化工进展 ›› 2024, Vol. 43 ›› Issue (S1): 431-442.DOI: 10.16085/j.issn.1000-6613.2024-0712
薛立新1,2(), 涂龙斗2,3, 李士洋3, 郑晨晨3, 蔡达健3, 高从堦3
收稿日期:
2024-04-28
修回日期:
2024-06-20
出版日期:
2024-11-20
发布日期:
2024-12-06
通讯作者:
薛立新
作者简介:
薛立新(1966—),男,研究员,博士生导师,研究方向为膜科学与技术。E-mail:20230212@wzu.edu.cn。
基金资助:
XUE Lixin1,2(), TU Longdou2,3, LI Shiyang3, ZHENG Chenchen3, CAI Dajian3, GAO Congjie3
Received:
2024-04-28
Revised:
2024-06-20
Online:
2024-11-20
Published:
2024-12-06
Contact:
XUE Lixin
摘要:
沸石咪唑酯骨架(ZIF)因其结构可调、制备简单以及稳定性优异,被认为是突破膜材料上限的最佳材料之一。本文通过在聚乙烯亚胺(PEI)基涂层原位生长ZIF-L粒子,然后与均苯三甲酰氯(TMC)界面聚合,得到了性能良好的染料脱盐混合基质疏松纳滤膜。利用PEI与Zn2+的配位作用,保证Zn(Ⅱ)离子的均匀分布,还建立了原位生成ZIF-L纳米粒子与聚酰胺之间的界面连接,避免了界面缺陷的形成。ZIF-L粒子的原位生成增加了膜表面粗糙度,改善了膜表面亲水性能,提供了分离层的水通道,缩短了水运输路径。对于刚果红(CR)/盐混合溶液,与未负载ZIF粒子的PEI/TMC膜相比,PEI(ZIF)/TMC膜在截留率维持不变的情况下,渗透系数提高近17倍,达到68.1~71.7L/(m2·h·bar),其刚果红染料截留率达到98%,Na2SO4和NaCl截留率分别为12.4%和2.7%,截留分离选择系数分别为7.8和36.1。
中图分类号:
薛立新, 涂龙斗, 李士洋, 郑晨晨, 蔡达健, 高从堦. 包含原位生长ZIF-L粒子的PEI基高效染料脱盐混合基质纳滤膜[J]. 化工进展, 2024, 43(S1): 431-442.
XUE Lixin, TU Longdou, LI Shiyang, ZHENG Chenchen, CAI Dajian, GAO Congjie. High efficient dye desalting mixed matrix nanofiltration membranes containing in-situ grown ZIF-L particles in polyethyleneimine (PEI) coating before interface polymerization[J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 431-442.
膜 | 元素质量分数/% | |||
---|---|---|---|---|
C | N | O | Zn | |
PEI(ZIF) | 64.0 | 20.5 | 12.1 | 3.4 |
PEI/TMC | 63.9 | 11.9 | 24.2 | 0 |
PEI(ZIF)/TMC | 64.2 | 13.8 | 20.5 | 1.5 |
表1 复合膜EDS元素含量
膜 | 元素质量分数/% | |||
---|---|---|---|---|
C | N | O | Zn | |
PEI(ZIF) | 64.0 | 20.5 | 12.1 | 3.4 |
PEI/TMC | 63.9 | 11.9 | 24.2 | 0 |
PEI(ZIF)/TMC | 64.2 | 13.8 | 20.5 | 1.5 |
1 | ZHU Junyong, TIAN Miaomiao, HOU Jingwei, et al. Surface zwitterionic functionalized graphene oxide for a novel loose nanofiltration membrane[J]. Journal of Materials Chemistry A, 2016, 4(5): 1980-1990. |
2 | AHMAD Nor Naimah Rosyadah, Wei Lun ANG, TEOW Yeit Haan, et al. Nanofiltration membrane processes for water recycling, reuse and product recovery within various industries: A review[J]. Journal of Water Process Engineering, 2022, 45: 102478. |
3 | SONG Zhuonan, QIU Fen, ZAIA Edmond W, et al. Dual-channel, molecular-sieving core/shell ZIF@MOF architectures as engineered fillers in hybrid membranes for highly selective CO2 separation[J]. Nano Letters, 2017, 17(11): 6752-6758. |
4 | ANG Micah Belle Marie Yap, TRILLES Calvin A, DE GUZMAN Manuel Reyes, et al. Improved performance of thin-film nanocomposite nanofiltration membranes as induced by embedded polydopamine-coated silica nanoparticles[J]. Separation and Purification Technology, 2019, 224: 113-120. |
5 | HOOVER Laura A, SCHIFFMAN Jessica D, ELIMELECH Menachem. Nanofibers in thin-film composite membrane support layers: Enabling expanded application of forward and pressure retarded osmosis[J]. Desalination, 2013, 308: 73-81. |
6 | LUO Jianquan, WAN Yinhua. Mix-charged nanofiltration membrane: Engineering charge spatial distribution for highly selective separation[J]. Chemical Engineering Journal, 2023, 464: 142689. |
7 | CHEN Yueying, ZHANG Yuze, HUANG Qianhong, et al. Recent advances in Cu-based metal-organic frameworks and their derivatives for battery applications[J]. ACS Applied Energy Materials, 2022, 5(6): 7842-7873. |
8 | QIU Ming, HE Chunju. Efficient removal of heavy metal ions by forward osmosis membrane with a polydopamine modified zeolitic imidazolate framework incorporated selective layer[J]. Journal of Hazardous Materials, 2019, 367: 339-347. |
9 | XIAO Fan, HU Xiaoyu, CHEN Yingbo, et al. Porous Zr-based metal-organic frameworks (Zr-MOFs)-incorporated thin-film nanocomposite membrane toward enhanced desalination performance[J]. ACS Applied Materials & Interfaces, 2019, 11(50): 47390-47403. |
10 | VAN DER BRUGGEN B, CURCIO E, DRIOLI E. Process intensification in the textile industry: The role of membrane technology[J]. Journal of Environmental Management, 2004, 73(3): 267-274. |
11 | LI Qin, LIAO Zhipeng, FANG Xiaofeng, et al. Tannic acid-polyethyleneimine crosslinked loose nanofiltration membrane for dye/salt mixture separation[J]. Journal of Membrane Science, 2019, 584: 324-332. |
12 | LI Rui, CAO Shaochong, FENG Xiaoquan, et al. Guanidinium-based loose nanofiltration membranes for dye purification and chlorine resistance[J]. Separation and Purification Technology, 2022, 300: 121941. |
13 | ABOLMAALI Samira Sadat, TAMADDON Ali, NAJAFI Haniye, et al. Effect of l-histidine substitution on sol-gel of transition metal coordinated poly ethyleneimine: Synthesis and biochemical characterization[J]. Journal of Inorganic and Organometallic Polymers and Materials, 2014, 24(6): 977-987. |
14 | HOU Ting, SHU Lian, GUO Kechun, et al. Cellulose membranes with polyethylenimine-modified graphene oxide and zinc ions for promoted gas separation[J]. Cellulose, 2020, 27(6): 3277-3286. |
15 | WANG Shengyao, FANG Lifeng, CHENG Liang, et al. Novel ultrafiltration membranes with excellent antifouling properties and chlorine resistance using a poly(vinyl chloride)-based copolymer[J]. Journal of Membrane Science, 2018, 549: 101-110. |
16 | XU Yang, PENG Huawen, LUO Hao, et al. High performance Mg2+/Li+ separation membranes modified by a bis-quaternary ammonium salt[J]. Desalination, 2022, 526: 115519. |
17 | ZHANG Yu, ZHANG Sui, CHUNG Tai-Shung. Nanometric graphene oxide framework membranes with enhanced heavy metal removal via nanofiltration[J]. Environmental Science & Technology, 2015, 49(16): 10235-10242. |
18 | YANG Mengyuan, QIN Fei, WANG Wen, et al. A metal chelation strategy suppressing chemical reduction between PEDOT and polyethylenimine for a printable low-work function electrode in organic solar cells[J]. Journal of Materials Chemistry A, 2021, 9(7): 3918-3924. |
19 | JIAO Chengli, LI Zedong, LI Xinxin, et al. Improved CO2/N2 separation performance of Pebax composite membrane containing polyethyleneimine functionalized ZIF-8[J]. Separation and Purification Technology, 2021, 259: 118190. |
20 | POKHREL Jeewan, BHORIA Nidhika, ANASTASIOU Stavroula, et al. CO2 adsorption behavior of amine-functionalized ZIF-8, graphene oxide, and ZIF-8/graphene oxide composites under dry and wet conditions[J]. Microporous and Mesoporous Materials, 2018, 267: 53-67. |
21 | GAO Yongqiang, QIAO Zhihua, ZHAO Song, et al. In situ synthesis of polymer grafted ZIFs and application in mixed matrix membrane for CO2 separation[J]. Journal of Materials Chemistry A, 2018, 6(7): 3151-3161. |
22 | LIU Di, PANG Guangsheng, TANG Zhiyong, et al. Interfacial engineering of metal-organic frameworks/graphene oxide composite membrane by polyethyleneimine for efficient H2/CH4 gas separation[J]. Inorganic Chemistry Frontiers, 2019, 6(8): 2043-2049. |
23 | TANG Chuyang Y, KWON Young-Nam, LECKIE James O. Effect of membrane chemistry and coating layer on physiochemical properties of thin film composite polyamide RO and NF membranes: Ⅰ. FTIR and XPS characterization of polyamide and coating layer chemistry[J]. Desalination, 2009, 242(1/2/3): 149-167. |
24 | ZHANG Xi, Yan LYU, YANG Haocheng, et al. Polyphenol coating as an interlayer for thin-film composite membranes with enhanced nanofiltration performance[J]. ACS Applied Materials & Interfaces, 2016, 8(47): 32512-32519. |
25 | YANG Libin, WANG Zhan, ZHANG Jinglong. Highly permeable zeolite imidazolate framework composite membranes fabricated via a chelation-assisted interfacial reaction[J]. Journal of Materials Chemistry A, 2017, 5(29): 15342-15355. |
26 | HUANG Chou, ZHANG Haichuan, ZHENG Kaikai, et al. Two-dimensional hydrophilic ZIF-L as a highly-selective adsorbent for rapid phosphate removal from wastewater[J]. Science of the Total Environment, 2021, 785: 147382. |
27 | DING Bing, WANG Xianbiao, XU Yongfei, et al. Hydrothermal preparation of hierarchical ZIF-L nanostructures for enhanced CO2 capture[J]. Journal of Colloid and Interface Science, 2018, 519: 38-43. |
28 | ZHAO Zhang, SHEHZAD Muhammad Aamir, WU Bin, et al. Spray-deposited thin-film composite MOFs membranes for dyes removal[J]. Journal of Membrane Science, 2021, 635: 119475. |
29 | CUI Jiandong, FENG Yuxiao, LIN Tao, et al. Mesoporous metal-organic framework with well-defined cruciate flower-like morphology for enzyme immobilization[J]. ACS Applied Materials & Interfaces, 2017, 9(12): 10587-10594. |
30 | WANG Chongbin, LI Zhiyuan, CHEN Jianxin, et al. Zwitterionic functionalized “cage-like” porous organic frameworks for nanofiltration membrane with high efficiency water transport channels and anti-fouling property[J]. Journal of Membrane Science, 2018, 548: 194-202. |
31 | FENG Shuman, LI Mu, ZHANG Songfeng, et al. Superoleophobic micro-nanostructure surface formation of PVDF membranes by tannin and a condensed silane coupling agent[J]. RSC Advances, 2019, 9(55): 32021-32026. |
32 | CHEN Li, LIU Kuo, YE Jiaru, et al. Controlled formation of surface hydrophilicity enhanced chitosan film by layer-by-layer electro-assembly[J]. Materials Science and Engineering: C, 2015, 56: 518-521. |
33 | KHAN Fahad Saleem Ahmed, MUBARAK Nabisab Mujawar, TAN Yie Hua, et al. A comprehensive review on magnetic carbon nanotubes and carbon nanotube-based buckypaper for removal of heavy metals and dyes[J]. Journal of Hazardous Materials, 2021, 413: 125375. |
34 | JIN Pengrui, ZHU Junyong, YUAN Shushan, et al. Erythritol-based polyester loose nanofiltration membrane with fast water transport for efficient dye/salt separation[J]. Chemical Engineering Journal, 2021, 406: 126796. |
35 | ZHOU Huimin, LI Xuesong, LI Yang, et al. Tuning of nanofiltration membrane by multifunctionalized nanovesicles to enable an ultrahigh dye/salt separation at high salinity[J]. Journal of Membrane Science, 2022, 644: 120094. |
36 | ZHENG Junfeng, ZHAO Rui, ULIANA Adam A, et al. Separation of textile wastewater using a highly permeable resveratrol-based loose nanofiltration membrane with excellent anti-fouling performance[J]. Chemical Engineering Journal, 2022, 434: 134705. |
37 | SUN Zhongyue, ZHU Xuewu, TAN Fengxun, et al. Poly(vinyl alcohol)-based highly permeable TFC nanofiltration membranes for selective dye/salt separation[J]. Desalination, 2023, 553: 116479. |
38 | CHENG Xiaoxiang, ZHANG Yongrui, FAN Qingshui, et al. Preparation of Co3O4@carbon nanotubes modified ceramic membrane for simultaneous catalytic oxidation and filtration of secondary effluent[J]. Chemical Engineering Journal, 2023, 454: 140450. |
[1] | 谢钰麟, 饶瑞晔, 黄建, 蒿佳怡, 王友益, 黄琦. 连续ZIF-8膜制备及在氢气分离中的研究进展[J]. 化工进展, 2024, 43(S1): 403-418. |
[2] | 孙燕, 冯倩颖, 谢晓阳, 何皎洁, 杨利伟, 白波. 基于环糊精构筑薄膜复合膜的研究进展[J]. 化工进展, 2024, 43(8): 4464-4476. |
[3] | 张祚群, 高扬, 白超杰, 薛立新. 二次界面聚合同步反扩散原位生长ZIF-8纳米粒子制备聚酰胺混合基质反渗透(RO)膜[J]. 化工进展, 2023, 42(S1): 364-373. |
[4] | 赵珍珍, 郑喜, 王雪琪, 王涛, 冯英楠, 任永胜, 赵之平. 聚酰胺复合膜微孔支撑基底的研究进展[J]. 化工进展, 2023, 42(4): 1917-1933. |
[5] | 张赛晖, 李校阳, 高慧, 王丽丽. 制备聚酰胺复合膜中界面聚合反应添加剂研究进展[J]. 化工进展, 2022, 41(9): 4884-4894. |
[6] | 李泽辉, 崔恒, 王军. 氯化聚氯乙烯复合纳滤膜的制备及其在模拟RB5染料废水处理中的应用[J]. 化工进展, 2021, 40(S1): 456-465. |
[7] | 刘娟, 陈宇昊, 叶海星, 孙海翔. 界面聚合在渗透汽化膜分离领域的应用进展[J]. 化工进展, 2021, 40(8): 4314-4326. |
[8] | 刘祎, 汪明旺, 吕宏凌, 陈金庆. 共价有机骨架聚合物功能膜制备方法的研究进展[J]. 化工进展, 2021, 40(8): 4360-4370. |
[9] | 陈宇昊, 刘家辉, 刘娟, 章洪斌, 孙海翔. 新型复合纳滤膜研究进展[J]. 化工进展, 2021, 40(5): 2665-2675. |
[10] | 秘一芳, 安全福. 界面聚合聚酰胺纳滤膜渗透选择性能优化的研究进展[J]. 化工进展, 2020, 39(6): 2093-2104. |
[11] | 邢雅南, 苏保卫, 甄宏艳. 耐溶剂纳滤膜的制备与应用研究进展[J]. 化工进展, 2015, 34(11): 3832-3840. |
[12] | 孙志猛1,2,任晓晶2,赵可卉2,张忠国2,赵义平1,陈 莉1,程言君2. 耐污染聚酰胺复合纳滤膜的制备及性能[J]. 化工进展, 2012, 31(05): 1088-1095. |
[13] | 石 磊,包宗宏. 阻燃剂微胶囊化的研究进展 [J]. 化工进展, 2008, 27(7): 1001-. |
[14] | 张景亚,张浩勤,谭翎燕,乔欢欢,刘金盾. 正交实验法优化制备复合荷电镶嵌膜 [J]. 化工进展, 2008, 27(12): 1996-. |
[15] | 杨文川,褚良银,庞雪芹,巨晓洁. 磁性温度感应微囊膜的制备与表征 [J]. 化工进展, 2008, 27(1): 120-. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 167
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 93
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |