1 |
RAZA Ali, IKRAM Muhammad, GUO Song, et al. Green synthesis of dimethyl carbonate from CO2 and methanol: New strategies and industrial perspective[J]. Advanced Sustainable Systems, 2022, 6(8): 2200087.
|
2 |
KUMAR Praveen, SRIVASTAVA Vimal Chandra, ŠTANGAR Urška Lavrenčič, et al. Recent progress in dimethyl carbonate synthesis using different feedstock and techniques in the presence of heterogeneous catalysts[J]. Catalysis Reviews, 2021, 63(3): 363-421.
|
3 |
陶宁, 徐亚津, 冯宇辰, 等. ZrO2-Al2O3复合氧化物催化反应精馏合成碳酸二甲酯[J]. 化工进展, 2021, 40(5): 2603-2612.
|
|
TAO Ning, XU Yajin, FENG Yuchen, et al. ZrO2-Al2O3 composite oxide for synthesis of dimethyl carbonate in catalytic reactive distillation[J]. Chemical Industry and Engineering Progress, 2021, 40(5): 2603-2612.
|
4 |
郑谦, 官修帅, 靳山彪, 等. 铈锆固溶体Ce0.25Zr0. 75O2光热协同催化CO2与甲醇合成 DMC[J]. 化工进展, 2023, 42(S1): 319.
|
|
ZHENG Qian, GUAN Xiushuai, JIN Shanbiao, et al. Cerium-zirconium solid solution Ce0.25Zr0.75O2 photothermal co-catalyzed synthesis of DMC from CO2 and methanol[J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 319.
|
5 |
杜治平, 黄丽明, 林志坤, 等. 甲醇氧化羰基化合成碳酸二甲酯反应机理研究进展[J]. 化工进展, 2012, 31(10): 2213-2220.
|
|
DU Zhiping, HUANG Liming, LIN Zhikun, et al. Mechanism for the synthesis of dimethyl carbonate from oxidative carbonylation of methanol[J]. Chemical Industry and Engineering Progress, 2012, 31(10): 2213-2220.
|
6 |
WANG Chunzheng, XU Ningkun, HUANG Ke, et al. Emerging co-synthesis of dimethyl oxalate and dimethyl carbonate using Pd/silicalite-1 catalyst with synergistic interactions of Pd and silanols[J]. Chemical Engineering Journal, 2023, 466: 143136.
|
7 |
YU Xinbin, BURKHOLDER Michael, KARAKALOS Stavros G, et al. Hydrogenation of dimethyl oxalate to ethylene glycol over Cu/KIT-6 catalysts[J]. Catalysis Science & Technology, 2021, 11(7): 2403-2413.
|
8 |
WANG Zhiqiao, SUN Jing, XU Zhongning, et al. CO direct esterification to dimethyl oxalate and dimethyl carbonate: The key functional motifs for catalytic selectivity[J]. Nanoscale, 2020, 12(39): 20131-20140.
|
9 |
郝翠英, 王胜平, 马新宾. 草酸二烷基酯气相脱羰基制碳酸二烷基酯的热力学分析[J]. 精细石油化工, 2006, 23(4): 36-39.
|
|
HAO Cuiying, WANG Shengping, MA Xinbin. Thermodynamics analysis of the preparation of dialkyl carbonates from dialkyl oxalates by gaseous decarbonylation[J]. Speciality Petrochemicals, 2006, 23(4): 36-39.
|
10 |
HAN Bingying, LING Lixia, ZHANG Riguang, et al. Dimethyl oxalate synthesis via CO oxidation on Pd-doped Ag(111) surface: A theoretic study[J]. Molecular Catalysis, 2020, 484: 110731.
|
11 |
巩金龙, 王胜平, 马新宾, 等. ZnCl2催化草酸二苯酯脱羰基合成碳酸二苯酯[J]. 天然气化工, 2003, 28(5): 10-12, 19.
|
|
GONG Jinlong, WANG Shengping, MA Xinbin, et al. Synthesis of diphenyl carbonate by decarbonylation of diphenyl oxalate over ZnCl2 [J]. Natural Gas Chemical Industry, 2003, 28(5): 10-12, 19.
|
12 |
HAO Cuiying, WANG Shengping, MA Xinbin. Gas phase decarbonylation of diethyl oxalate to diethyl carbonate over alkali-containing catalyst[J]. Journal of Molecular Catalysis A: Chemical, 2009, 306(1/2): 130-135.
|
13 |
CHEN Lungang, LI Yuping, ZHANG Xinghua, et al. Effect of Ru particle size on hydrogenation/decarbonylation of propanoic acid over supported Ru catalysts in aqueous phase[J]. Catalysis Letters, 2017, 147(1): 29-38.
|
14 |
LING Yu, CHEN Xiao, MENG Jipeng, et al. Identification of uniform high-density isolated Ni active sites on LTA zeolite for propylene dimerization[J]. Applied Catalysis A: General, 2022, 640: 118661.
|
15 |
HOSSEINPOUR Elnaz, Ahmad RAHBAR-KELISHAMI, NABAVI Mohammad Sadegh. Evaluation of alkaline and acidic modification of NaY zeolite for enhancing adsorptive removal of diclofenac sodium from aqueous solution[J]. Surfaces and Interfaces, 2023, 39: 102917.
|
16 |
KRISNANDI Y K, NURANI D A, ALFIAN D V, et al. The new challenge of partial oxidation of methane over Fe2O3/NaY and Fe3O4/NaY heterogeneous catalysts[J]. Heliyon, 2021, 7(11): e08305.
|
17 |
FU Hongyu, BAI Haifeng, ABULIZI Abulikemu, et al. Surfactant-enhanced ZnO x /CaO catalytic activity for ultrasound-assisted biodiesel production from waste cooking oil[J]. Reaction Chemistry & Engineering, 2024, 9(3): 543-557.
|
18 |
陈林涛, 大坂侑吾, 刘学成, 等. MnO2/NaY复合材料的制备及其对SO2脱除性能[J]. 化工进展, 2019, 38(5): 2284-2292.
|
|
CHEN Lintao, OSAKA Yugo, LIU Xuecheng, et al. Preparation of MnO2/NaY composite and its performance in removing SO2 [J]. Chemical Industry and Engineering Progress, 2019, 38(5): 2284-2292.
|
19 |
张姗, 刘化章. 氨分解制氢棒状La x Ce1- x O y 负载Ru催化剂[J]. 化工进展, 2022, 41(12): 6350-6357.
|
|
ZHANG Shan, LIU Huazhang. Rod La x Ce1- x O y supported Ru catalyst for hydrogen production by ammonia decomposition[J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6350-6357.
|
20 |
Salvatore SCIRÈ, FIORENZA Roberto, GULINO Antonino, et al. Selective oxidation of CO in H2-rich stream over ZSM5 zeolites supported Ru catalysts: An investigation on the role of the support and the Ru particle size[J]. Applied Catalysis A: General, 2016, 520: 82-91.
|
21 |
MOVICK William J, YUN Gwang-Nam, VARGHEESE Vibin, et al. Hydrodeoxygenation of benzofuran on novel CoPdP catalysts supported on potassium ion exchanged ultra-stable Y-zeolites[J]. Journal of Catalysis, 2021, 403: 160-172.
|
22 |
谢继阳, 王红琴, 杨杰, 等. 新型Ru基催化剂的制备及其2-乙基蒽醌加氢性能[J]. 化工进展, 2021, 40(2): 901-907.
|
|
XIE Jiyang, WANG Hongqin, YANG Jie, et al. Preparation of a novel Ru-based catalyst and its performance in the hydrogenation of 2-ethylanthraquinone[J]. Chemical Industry and Engineering Progress, 2021, 40(2): 901-907.
|
23 |
MORGAN David J. Resolving ruthenium: XPS studies of common ruthenium materials[J]. Surface and Interface Analysis, 2015, 47(11): 1072-1079.
|
24 |
TANG Shixiong, LI Fang, LIU Jidong, et al. MgO/NaY as modified mesoporous catalyst for methanolysis of polyethylene terephthalate wastes[J]. Journal of Environmental Chemical Engineering, 2022, 10(4): 107927.
|
25 |
SUN Linbing, CHUN Yuan, GU Fangna, et al. A new strategy to generate strong basic sites on neutral salt KNO3 modified NaY[J]. Materials Letters, 2007, 61(11/12): 2130-2134.
|
26 |
WANG Xiaobo, JIANG Caojian, WANG Jia, et al. Promoted dispersion and uniformity of active species on Fe-Ce-Al catalysts for efficient NO abatement[J]. RSC Advances, 2019, 9(61): 35751-35759.
|
27 |
XUE Jilong, WANG Ying, MENG Yue, et al. Theoretical investigation of decarbonylation mechanism of furfural on Pd(111) and M/Pd(111) (M=Ru, Ni, Ir) surfaces[J]. Molecular Catalysis, 2020, 493: 111054.
|
28 |
ORTUÑO Manuel A, Büşra DERELI, CRAMER Christopher J. Mechanism of Pd-catalyzed decarbonylation of biomass-derived hydrocinnamic acid to styrene following activation as an anhydride[J]. Inorganic Chemistry, 2016, 55(9): 4124-4131.
|
29 |
SINHA Soumya Kumar, ROY Triptesh Kumar, MODAK Atanu, et al. Enabling the facile synthesis of arenes by transition metal catalyzed decarbonylation methodology[J]. Chemical Record, 2021, 21(12): 3990-3999.
|
30 |
LU Jianmin, FAHEEM Muhammad, BEHTASH Sina, et al. Theoretical investigation of the decarboxylation and decarbonylation mechanism of propanoic acid over a Ru(0001) model surface[J]. Journal of Catalysis, 2015, 324: 14-24.
|
31 |
FARRUSSENG David, TUEL Alain. Perspectives on zeolite-encapsulated metal nanoparticles and their applications in catalysis[J]. New Journal of Chemistry, 2016, 40(5): 3933-3949.
|
32 |
WANG Yeqing, WANG Chengtao, WANG Lingxiang, et al. Zeolite fixed metal nanoparticles: New perspective in catalysis[J]. Accounts of Chemical Research, 2021, 54(11): 2579-2590.
|