化工进展 ›› 2024, Vol. 43 ›› Issue (11): 5995-6009.DOI: 10.16085/j.issn.1000-6613.2024-0783
• 特约评述 • 上一篇
邵斌(), 栗粟, 马榕廷, 谢志成, 高梓皓, 贾中昊, 王文慧, 孙哲毅, 胡军()
收稿日期:
2024-05-10
修回日期:
2024-06-16
出版日期:
2024-11-15
发布日期:
2024-12-07
通讯作者:
胡军
作者简介:
邵斌(1996—),博士,助理研究员,研究方向为二氧化碳捕集与转化。E-mail:shaobin@ ecust.edu.cn。
基金资助:
SHAO Bin(), LI Su, MA Rongting, XIE Zhicheng, GAO Zihao, JIA Zhonghao, WANG Wenhui, SUN Zheyi, HU Jun()
Received:
2024-05-10
Revised:
2024-06-16
Online:
2024-11-15
Published:
2024-12-07
Contact:
HU Jun
摘要:
碳酸盐矿物高温炼制过程高碳排和高能耗是建材、钢铁、有色冶金等传统工业发展面临的巨大挑战,碳酸盐催化加氢转化技术通过将金属氧化物的生产过程与碳资源的高附加值转化过程耦合,有望从生产源头颠覆传统碳酸盐热分解必产二氧化碳的途径。在该过程中,利用供氢分子(如氢气、低碳烷烃、液态有机富含氢物质等)直接将碳酸盐矿物中的碳物种原位转化为高值含碳化学品,从而有望大幅降低减排成本,有望成为基于碳酸盐矿物为原料的高碳排工业“碳中和”创新技术。本文以碳酸盐催化加氢转化技术制备不同产品为出发点,从过程特点、反应机理、催化剂设计和关键技术瓶颈等方面进行了综述,分析了碳酸盐加氢转化技术制备不同产品的研究现状和现存问题;结合近期关于碳酸盐催化加氢的最新研究进展,提出了基于碳酸盐矿物原料加氢转化在建材、钢铁、耐材等重排放工业过程碳减排的应用展望,为实现CO2的高效转化和减排增效提供了思路。
中图分类号:
邵斌, 栗粟, 马榕廷, 谢志成, 高梓皓, 贾中昊, 王文慧, 孙哲毅, 胡军. 高碳排工业“碳中和”潜在途径[J]. 化工进展, 2024, 43(11): 5995-6009.
SHAO Bin, LI Su, MA Rongting, XIE Zhicheng, GAO Zihao, JIA Zhonghao, WANG Wenhui, SUN Zheyi, HU Jun. Catalytic hydrogenation of carbonate minerals: A promising pathway to carbon neutrality for industries with intensive carbon emissions[J]. Chemical Industry and Engineering Progress, 2024, 43(11): 5995-6009.
1 | 张锁江, 张香平, 葛蔚, 等. 工业过程绿色低碳技术[J]. 中国科学院院刊, 2022, 37(4): 511-521. |
ZHANG Suojiang, ZHANG Xiangping, GE Wei, et al. Carbon neutral transformative technologies for industrial process[J]. Bulletin of Chinese Academy of Sciences, 2022, 37(4): 511-521. | |
2 | LIU Zhu, DENG Zhu, HE Gang, et al. Challenges and opportunities for carbon neutrality in China[J]. Nature Reviews Earth and Environment, 2022, 3(2): 141-155. |
3 | HAN Rui, WANG Yang, XING Shuang, et al. Progress in reducing calcination reaction temperature of calcium-looping CO2 capture technology: A critical review[J]. Chemical Engineering Journal, 2022, 450: 137952. |
4 | NHUCHHEN Daya R, Song P SIT, LAYZELL David B. Decarbonization of cement production in a hydrogen economy[J]. Applied Energy, 2022, 317: 119180. |
5 | FENNELL Paul S, DAVIS Steven J, MOHAMMED Aseel. Decarbonizing cement production[J]. Joule, 2021, 5(6): 1305-1311. |
6 | FAN Jingli, LI Zezheng, HUANG Xi, et al. A net-zero emissions strategy for China’s power sector using carbon-capture utilization and storage[J]. Nature Communications, 2023, 14: 5972. |
7 | 邵斌, 孙哲毅, 章云, 等. 二氧化碳转化为合成气及高附加值产品的研究进展[J]. 化工进展, 2022, 41(3): 1136-1151. |
SHAO Bin, SUN Zheyi, ZHANG Yun, et al. Recent progresses in CO2 to syngas and high value-added products[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1136-1151. | |
8 | 周红军, 周颖, 徐春明. 中国碳中和目标下CO2转化的思考与实践[J]. 化工进展, 2022, 41(6): 3381-3385. |
ZHOU Hongjun, ZHOU Ying, XU Chunming. Exploration of the CO2 conversion under China’s carbon neutrality goal[J]. Chemical Industry and Engineering Progress, 2022, 41(6): 3381-3385. | |
9 | CASTELVECCHI Davide. How the hydrogen revolution can help save the planet-and how it can’t[J]. Nature, 2022, 611: 440-443. |
10 | 自然资源保护协会(NRDC). 面向碳中和的氢冶金发展战略研究[R]. |
(2023-06-25). . | |
The Natural Resources Defense Council(NRDC).Research on the development strategy of hydrogen metallurgy for carbon neutrality[R]. (2023-06-25). http://www.nrdc.cn/Public/uploads/2023-06-25/6497aa6685787.pdf. | |
11 | United States Department of Energy (DOE), Industrial decarbonization of energy intensive sector[R]. (2022-09-12). https://www.energy.gov/eere/amo/articles/industrial-decarbonization-energy-intensive-sectors. |
12 | GIARDINI A A, SALOTTI C A, LAKNER J F. Synthesis of graphite and hydrocarbons by reaction between calcite and hydrogen[J]. Science, 1968, 159(3812): 317-319. |
13 | RELLER A, PADESTE C, HUG P. Formation of organic carbon compounds from metal carbonates[J]. Nature, 1987, 329: 527-529. |
14 | SUN Shuzhuang, CHEN Zheng, XU Yikai, et al. Potassium-promoted limestone for preferential direct hydrogenation of carbonates in integrated CO2 capture and utilization[J]. JACS Au, 2023, 4(1): 72-79. |
15 | SUN Shuzhuang, WANG Yuanyuan, ZHAO Xiaotong, et al. One step upcycling CO2 from flue gas into CO using natural stone in an integrated CO2 capture and utilisation system[J]. Carbon Capture Science & Technology, 2022, 5: 100078. |
16 | SHAO Bin, ZHU Yuanming, HU Jun, et al. Chemical engineering solution for carbon neutrality in cement industry: Tailor a pathway from inevitable CO2 emission into syngas[J]. Chemical Engineering Journal, 2024, 483: 149098. |
17 | WANG Iwei, LI Dan, WANG Shihui, et al. Limestone hydrogenation combined with reverse water-gas shift reaction under fluidized and iso-thermal conditions using MFB-TGA-MS[J]. Chemical Engineering Journal, 2023, 472: 144822. |
18 | 徐明, 邵明飞, 刘清雅, 等. 电解水制氢耦合碳酸盐还原展望[J]. 化工进展, 2022, 41(3): 1121-1124. |
XU Ming, SHAO Mingfei, LIU Qingya, et al. Hydrogen generation from electrochemical water splitting coupling carbonate reduction[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1121-1124. | |
19 | HALMANN M, STEINFELD A. Thermoneutral coproduction of calcium oxide and syngas by combined decomposition of calcium carbonate and partial oxidation/CO2-reforming of methane[J]. Energy & Fuels, 2003, 17(3): 774-778. |
20 | STEINFELD A. Solar combined thermochemical processes for CO2 mitigation in the iron, cement, and syngas industries[J]. Energy, 1994, 19(10): 1077-1081. |
21 | 尹倩, 宋慧婷, 徐明, 等. 碳酸盐炼制共热耦合甲烷干重整制高附加值化学品发展展望[J]. 物理化学学报, 2023, 39(3): 7-15. |
YIN Qian, SONG Huiting, XU Ming, et al. Thermal decomposition of carbonates coupled with dry reforming of methane to synthesize high-value products: A perspective[J]. Acta Physico-Chimica Sinica, 2023, 39(3): 7-15. | |
22 | JIANG Peng, LI Lin, ZHAO Guanhan, et al. Reductive calcination of calcium carbonate in hydrogen and methane: A thermodynamic analysis on different reaction routes and evaluation of carbon dioxide mitigation potential[J]. Chemical Engineering Science, 2023, 276: 118823. |
23 | SAEIDI Samrand, NAJARI Sara, HESSEL Volker, et al. Recent advances in CO2 hydrogenation to value-added products—Current challenges and future directions[J]. Progress in Energy and Combustion Science, 2021, 85: 100905. |
24 | LUX S, BALDAUF-Sommerbauer G, SIEBENHOFER M. Hydrogenation of inorganic metal carbonates: A review on its potential for carbon dioxide utilization and emission reduction[J]. ChemSusChem, 2018, 11(19): 3357-3375. |
25 | Georg BALDAUF-SOMMERBAUER, Susanne LUX, ANISER Wolfgang, et al. Reductive calcination of mineral magnesite: Hydrogenation of carbon dioxide without catalysts[J]. Chemical Engineering & Technology, 2016, 39(11): 2035-2041. |
26 | SHI Sulong, YU Jiachen, PAN Yue, et al. Hydrogenation of calcium carbonate to carbon monoxide and methane[J]. Fuel, 2023, 354: 129385. |
27 | JAGADEESAN D, ESWARAMOORTHY M, RAO C N R. Investigations of the conversion of inorganic carbonates to Methane[J]. ChemSusChem. 2009, 2(9): 878-882. |
28 | YOSHIDA Noritetsu, HATTORI Takeshi, KOMAI Eiji, et al. Methane formation by metal-catalyzed hydrogenation of solid calcium carbonate[J]. Catalysis Letters, 1999, 58(2): 119-122. |
29 | LV Zongze, DENG Tao, GAO Chang, et al. Promotion of active H-assisted CaCO3 conversion for integrated CO2 capture and methanation[J]. Chemical Engineering Journal, 2024, 489: 151427. |
30 | MESTERS Carl, RAHIMI Nazanin, VAN DER SLOOT Dennis, et al. Direct reduction of magnesium carbonate to methane[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(33): 10977-10989. |
31 | GIARDINI A A, SALOTTI C A. Kinetics and relations in the calcite-hydrogen reaction and relations in the dolomite-hydrogen and siderite-hydrogen systems[J]. 1969, 54(7/8): 1151-1172. |
32 | TSUNETO Akira, KUDO Akihiko, SAITO Nobuhiro, et al. Hydrogenation of solid state carbonates[J]. Chemistry Letters, 1992, 21(5): 831-834. |
33 | SHEN Tao, WU Jiawen, LIU Qingya, et al. Hydrogenation of CaCO3 for methane by a liquid organic hydrogen carrier in the presence of the catalyst precursor NiCO3 [J]. Industrial & Engineering Chemistry Research, 2023, 62(27): 10721-10728. |
34 | GUNASEKAR Gunniya Hariyanandam, PARK Kwangho, JUNG Kwang-Deog, et al. Recent developments in the catalytic hydrogenation of CO2 to formic acid/formate using heterogeneous catalysts[J]. Inorganic Chemistry Frontiers, 2016, 3(7): 882-895. |
35 | YOUNAS Mohammad, REZAKAZEMI Mashallah, ARBAB Muhammad Saddique, et al. Green hydrogen storage and delivery: Utilizing highly active homogeneous and heterogeneous catalysts for formic acid dehydrogenation[J]. International Journal of Hydrogen Energy, 2022, 47(22): 11694-11724. |
36 | AINEMBABAZI Diana, WANG Kai, FINN Matthew, et al. Efficient transfer hydrogenation of carbonate salts from glycerol using water-soluble iridium N-heterocyclic carbene catalysts[J]. Green Chemistry, 2020, 22(18): 6093-6104. |
37 | WEI Duo, SHI Xinzhe, Sponholz Peter, et al. Manganese promoted (Bi)carbonate hydrogenation and formate dehydrogenation: Toward a circular carbon and hydrogen economy[J]. ACS Central Science, 2022, 8(10): 1457-1463. |
38 | COUFOURIER S, GAILLARD S, CLET G, et al. A MOF-assisted phosphine free bifunctional iron complex for the hydrogenation of carbon dioxide, sodium bicarbonate and carbonate to formate[J]. Chemical Communications, 2019, 55(34): 4977-4980. |
39 | WANG Tian, REN Dezhang, HUO Zhibao, et al. A nanoporous nickel catalyst for selective hydrogenation of carbonates into formic acid in water[J]. Green Chemistry, 2017, 19(3): 716-721. |
40 | ZHANG Xiaochen, LI Aowen, TANG Haoyi, et al. Carbonate hydrogenated to formate in the aqueous phase over nickel/TiO2 catalysts[J]. Angewandte Chemie International Edition, 2023, 62(41): e202307061. |
41 | LIANG Xuan, WANG Meng, MA Ding. One-pot conversion of polyester and carbonate into formate without external H2 [J]. Journal of the American Chemical Society, 2024, 146(4): 2711-2717. |
42 | WANG Yixuan, BAN Hongyan, WANG Yugao, et al. Unraveling the role of basic sites in the hydrogenation of CO2 to formic acid over Ni-based catalysts[J]. Journal of Catalysis, 2024, 430: 115357. |
43 | MAHDI Hilman Ibnu, RAMLEE Nurfadhila Nasya, DA SILVA SANTOS Danilo Henrique, et al. Formaldehyde production using methanol and heterogeneous solid catalysts: A comprehensive review[J]. Molecular Catalysis, 2023, 537: 112944. |
44 | KALCK Philippe, LE BERRE Carole, SERP Philippe. Recent advances in the methanol carbonylation reaction into acetic acid[J]. Coordination Chemistry Reviews, 2020, 402: 213078. |
45 | SUN Jian, YANG Guohui, YONEYAMA Yoshiharu, et al. Catalysis chemistry of dimethyl ether synthesis[J]. ACS Catalysis, 2014, 4(10): 3346-3356. |
46 | TIAN Peng, WEI Yingxu, YE Mao, et al. Methanol to olefins (MTO): From fundamentals to commercialization[J]. ACS Catalysis, 2015, 5(3): 1922-1938. |
47 | LI Teng, SHOINKHOROVA Tuiana, GASCON Jorge, et al. Aromatics production via methanol-mediated transformation routes[J]. ACS Catalysis, 2021, 11(13): 7780-7819. |
48 | 周芳, 曾纪龙, 姜波. 气和煤合成甲醇的原料路线探讨[J]. 化工设计, 2011, 21(5): 3-6. |
ZHOU Fang, ZENG Jilong, JIANG Bo, et al. Probe on feedstock route of methanol production from natural gas and coal[J]. Chemical Engineering Design, 2011, 21(5): 3-6. | |
49 | PONTZEN Florian, LIEBNER Waldemar, GRONEMANN Veronika, et al. CO2-based methanol and DME-Efficient technologies for industrial scale production[J]. Catalysis Today, 2011, 171(1): 242-250. |
50 | G K Surya PRAKASH, OLAH George A, GOEPPERT Alain. Beyond oil and gas: The methanol economy[J]. ECS Transactions, 2011, 35(11): 31-40. |
51 | NEBEL Bernd A, BREUER Michael, SCHNEIDER Andreas, et al. A career in catalysis: Bernhard hauer[J]. ACS Catalysis, 2023, 13(13): 8861-8889. |
52 | JIANG Xiao, NIE Xiaowa, GUO Xinwen, et al. Recent advances in carbon dioxide hydrogenation to methanol via heterogeneous catalysis[J]. Chemical Reviews, 2020, 120(15): 7984-8034. |
53 | WANG Mengheng, ZHENG Lanling, WANG Genyuan, et al. Spinel nanostructures for the hydrogenation of CO2 to methanol and hydrocarbon chemicals[J]. Journal of the American Chemical Society, 2024, 146(21): 14528-14538. |
54 | RUI Ning, ZHANG Feng, SUN Kaihang, et al. Hydrogenation of CO2 to methanol on a Au δ +-In2O3-x catalyst[J]. ACS Catalysis 2020, 10 (19): 11307-11317. |
55 | SUN Kaihang, ZHANG Zhitao, SHEN Chenyang, et al. The feasibility study of the indium oxide supported silver catalyst for selective hydrogenation of CO2 to methanol[J]. Green Energy & Environment, 2022, 7(4): 807-817. |
56 | RUI Ning, WANG Zongyuan, SUN Kaihang, et al. CO2 hydrogenation to methanol over Pd/In2O3: Effects of Pd and oxygen vacancy[J]. Applied Catalysis B: Environmental, 2017, 218: 488-497. |
57 | SHEN Chenyang, SUN Kaihang, ZOU Rui, et al. CO2 hydrogenation to methanol on indium oxide-supported rhenium catalysts: The effects of size[J]. ACS Catalysis, 2022, 12(20): 12658-12669. |
58 | WIRNER Luca C, KOSAKA Fumihiko, SASAYAMA Tomone, et al. Combined capture and reduction of CO2 to methanol using a dual-bed packed reactor[J]. Chemical Engineering Journal, 2023, 470: 144227. |
59 | Chae JEONG-POTTER, ARELLANO-TREVIÑO Martha A, Wilson MCNEARY W, et al. Modified Cu-Zn-Al mixed oxide dual function materials enable reactive carbon capture to methanol[J]. EES Catalysis, 2024, 2(1): 253-261. |
60 | 何聂燕,李学琴,刘鹏,等. 二氧化碳加氢合成甲醇技术现状及催化剂研究进展[J/OL]. 洁净煤技术. . |
HE Nieyan, LI Xueqin, LIU Peng, et al. Technical status of carbon dioxide hydrogenation to methanol and research progress of catalysts[J]. Clean Coal Technology. . | |
61 | TORRES GALVIS Hirsa M, DE JONG Krijn P. Catalysts for production of lower olefins from synthesis gas: A review[J]. ACS Catalysis, 2013, 3(9): 2130-2149. |
62 | JAGADEESAN D, SUNDARAYYA Y, MADRAS Giridhar, et al. Direct conversion of calcium carbonate to C1—C3 hydrocarbons[J]. RSC Advances, 2013, 3(20): 7224-7229. |
63 | Ahmed AL-MAMOORI, LAWSON Shane, ROWNAGHI Ali A, et al. Oxidative dehydrogenation of ethane to ethylene in an integrated CO2 capture-utilization process[J]. Applied Catalysis B: Environmental, 2020, 278: 119329. |
64 | LAWSON S, BAAMRAN K, NEWPORT K, et al. Screening of adsorbent/catalyst composite monoliths for carbon capture-utilization and ethylene production[J]. ACS Applied Materials & Interfaces, 2021, 13(46): 55198-55207. |
65 | BAAMRAN Khaled, LAWSON Shane, ROWNAGHI Ali A, et al. Process evaluation and kinetic analysis of 3D-printed monoliths comprised of CaO and Cr/H-ZSM-5 in combined CO2 Capture-C2H6 oxidative dehydrogenation to C2H4 [J]. Chemical Engineering Journal, 2022, 435: 134706. |
66 | ZHANG Xiaoyu, LIU Wenqiang, PENG Peng, et al. A dual functional sorbent/catalyst material for in situ CO2 capture and conversion to ethylene production[J]. Fuel, 2023, 351: 128701. |
67 | XUE Zhen, GUO Jingyi, WU Shasha, et al. Co-thermal in situ reduction of inorganic carbonates to reduce carbon-dioxide emission[J]. Science China Chemistry, 2023, 66(4): 1201-1210. |
68 | 张琦, 沈佳林, 籍杨梅. 典型钢铁制造流程碳排放及碳中和实施路径[J]. 钢铁, 2023, 58(2): 173-187. |
ZHANG Qi, SHEN Jialin, JI Yangmei. Analysis of carbon emissions in typical iron- and steelmaking process and implementation path research of carbon neutrality[J]. Iron & Steel, 2023, 58(2): 173-187. | |
69 | LUO Y H, ZHU D Q, PAN J, et al. Thermal decomposition behaviour and kinetics of Xinjiang siderite ore[J]. Mineral Processing and Extractive Metallurgy, 2016, 125(1): 17-25. |
70 | FENG Yong, WU Deli, LI Hailong, et al. Activation of persulfates using siderite as a source of ferrous ions: Sulfate radical production, stoichiometric efficiency, and implications[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(3): 3624-3631. |
71 | YU Jianwen, HAN Yuexin, LI Yanjun, et al. Recent advances in magnetization roasting of refractory iron ores: A technological review in the past decade[J]. Mineral Processing and Extractive Metallurgy Review, 2020, 41(5): 349-359. |
72 | CHEN Dong, GUO Hongwei, LV Yanan, et al. Green technology-based utilization of refractory siderite ores to prepare electric arc furnace burden[J]. Steel Research International, 2021, 92(9). |
73 | BALDAUF-SOMMERBAUER G, LUX S, SIEBENHOFER M. Sustainable iron production from mineral iron carbonate and hydrogen[J]. Green Chemistry, 2016, 18(23): 6255-6265. |
74 | ZHANG Dongliang, LI Hanke, YANG Guangxing, et al. Hydrogen-driven routes to steel from siderite with low CO2 emissions: A modeling study[J]. Chemical Engineering Science, 2024, 287: 119702. |
75 | AN Jing, LI Yingnan, MIDDLETON Richard S. Reducing energy consumption and carbon emissions of magnesia refractory products: A life-cycle perspective[J]. Journal of Cleaner Production, 2018, 182: 363-371. |
76 | AN Jing, XUE Xiangxin. Life-cycle carbon footprint analysis of magnesia products[J]. Resources, Conservation and Recycling, 2017, 119: 4-11. |
77 | LI Yongquan. Production and running status of China’s refractories and main downstream industries in 2021[J]. China’s Refractories, 2022, 31(3): 1-4. |
78 | WANG Xiu, ZHAO Liang, ZHANG Lihui, et al. A novel combined system for LNG cold energy utilization to capture carbon dioxide in the flue gas from the magnesite processing industry[J]. Energy, 2019, 187: 115963. |
79 | XIE Zhicheng, SUN Zheyi, SHAO Bin, et al. Highly efficient hydrogenation of carbonate to methanol for boating CO2 mitigation[J]. Chemical Engineering Journal, 2024, 495: 153465. |
[1] | 李新月, 李振京, 韩沂杭, 郭永强, 闫瑜, 哈力米热·卡热木拉提, 赵会吉, 柴永明, 刘东, 殷长龙. 油脂加氢脱氧生产绿色柴油催化剂的研究进展[J]. 化工进展, 2024, 43(S1): 351-364. |
[2] | 林梅洁, 米烁东, 包成. 金属-掺杂氧化铈体系H2/CO电化学反应机理研究进展[J]. 化工进展, 2024, 43(S1): 209-224. |
[3] | 李帅哲, 聂懿宸, PHIDSAVARD Keomeesay, 顾雯, 张伟, 刘娜, 徐高翔, 刘莹, 李兴勇, 陈玉保. 非贵金属催化生物质加氢脱氧制备烃基生物燃料的研究进展[J]. 化工进展, 2024, 43(S1): 225-242. |
[4] | 熊磊, 丁飞燕, 李聪, 王群乐, 吕起, 翟晓娜, 刘峰. 金属Pt负载型非均相催化剂研究进展[J]. 化工进展, 2024, 43(S1): 295-304. |
[5] | 宋财城, 陈晓贞, 刘丽, 杨成敏, 郑步梅, 尹晓莹, 孙进, 姚运海, 段为宇. 碳基载体负载加氢脱硫催化剂的研究进展[J]. 化工进展, 2024, 43(S1): 305-314. |
[6] | 韩洪晶, 车宇, 田宇轩, 王海英, 张亚男, 陈彦广. 木质素催化氢解催化剂及溶剂的研究进展[J]. 化工进展, 2024, 43(S1): 315-324. |
[7] | 胡兴, 刘易, 杜泽学. 3-氯丙烯直接合成环氧氯丙烷催化剂研究进展[J]. 化工进展, 2024, 43(S1): 325-334. |
[8] | 于梦洁, 吴语童, 罗发祥, 豆义波. 低浓度二氧化碳还原光催化剂结构设计的研究进展[J]. 化工进展, 2024, 43(S1): 335-350. |
[9] | 张浩, 刘世钰, 沈卫华, 方云进. Ca-ZSM-5催化尿素脱水制备单氰胺[J]. 化工进展, 2024, 43(S1): 365-373. |
[10] | 何世坤, 张荣花, 李昊阳, 潘晖, 冯君锋. 脱铝分子筛固体酸催化葡萄糖制备5-羟甲基糠醛[J]. 化工进展, 2024, 43(S1): 374-381. |
[11] | 张日东, 吕建华, 刘继东, 郭豹, 李文松. Ru-K-NaY催化草酸二甲酯脱羰基制备碳酸二甲酯[J]. 化工进展, 2024, 43(S1): 382-390. |
[12] | 高聪志, 张雅萱, 林璐, 邓晓婷, 殷霞, 丁一刚, 肖艳华, 杜治平. 新戊二醇的合成工艺[J]. 化工进展, 2024, 43(S1): 469-478. |
[13] | 万震, 王绍庆, 李志合, 赵天生. HZSM-5分子筛催化木质素热解制芳烃研究进展[J]. 化工进展, 2024, 43(S1): 517-532. |
[14] | 李琳, 黄国勇, 徐盛明, 郁丰善, 翁雅青, 曹才放, 温嘉玮, 王春霞, 王俊莲, 顾斌涛, 张袁华, 刘斌, 王才平, 潘剑明, 徐泽良, 王翀, 王珂. 铝基废催化剂载体的回收与再生制备[J]. 化工进展, 2024, 43(S1): 640-649. |
[15] | 刘振涛, 梅金林, 王春雅, 段爱军, 巩雁军, 徐春明, 王喜龙. 一步法加氢制生物航煤催化剂研究进展[J]. 化工进展, 2024, 43(9): 4909-4924. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |