化工进展 ›› 2024, Vol. 43 ›› Issue (S1): 325-334.DOI: 10.16085/j.issn.1000-6613.2024-0275
收稿日期:
2024-02-06
修回日期:
2024-03-11
出版日期:
2024-11-20
发布日期:
2024-12-06
通讯作者:
杜泽学
作者简介:
胡兴(1999—),男,硕士研究生,研究方向为环氧氯丙烷的绿色合成。E-mail:huxing.ripp@sinopec.com。
基金资助:
Received:
2024-02-06
Revised:
2024-03-11
Online:
2024-11-20
Published:
2024-12-06
Contact:
DU Zexue
摘要:
3-氯丙烯直接环氧化合成环氧氯丙烷是一种符合绿色化学理念的制备工艺,其关键在于高效的环氧化催化剂。当前已开发的环氧化催化剂主要包括磷钨杂多酸盐和金属配合物等均相催化剂,以及钛硅分子筛为代表的非均相催化剂。在均相催化剂中,具有相转移特性的磷钨杂多酸盐催化剂反应性能优越,本文介绍了磷钨杂多酸盐催化剂的合成方法及其在环氧化工艺上的研究现状。在非均相催化剂方面,总结了钛硅分子筛催化3-氯丙烯环氧化的反应机理和催化剂改性的研究进展,分析了该催化剂在环氧化工艺上的应用现状,对其在工业化应用背景下的催化剂研究方向提出了建议。本文还讨论了以分子氧为氧化剂的3-氯丙烯直接环氧化方案,开发适用于此反应的双功能催化剂,以期降低3-氯丙烯直接环氧化工艺的生产成本。
中图分类号:
胡兴, 刘易, 杜泽学. 3-氯丙烯直接合成环氧氯丙烷催化剂研究进展[J]. 化工进展, 2024, 43(S1): 325-334.
HU Xing, LIU Yi, DU Zexue. Research progress of catalyst for direct synthesis of epichlorohydrin from 3-chloropropylene[J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 325-334.
工艺名称 | 反应过程图 | 优点 | 缺点 |
---|---|---|---|
丙烯高温氯化法 | 生产工艺成熟,已经实现生产装置大型化、工艺技术连续化和现场控制自动化 | 反应条件苛刻,副产物多,污染严重,产生大量含氯废水废渣 | |
甘油法 | 原料来源广泛,工艺流程短,有机氯化副产物少 | 二氯丙醇皂化过程中产生含氯废水废渣 | |
直接环氧化法 | 不产生含氯废水废渣,流程简单 | 催化剂成本高,双氧水存在安全隐患 |
表1 环氧氯丙烷生产工艺概述
工艺名称 | 反应过程图 | 优点 | 缺点 |
---|---|---|---|
丙烯高温氯化法 | 生产工艺成熟,已经实现生产装置大型化、工艺技术连续化和现场控制自动化 | 反应条件苛刻,副产物多,污染严重,产生大量含氯废水废渣 | |
甘油法 | 原料来源广泛,工艺流程短,有机氯化副产物少 | 二氯丙醇皂化过程中产生含氯废水废渣 | |
直接环氧化法 | 不产生含氯废水废渣,流程简单 | 催化剂成本高,双氧水存在安全隐患 |
钛硅分子筛类型 | 主要合成方法 | 拓扑结构 | 孔道特征 | [3-氯丙烯(ALC)/H2O2]转化率/% | ECH选择性/% | 参考文献 |
---|---|---|---|---|---|---|
TS-1 | 水热合成法 | MFI | 10-MR微孔 | 96.7 | 93.9 | [ |
TS-2 | 水热合成法 | MEL | 10-MR微孔 | 98.4 | 96.5 | [ |
Ti-MWW | 同晶取代法 | MWW | 10-MR和12-MR微孔 | 89 | >99 | [ |
Ti-Beta | 水热合成法 | BEA | 12-MR微孔 | 2.5 | 98.9 | [ |
Ti-MOR | 同晶取代法 | MOR | 8-MR和12-MR微孔 | 1.6 | 98.6 | [ |
Ti-FER | 水热合成法 | FER | 8-MR和10-MR微孔 | — | — | [ |
Ti-SBA | 同晶取代法 | — | 介孔 | — | — | [ |
Ti-MCM-41 | 水热合成法 | — | 介孔 | — | — | [ |
表2 部分不同类型的钛硅分子筛及其催化效果
钛硅分子筛类型 | 主要合成方法 | 拓扑结构 | 孔道特征 | [3-氯丙烯(ALC)/H2O2]转化率/% | ECH选择性/% | 参考文献 |
---|---|---|---|---|---|---|
TS-1 | 水热合成法 | MFI | 10-MR微孔 | 96.7 | 93.9 | [ |
TS-2 | 水热合成法 | MEL | 10-MR微孔 | 98.4 | 96.5 | [ |
Ti-MWW | 同晶取代法 | MWW | 10-MR和12-MR微孔 | 89 | >99 | [ |
Ti-Beta | 水热合成法 | BEA | 12-MR微孔 | 2.5 | 98.9 | [ |
Ti-MOR | 同晶取代法 | MOR | 8-MR和12-MR微孔 | 1.6 | 98.6 | [ |
Ti-FER | 水热合成法 | FER | 8-MR和10-MR微孔 | — | — | [ |
Ti-SBA | 同晶取代法 | — | 介孔 | — | — | [ |
Ti-MCM-41 | 水热合成法 | — | 介孔 | — | — | [ |
1 | 贾玉庆, 张丽平, 王振东. 环氧氯丙烷生产技术现状及研究进展[J]. 应用化工, 2023, 52(5): 1525-1529, 1536. |
JIA Yuqing, ZHANG Liping, WANG Zhendong. Status and research progress of epichlorohydrin production technology[J]. Applied Chemical Industry, 2023, 52(5): 1525-1529, 1536. | |
2 | JIN Huoxi, OUYANG Xiaokun. Enzymatic approaches to the preparation of chiral epichlorohydrin[J]. RSC Advances, 2015, 5(113): 92988-92994. |
3 | VENTURELLO Carlo, ALNERI Enzo, RICCI Marco. A new, effective catalytic system for epoxidation of olefins by hydrogen peroxide under phase-transfer conditions[J]. The Journal of Organic Chemistry, 1983, 48(21): 3831-3833. |
4 | XI Zuwei, ZHOU Ning, SUN Yu, et al. Reaction-controlled phase-transfer catalysis for propylene epoxidation to propylene oxide[J]. Science, 2001, 292(5519): 1139-1141. |
5 | 孙国新, 孙君华, 赵修贤, 等. 一种用于氯丙烯环氧化的催化剂及其制备方法: CN110479370A[P]. 2019-11-22. |
SUN Guoxin, SUN Junhua, ZHAO Xiuxian, et al. Catalyst for chloropropene epoxidation and preparation method thereof: CN110479370A[P]. 2019-11-22. | |
6 | ZHAO Xiuxian, SUN Junhua, SUN Guoxin, et al. Epoxidation of allyl chloride with H2O2 catalyzed by three structurally related quaternary ammonium modified polyoxophosphotungstates[J]. Applied Catalysis A: General, 2020, 608: 117846. |
7 | LIU Ying, ZHANG Zijie, YUAN Jingbo, et al. Effect of interfacial activity of quaternary ammonium cation on kinetics of epoxidation of allyl chloride with hydrogen peroxide[J]. Applied Catalysis A: General, 2022, 645: 118839. |
8 | ZHA Qianyu, ZHANG Zijie, LIU Ying, et al. In situ generated micro-catalytic system for the epoxidation of allyl chloride with hydrogen peroxide[J]. Molecular Catalysis, 2022, 531: 112646. |
9 | 李健, 奚祖威, 高爽. 磷钨杂多酸盐催化的氯丙烯水油两相条件下的环氧化[J]. 分子催化, 2006, 20(5): 395-398. |
LI Jian, XI Zuwei, GAO Shuang. Epoxidation of allyl chloride catalyzed by heteropolyphosphatotungstate under oil/water biphasic conditions[J]. Journal of Molecular Catalysis, 2006, 20(5): 395-398. | |
10 | 杨洪云, 陈璐, 高焕新, 等. 反应控制相转移催化剂催化氯丙烯环氧化合成环氧氯丙烷[J]. 石油化工, 2008, 37(11): 1172-1175. |
YANG Hongyun, CHEN Lu, GAO Huanxin, et al. Synthesis of epichlorohydrin by epoxidation of allyl chloride on reaction-controlled phase-transfer catalyst[J]. Petrochemical Technology, 2008, 37(11): 1172-1175. | |
11 | 刘声, 张生军, 赵公大, 等. 无溶剂条件下反应控制相转移催化氯丙烯氧化制环氧氯丙烷[J]. 分子催化, 2010, 24(5): 387-391. |
LIU Sheng, ZHANG Shengjun, ZHAO Gongda, et al. Epoxidation of allyl chloride with H2O2 catalyzed by reaction-controlled phase-transfer catalyst under solvent-free conditions[J]. Journal of Molecular Catalysis, 2010, 24(5): 387-391. | |
12 | 高爽. 双氧水法制环氧氯丙烷新技术(DECH)研究进展: 2019中国化工园区与产业发展论坛论文集[C]. 北京: 石油化工出版社, 2019:1-41. |
GAO Shuang. Research progress on New technology of epichlorohydrin (DECH) by hydrogen peroxide process: 2019 China Chemical Industrial Park and Industry Development Forum Proceedings[C]. Beijing: Petroleum Industry Press, 2019: 1-41. | |
13 | 高爽, 张毅, 吕迎. 一种用于反应控制相转移催化剂进行催化反应的管式反应器: CN206304715U[P]. 2017-07-07. |
GAO Shuang, ZHANG Yi, Ying LYU. A tubular reactor for reaction control“a phase transfer catalyst”carries out catalytic reaction: CN206304715U[P]. 2017-07-07. | |
14 | 高爽, 张毅, 张恒耘, 等. 一种反应控制相转移催化剂分离装置: CN205199522U[P]. 2016-05-04. |
GAO Shuang, ZHANG Yi, ZHANG Hengyun, et al. Reaction control “a phase transfer catalyst”separator: CN205199522U[P]. 2016-05-04. | |
15 | 高爽, 张毅, 赵公大. 一种反应控制相转移催化剂析出过程催化剂颗粒度调控方法: CN108073143B[P]. 2020-03-17. |
GAO Shuang, ZHANG Yi, ZHAO Gongda. Catalyst granularity regulation and control method in reaction control phase-transfer catalyst precipitating process: CN108073143B[P]. 2020-03-17. | |
16 | SHEN X H, ZHANG Z W, SHAO L J, et al. Synthesis, crystal structure, and catalytic property of a vanadium(Ⅴ) complex with mixed ligands[J]. Russian Journal of Coordination Chemistry, 2015, 41(6): 372-375. |
17 | ZHOU Zhuohong, DAI Guoyong, RU Shi, et al. Highly selective and efficient olefin epoxidation with pure inorganic-ligand supported iron catalysts[J]. Dalton Transactions, 2019, 48(37): 14201-14205. |
18 | YANG Zhaosheng, TANG Guoqiang, LI Yichuan, et al. Preparation of hierarchical TS-1 molecular sieve membrane catalyst and its catalytic performance for chloropropylene epoxidation[J]. Journal of Porous Materials, 2024, 31(3): 793-808. |
19 | 朱美华, 陈祥树, 邹玲玲, 等. 一种采用负载型TS-2分子筛固定床反应器生产环氧氯丙烷的方法和装置: CN116199649A[P]. 2023-06-02. |
ZHU Meihua, CHEN Xiangshu, ZOU Lingling, et al. Method and device for producing epoxy chloropropane by adopting supported TS-2 molecular sieve fixed bed reactor: CN116199649A[P]. 2023-06-02. | |
20 | WANG Lingling, LIU Yueming, ZHANG Haijiao, et al. Highly efficient synthesis of epichlorohydrin by epoxidation of allyl chloride over titanosilicate Ti-MWW[J]. Chinese Journal of Catalysis, 2006, 27(8): 656-658. |
21 | YANG Boting, CUI Tianxiao, ZHOU Yuanyuan, et al. Preparing and catalytic performance of a novel titanosilicate with FER topology[J]. Materials Research Express, 2020, 7(4): 045501. |
22 | CHIKER F, LAUNAY F, NOGIER J P, et al. Green and selective epoxidation of alkenes catalysed by new TiO2-SiO2 SBA mesoporous solids[J]. Green Chemistry, 2003, 5(3): 318-322. |
23 | Agnieszka WRÓBLEWSKA, FAJDEK Anna, WAJZBERG Joanna, et al. Epoxidation of allyl alcohol over mesoporous Ti-MCM-41 catalyst[J]. Journal of Hazardous Materials, 2009, 170(1): 405-410. |
24 | ALVEAR Matias, FORTUNATO Michele, Kari ERÄNEN, et al. Epoxidation of light olefin mixtures with hydrogen peroxide on TS-1 catalyst[J]. Catalysis Letters, 2024, 154(5): 2101-2111. |
25 | CLERICI M G, BELLUSSI G, ROMANO U. Synthesis of propylene oxide from propylene and hydrogen peroxide catalyzed by titanium silicalite[J]. Journal of Catalysis, 1991, 129(1): 159-167. |
26 | DANOV S M, SULIMOV A V, KOLESNIKOV V A, et al. Kinetics of allyl chloride epoxidation with hydrogen peroxide[J]. Kinetics and Catalysis, 2011, 52(6): 793-797. |
27 | YOON Chang Won, HIRSEKORN Kurt F, NEIDIG Michael L, et al. Mechanism of the decomposition of aqueous hydrogen peroxide over heterogeneous TiSBA15 and TS-1 selective oxidation catalysts: Insights from spectroscopic and density functional theory studies[J]. ACS Catalysis, 2011, 1(12): 1665-1678. |
28 | GORDON Christopher P, ENGLER Hauke, TRAGL Amadeus Samuel, et al. Efficient epoxidation over dinuclear sites in titanium silicalite-1[J]. Nature, 2020, 586(7831): 708-713. |
29 | NIE Xiaowa, REN Xianxuan, JI Xiaojing, et al. Mechanistic insight into propylene epoxidation with H2O2 over titanium silicalite-1: Effects of zeolite confinement and solvent[J]. The Journal of Physical Chemistry B, 2019, 123(34): 7410-7423. |
30 | WEN Yiqiang, ZHANG Feifei, WU Ke, et al. Clean synthesis of Ti-MWW by utilizing the recycled mother liquor[J]. ACS Omega, 2021, 6(46): 31196-31202. |
31 | 余云开. 钛硅分子筛/H2O2体系溶剂效应及活性中心微环境调控的研究[D]. 上海: 华东师范大学, 2020. |
YU Yunkai. A study on the nature of solvent effect over titanosilicates/H2O2 system and the control of active-site microenvironment[D]. Shanghai: East China Normal University, 2020. | |
32 | PANDEY Rajesh Kumar, KUMAR Rajiv. Eco-friendly synthesis of epichlorohydrin catalyzed by titanium silicate (TS-1) molecular sieve and hydrogen peroxide[J]. Catalysis Communications, 2007, 8(3): 379-382. |
33 | LI Yichuan, ZHU Guofu, WANG Yu, et al. In situ construction of an immobilized b-oriented titanium silicalite spherical molecular sieve membrane[J]. Applied Surface Science, 2021, 563: 150275. |
34 | LI Yichuan, LI Yaxian, ZHU Guofu, et al. Synthesis of hierarchical TS-1 nanocrystals with controllable grain size and mesoporosity: Enhanced performance for chloropropylene epoxidation[J]. Industrial & Engineering Chemistry Research, 2020, 59(20): 9364-9371. |
35 | LIU Dongxu, WU Huiying, FANG Nan, et al. In-depth understanding of the key to deactivation of TS-1 in epoxidation of allyl chloride to epichlorohydrin[J]. Microporous and Mesoporous Materials, 2023, 362: 112791. |
36 | WANG Gang, LI Yue, LIN Long, et al. Liquid-phase epoxidation of propylene with H2O2 over TS-1 zeolite: Impurity formation and inhibition study[J]. Industrial & Engineering Chemistry Research, 2021, 60(32): 12109-12122. |
37 | WANG Hao, CHU Qingyan, DONG Yunhui, et al. Green catalytic epoxidation of bulky olefins via hierarchical cerium-containing TS-1 catalyst[J]. Catalysis Letters, 2023, 153(9): 2693-2705. |
38 | WANG San-Jang, WONG David Shan-Hill, Ignatius Jit Quan LIM, et al. Design and control of a novel plant-wide process for epichlorohydrin synthesis by reacting allyl chloride with hydrogen peroxide[J]. Industrial & Engineering Chemistry Research, 2018, 57(20): 6926-6936. |
39 | 祁宏祥. 氯丙烯直接环氧化合成环氧氯丙烷(ECH)工艺研究[D]. 上海: 华东理工大学, 2012. |
QI Hongxiang. Study on chemical process of epichlorohydrin (ECH) via direct epoxidation of 3-chloroprop-1-ene[D]. Shanghai: East China University of Science and Technology, 2012. | |
40 | 黄家辉, 张恒耘, 于娜娜. 一种利用钛硅分子筛催化剂直接氧化生产环氧氯丙烷的工艺: CN111072598B[P]. 2023-09-29. |
HUANG Jiahui, ZHANG Hengyun, YU Nana. A process for producing epichlorohydrin by direct oxidation of titanium silicon molecular sieve catalyst: CN111072598B[P]. 2023-09-29. | |
41 | SUN Yu, XI Zuwei, CAO Guoying. Epoxidation of olefins catalyzed by [ π - C 5 H 5 N C 16 H 33 ] 3 [ P W 4 O 16 ] with molecular oxygen and a recyclable reductant 2-ethylanthrahydroquinone[J]. Journal of Molecular Catalysis A: Chemical, 2001, 166(2): 219-224. |
42 | WANG Qingfa, MI Zhentao, WANG Yaquan, et al. Epoxidation of allyl choride with molecular oxygen and 2-ethyl-anthrahydroquinone catalyzed by TS-1[J]. Journal of Molecular Catalysis A: Chemical, 2005, 229(1/2): 71-75. |
43 | SANKAR Meenakshisundaram, HE Qian, ENGEL Rebecca V, et al. Role of the support in gold-containing nanoparticles as heterogeneous catalysts[J]. Chemical Reviews, 2020, 120(8): 3890-3938. |
44 | 徐林, 邓生财, 黄杰军, 等. 一种核壳结构催化剂的合成及原位生成双氧水制备环氧氯丙烷的方法: CN112387305B[P]. 2023-06-06. |
XU Lin, DENG Shengcai, HUANG Jiejun, et al. Synthesis of core-shell structure catalyst and method for preparing epoxy chloropropane by in-situ generation of hydrogen peroxide: CN112387305B[P]. 2023-06-06. |
[1] | 高聪志, 张雅萱, 林璐, 邓晓婷, 殷霞, 丁一刚, 肖艳华, 杜治平. 新戊二醇的合成工艺[J]. 化工进展, 2024, 43(S1): 469-478. |
[2] | 李琳, 黄国勇, 徐盛明, 郁丰善, 翁雅青, 曹才放, 温嘉玮, 王春霞, 王俊莲, 顾斌涛, 张袁华, 刘斌, 王才平, 潘剑明, 徐泽良, 王翀, 王珂. 铝基废催化剂载体的回收与再生制备[J]. 化工进展, 2024, 43(S1): 640-649. |
[3] | 李新月, 李振京, 韩沂杭, 郭永强, 闫瑜, 哈力米热·卡热木拉提, 赵会吉, 柴永明, 刘东, 殷长龙. 油脂加氢脱氧生产绿色柴油催化剂的研究进展[J]. 化工进展, 2024, 43(S1): 351-364. |
[4] | 李帅哲, 聂懿宸, PHIDSAVARD Keomeesay, 顾雯, 张伟, 刘娜, 徐高翔, 刘莹, 李兴勇, 陈玉保. 非贵金属催化生物质加氢脱氧制备烃基生物燃料的研究进展[J]. 化工进展, 2024, 43(S1): 225-242. |
[5] | 熊磊, 丁飞燕, 李聪, 王群乐, 吕起, 翟晓娜, 刘峰. 金属Pt负载型非均相催化剂研究进展[J]. 化工进展, 2024, 43(S1): 295-304. |
[6] | 宋财城, 陈晓贞, 刘丽, 杨成敏, 郑步梅, 尹晓莹, 孙进, 姚运海, 段为宇. 碳基载体负载加氢脱硫催化剂的研究进展[J]. 化工进展, 2024, 43(S1): 305-314. |
[7] | 韩洪晶, 车宇, 田宇轩, 王海英, 张亚男, 陈彦广. 木质素催化氢解催化剂及溶剂的研究进展[J]. 化工进展, 2024, 43(S1): 315-324. |
[8] | 于梦洁, 吴语童, 罗发祥, 豆义波. 低浓度二氧化碳还原光催化剂结构设计的研究进展[J]. 化工进展, 2024, 43(S1): 335-350. |
[9] | 何世坤, 张荣花, 李昊阳, 潘晖, 冯君锋. 脱铝分子筛固体酸催化葡萄糖制备5-羟甲基糠醛[J]. 化工进展, 2024, 43(S1): 374-381. |
[10] | 张日东, 吕建华, 刘继东, 郭豹, 李文松. Ru-K-NaY催化草酸二甲酯脱羰基制备碳酸二甲酯[J]. 化工进展, 2024, 43(S1): 382-390. |
[11] | 廖旭, 周骏, 罗杰, 曾瑞琳, 王泽宇, 李尊华, 林金清. 多孔离子聚合物催化二氧化碳环加成反应的研究进展[J]. 化工进展, 2024, 43(9): 4925-4940. |
[12] | 修浩然, 王云刚, 白彦渊, 刘涛, 张兴邦, 张益嘉. H2O2低温催化氧化法脱硫脱硝中试实验特性[J]. 化工进展, 2024, 43(9): 4941-4950. |
[13] | 付维, 宁淑英, 蔡晨, 陈佳音, 周皞, 苏亚欣. Cu改性MIL-100(Fe)催化剂的SCR-C3H6脱硝特性[J]. 化工进展, 2024, 43(9): 4951-4960. |
[14] | 马红周, 党煜博, 王耀宁, 曾劲阳, 赵小军, 史建伟. 废锌基脱硫剂与铜锌基催化剂协同真空碳热提取锌[J]. 化工进展, 2024, 43(9): 5275-5281. |
[15] | 李传玺, 鲁旭, 李阳, 李文冰, 魏晓慧, 李金, 刘时, 杨卫胜. 降冰片烯制备工艺进展[J]. 化工进展, 2024, 43(9): 4779-4792. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |