47): 13440-13452. |
| [83] | XU Chungang, WANG Min, XU Gang, et al. The relationship between thermal characteristics and microstructure/composition of carbon dioxide hydrate in the presence of cyclopentane[J]. Energies, 2021, 14(4): 870. |
| [1] | 王艳芬, 艾洁, 程详, 赵光明, 李英明, 孟祥瑞. PPF增强超细水泥基注浆材料力学性能与作用机制[J]. 化工进展, 2025, 44(9): 5184-5194. |
| [2] | 王锦涛, 张红珍, 梁博. 双疏滤纸的制备及碱性盐水中油污分离性能[J]. 化工进展, 2025, 44(7): 4006-4012. |
| [3] | 王佳琪, 刘佳兴, 魏皓琦, 周昕霖, 程传晓, 葛坤. 鼠李糖脂强化CO2水合物生成[J]. 化工进展, 2025, 44(4): 1998-2007. |
| [4] | 陈王觅, 席北斗, 李鸣晓, 叶美瀛, 侯佳奇, 于承泽, 魏域芳, 孟繁华. 热解系统碳排放削减技术研究进展[J]. 化工进展, 2024, 43(S1): 479-503. |
| [5] | 狄子琛, 雷飞霞, 常成功, 陈文慧, 程芳琴. 焦化行业碳氢资源利用潜力与低碳路径评价[J]. 化工进展, 2024, 43(5): 2862-2871. |
| [6] | 邵斌, 栗粟, 马榕廷, 谢志成, 高梓皓, 贾中昊, 王文慧, 孙哲毅, 胡军. 高碳排工业“碳中和”潜在途径[J]. 化工进展, 2024, 43(11): 5995-6009. |
| [7] | 苏辉辉, 王恩禄, 徐逸飞. 液体吸收剂捕集燃烧后CO2的研究进展[J]. 化工进展, 2024, 43(10): 5734-5747. |
| [8] | 舒斌, 陈建宏, 熊健, 吴其荣, 喻江涛, 杨平. 碳中和目标下推动绿色甲醇发展的必要性分析[J]. 化工进展, 2023, 42(9): 4471-4478. |
| [9] | 李由, 吴越, 钟禹, 林琦璇, 任俊莉. 酸性熔盐水合物预处理麦秆高效制备木糖及其对酶解效率的影响[J]. 化工进展, 2023, 42(9): 4974-4983. |
| [10] | 李文秀, 杨宇航, 黄艳, 王涛, 王镭, 方梦祥. 二氧化碳矿化高钙基固废制备微细碳酸钙研究进展[J]. 化工进展, 2023, 42(4): 2047-2057. |
| [11] | 孙晖, 孟祥海, 魏景海, 周红军, 徐春明. 绿电制氢生产氨的新场景与实践[J]. 化工进展, 2023, 42(2): 1098-1102. |
| [12] | 王英梅, 刘生浩, 滕亚栋, 王立瑾, 焦雯泽. NaCl浓度对CO2水合物形成与稳定性的影响[J]. 化工进展, 2023, 42(11): 6093-6101. |
| [13] | 陶雨萱, 郭亮, 高聪, 宋伟, 陈修来. 代谢工程改造微生物固定二氧化碳研究进展[J]. 化工进展, 2023, 42(1): 40-52. |
| [14] | 王英梅, 张兆慧, 刘生浩, 焦雯泽, 王立瑾, 滕亚栋, 刘杰. 促进剂体系中二氧化碳水合物常压分解[J]. 化工进展, 2022, 41(S1): 141-149. |
| [15] | 杨学萍. 碳中和背景下现代煤化工技术路径探索[J]. 化工进展, 2022, 41(7): 3402-3412. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |