化工进展 ›› 2024, Vol. 43 ›› Issue (S1): 335-350.DOI: 10.16085/j.issn.1000-6613.2024-0584
收稿日期:
2024-04-09
修回日期:
2024-07-12
出版日期:
2024-11-20
发布日期:
2024-12-06
通讯作者:
豆义波
作者简介:
于梦洁(1998—),女,硕士研究生,研究方向为光催化二氧化碳还原。E-mail:2022201046@buct.edu.cn。
基金资助:
YU Mengjie1(), WU Yutong1, LUO Faxiang1, DOU Yibo1,2()
Received:
2024-04-09
Revised:
2024-07-12
Online:
2024-11-20
Published:
2024-12-06
Contact:
DOU Yibo
摘要:
光催化二氧化碳(CO2)转化为增值化学品和燃料是缓解全球变暖、实现“碳中和”目标的有前途的策略之一。为了推进该领域的发展,高效光催化剂的设计合成至关重要。相比于前期研究,近五年研究学者集中在低浓度CO2光还原的研究上。基于此,本文综述了低浓度二氧化碳还原光催化剂结构设计的研究进展。首先介绍了光催化CO2还原的机理、路径及其影响因素;其次总结了基于金属有机骨架材料、共价有机框架材料、金属氧化物、单原子这四类光催化剂的结构特征和调控策略;深入探讨了催化剂的CO2吸附和富集能力、电子-空穴分离迁移能力及表面位点活性等重要因素对低浓度CO2光催化还原效率和选择性的影响;最后,针对低浓度CO2还原光催化剂在产物选择性、转化效率、高值C2产品合成方面存在的挑战,本文从催化剂结构设计方向提供了相关的解决思路和策略。
中图分类号:
于梦洁, 吴语童, 罗发祥, 豆义波. 低浓度二氧化碳还原光催化剂结构设计的研究进展[J]. 化工进展, 2024, 43(S1): 335-350.
YU Mengjie, WU Yutong, LUO Faxiang, DOU Yibo. Research progress on structural design of photocatalysts for diluted carbon dioxide reduction[J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 335-350.
还原半反应 | E0/V |
---|---|
CO2+e-CO2- | -1.85 |
CO2+2H++2e-CO+H2O | -0.53 |
CO2+2H++2e-HCOOH | -0.61 |
CO2+4H++4e-HCHO+H2O | -0.48 |
CO2+6H++6e-CH3OH+H2O | -0.38 |
CO2+8H++8e-CH4+2H2O | -0.24 |
2CO2+12H++12e-C2H4+4H2O 2CO2+14H++14e-C2H6+4H2O | -0.35 -0.27 |
表1 CO2光还原半反应及对应的还原电势[40](相对于标准氢电极,pH=7,水溶液,25℃)
还原半反应 | E0/V |
---|---|
CO2+e-CO2- | -1.85 |
CO2+2H++2e-CO+H2O | -0.53 |
CO2+2H++2e-HCOOH | -0.61 |
CO2+4H++4e-HCHO+H2O | -0.48 |
CO2+6H++6e-CH3OH+H2O | -0.38 |
CO2+8H++8e-CH4+2H2O | -0.24 |
2CO2+12H++12e-C2H4+4H2O 2CO2+14H++14e-C2H6+4H2O | -0.35 -0.27 |
光催化剂 | 光源 | 反应条件 | 反应气组成 | 主要产物 | 生成速率 /μmol∙g-1∙h-1 | 选择性 /% | 量子 效率 /% | 参考文献 |
---|---|---|---|---|---|---|---|---|
TiO2/UiO-66 | 300W 氙灯(λ>300nm) | H2O | 10%CO2+90%Ar | CH4 | 17.9 | 90.4 | — | [ |
Pt/Co@NC | 500W氙灯(λ>200nm) | H2O | 400μg/g CO2 | CH4 | 14.4 | 100 | — | [ |
CoAl-LDH | 500W氙灯(λ>200nm) | H2O | 400μg/g CO2 | CH4 | 4.3 | 92 | — | [ |
TpBb-COF | 300W氙灯(λ>420nm) | H2O | 30%CO2+70%N2 | CO | 89.9 | 100 | — | [ |
TpPa/ZIF-8 | 40W LED 灯 | H2O | 10%CO2+90%Ar | CO | 84.9 | 100 | — | [ |
BA-PDI-Ni | 300W氙灯(λ>200nm) | [Ru(bpy)3]Cl2,CH3CN,三乙醇胺,H2O | 10%CO2+90%Ar | CO | 2262 | 100 | 0.2 | [ |
MAF-34-CoRu | 300W氙灯(λ>420nm) | CH3CN/H2O | 15%CO2+85%N2 | CO | 4.26 | — | — | [ |
Ni-Co3O4 | 300W氙灯 (λ≥420nm) | [Ru(bpy)3]Cl2,CH3CN,三乙醇胺,H2O | 10%CO2+90%Ar | 合成气 | CO:89100 H2:80100 | — | 3.7 | [ |
Zn-S-COF | 300W氙灯 (λ≥420nm) | H2O | 15%CO2+85%Ar | 合成气 | CO:105.8 H2: 3.4 | — | — | [ |
Ni-TP-CON | 300W氙灯 λ>300nm | [Ru(bpy)3]Cl2,CH3CN,三乙醇胺,H2O | 15%CO2+85%Ar | 合成气 | CO: 3200 H2:200 | — | 1.2 | [ |
VoHCo3O4/ OMNC | 300W氙灯(λ>420nm) | H2O | 10%CO2+90%Ar | 合成气 | CO: 337.8 H2:95.2 | — | 4.2 | [ |
表2 低浓度CO2还原光催化剂性能
光催化剂 | 光源 | 反应条件 | 反应气组成 | 主要产物 | 生成速率 /μmol∙g-1∙h-1 | 选择性 /% | 量子 效率 /% | 参考文献 |
---|---|---|---|---|---|---|---|---|
TiO2/UiO-66 | 300W 氙灯(λ>300nm) | H2O | 10%CO2+90%Ar | CH4 | 17.9 | 90.4 | — | [ |
Pt/Co@NC | 500W氙灯(λ>200nm) | H2O | 400μg/g CO2 | CH4 | 14.4 | 100 | — | [ |
CoAl-LDH | 500W氙灯(λ>200nm) | H2O | 400μg/g CO2 | CH4 | 4.3 | 92 | — | [ |
TpBb-COF | 300W氙灯(λ>420nm) | H2O | 30%CO2+70%N2 | CO | 89.9 | 100 | — | [ |
TpPa/ZIF-8 | 40W LED 灯 | H2O | 10%CO2+90%Ar | CO | 84.9 | 100 | — | [ |
BA-PDI-Ni | 300W氙灯(λ>200nm) | [Ru(bpy)3]Cl2,CH3CN,三乙醇胺,H2O | 10%CO2+90%Ar | CO | 2262 | 100 | 0.2 | [ |
MAF-34-CoRu | 300W氙灯(λ>420nm) | CH3CN/H2O | 15%CO2+85%N2 | CO | 4.26 | — | — | [ |
Ni-Co3O4 | 300W氙灯 (λ≥420nm) | [Ru(bpy)3]Cl2,CH3CN,三乙醇胺,H2O | 10%CO2+90%Ar | 合成气 | CO:89100 H2:80100 | — | 3.7 | [ |
Zn-S-COF | 300W氙灯 (λ≥420nm) | H2O | 15%CO2+85%Ar | 合成气 | CO:105.8 H2: 3.4 | — | — | [ |
Ni-TP-CON | 300W氙灯 λ>300nm | [Ru(bpy)3]Cl2,CH3CN,三乙醇胺,H2O | 15%CO2+85%Ar | 合成气 | CO: 3200 H2:200 | — | 1.2 | [ |
VoHCo3O4/ OMNC | 300W氙灯(λ>420nm) | H2O | 10%CO2+90%Ar | 合成气 | CO: 337.8 H2:95.2 | — | 4.2 | [ |
1 | WANG Ligang, WANG Dingsheng, LI Yadong. Single-atom catalysis for carbon neutrality[J]. Carbon Energy, 2022, 4(6): 1021-1079. |
2 | LIU Zhu, DENG Zhu, DAVIS Steven, et al. Monitoring global carbon emissions in 2022[J]. Nature Reviews Earth & Environment, 2023, 4(4): 205-206. |
3 | XIA Qing, ZHANG Kouer, ZHENG Tingting, et al. Integration of CO2 capture and electrochemical conversion[J]. ACS Energy Letters, 2023, 8(6): 2840-2857. |
4 | YE Runping, LIAO Lin, REINA Tomas Ramirez, et al. Engineering Ni/SiO2 catalysts for enhanced CO2 methanation[J]. Fuel, 2021, 285: 119151. |
5 | GAO Jiajian, CHOO SZE SHIONG Simon, LIU Yan. Reduction of CO2 to chemicals and fuels: Thermocatalysis versus electrocatalysis[J]. Chemical Engineering Journal, 2023, 472: 145033. |
6 | FU Junwei, JIANG Kexin, QIU Xiaoqing, et al. Product selectivity of photocatalytic CO2 reduction reactions[J]. Materials Today, 2020, 32: 222-243. |
7 | ALITALO Anni, NISKANEN Marko, AURA Erkki. Biocatalytic methanation of hydrogen and carbon dioxide in a fixed bed bioreactor[J]. Bioresource Technology, 2015, 196: 600-605. |
8 | LIU Jun, MA Nanke, WU Wei, et al. Recent progress on photocatalytic heterostructures with full solar spectral responses[J]. Chemical Engineering Journal, 2020, 393: 124719. |
9 | SUN Ning, ZHU Yixin, LI Mengwei, et al. Thermal coupled photocatalysis over Pt/g-C3N4 for selectively reducing CO2 to CH4 via cooperation of the electronic metal-support interaction effect and the oxidation state of Pt[J]. Applied Catalysis B: Environmental, 2021, 298: 120565. |
10 | ZHU Kainan, ZHU Qian, JIANG Mengpei, et al. Modulating Ti t2g orbital occupancy in a Cu/TiO2 composite for selective photocatalytic CO2 reduction to CO[J]. Angewandte Chemie International Edition, 2022, 61(34): 1521-3757. |
11 | WANG Xianying, WANG Yingshu, GAO Meichao, et al. BiVO4/Bi4Ti3O12 heterojunction enabling efficient photocatalytic reduction of CO2 with H2O to CH3OH and CO[J]. Applied Catalysis B: Environmental, 2020, 270: 118876. |
12 | YU Yangyang, DONG Xing’an, CHEN Peng, et al. Synergistic effect of Cu single atoms and Au-Cu alloy nanoparticles on TiO2 for efficient CO2 photoreduction[J]. ACS Nano, 2021, 15(9): 14453-14464. |
13 | FU Zhiyan, YANG Qi, LIU Zhan, et al. Photocatalytic conversion of carbon dioxide: From products to design the catalysts[J]. Journal of CO2 Utilization, 2019, 34: 63-73. |
14 | SUN Mengyao, ZHAO Bohang, CHEN Fanpeng, et al. Thermally-assisted photocatalytic CO2 reduction to fuels[J]. Chemical Engineering Journal, 2021, 408: 127280. |
15 | ZHANG Hongna, LI Yangfan, WANG Jinzhao, et al. An unprecedent hydride transfer pathway for selective photocatalytic reduction of CO2 to formic acid on TiO2 [J]. Applied Catalysis B: Environmental, 2021, 284: 119692. |
16 | LIANG Xiaoyu, WANG Xinkui, ZHANG Xinxin, et al. Generation of lattice strain in CdS promotes photocatalytic reduction of CO2 [J]. ACS Catalysis, 2024, 14(7): 4648-4655. |
17 | PAN Yunxiang, YOU Ya, XIN Sen, et al. Photocatalytic CO2 reduction by carbon-coated indium-oxide nanobelts[J]. Journal of the American Chemical Society, 2017, 139(11): 4123-4129. |
18 | HE Lang, ZHANG Wenyuan, LIU Sheng, et al. Three-dimensional porous N-doped graphitic carbon framework with embedded CoO for photocatalytic CO2 reduction[J]. Applied Catalysis B: Environmental, 2021, 298: 120546. |
19 | ZHANG Guanhua, ZHANG Xueqiang, MENG Yue, et al. Layered double hydroxides-based photocatalysts and visible-light driven photodegradation of organic pollutants: A review[J]. Chemical Engineering Journal, 2020, 392: 123684. |
20 | AN Jiamin, SHEN Tianyang, CHANG Wen, et al. Defect engineering of NiCo-layered double hydroxide hollow nanocages for highly selective photoreduction of CO2 to CH4 with suppressing H2 evolution[J]. Inorganic Chemistry Frontiers, 2021, 8(4): 996-1004. |
21 | HUO Yao, ZHANG Pu, CHI Junjie, et al. Surface functionalization and defect construction of SnO2 with amine group for enhanced visible-light-driven photocatalytic CO2 reduction[J]. Advanced Energy Materials, 2024, 14(14): 2304282. |
22 | LI Xiaodong, SUN Yongfu, XU Jiaqi, et al. Selective visible-light-driven photocatalytic CO2 reduction to CH4 mediated by atomically thin CuIn5S8 layers[J]. Nature Energy, 2019, 4(8):690-699. |
23 | SONG Wentao, CHONG Kok Chan, QI Guobin, et al. Unraveling the transformation from type-Ⅱ to Z-scheme in perovskite-based heterostructures for enhanced photocatalytic CO2 reduction[J]. Journal of the American Chemical Society, 2024, 146(5): 3303-3314. |
24 | ZHANG Weining, YANG Zhenhua, WANG Hailian, et al. Crystal facet-dependent frustrated Lewis pairs on dual-metal hydroxide for photocatalytic CO2 reduction[J]. Applied Catalysis B: Environmental, 2022, 300: 120748. |
25 | RAN Jingrun, JARONIEC Mietek, QIAO Shizhang. Cocatalysts in semiconductor-based photocatalytic CO2 reduction: Achievements, challenges, and opportunities[J]. Advanced Materials, 2018, 30(7): 1704649. |
26 | NAKAJIMA Takuya, TAMAKI Yusuke, UENO Kazuki, et al. Photocatalytic reduction of low concentration of CO2 [J]. Journal of the American Chemical Society, 2016, 138(42): 13818-13821. |
27 | YANG Yan, ZHANG Hongyu, WANG Ya, et al. Integrating enrichment, reduction, and oxidation sites in one system for artificial photosynthetic diluted CO2 reduction[J]. Advanced Materials, 2023, 35(40): 2304170. |
28 | DONG Man, GU Jianxia, SUN Chunyi, et al. Photocatalytic reduction of low-concentration CO2 by metal-organic frameworks[J]. Chemical Communications, 2022, 58(73): 10114-10126. |
29 | TANG Qijun, SUN Zhuxing, DENG Shuang, et al. Decorating g-C3N4 with alkalinized Ti3C2 MXene for promoted photocatalytic CO2 reduction performance[J]. Journal of Colloid and Interface Science, 2020, 564: 406-417. |
30 | WISSER Florian M, DUGUET Mathis, PERRINET Quentin, et al. Molecular porous photosystems tailored for long-term photocatalytic CO2 reduction[J]. Angewandte Chemie International Edition, 2020, 59(13): 5116-5122. |
31 | BI Zhexu, GUO Ruitang, HU Xing, et al. Research progress on photocatalytic reduction of CO2 based on LDH materials[J]. Nanoscale, 2022, 14(9): 3367-3386. |
32 | CHANG Xiaoxia, WANG Tuo, GONG Jinlong. CO2 photo-reduction: Insights into CO2 activation and reaction on surfaces of photocatalysts[J]. Energy & Environmental Science, 2016, 9(7): 2177-2196. |
33 | WANG Yanjie, HE Tao. Recent advances in and comprehensive consideration of the oxidation half reaction in photocatalytic CO2 conversion[J]. Journal of Materials Chemistry A, 2021, 9(1): 87-110. |
34 | JIANG Haoyang, KATSUMATA Kenichi, HONG Jeongsoo, et al. Photocatalytic reduction of CO2 on Cu2O-loaded Zn-Cr layered double hydroxides[J]. Applied Catalysis B: Environmental, 2018, 224: 783-790. |
35 | 张梦凡, 张振民, 贾静雯, 等. Z-型异质结光催化剂的设计、制备和应用研究进展[J]. 有色金属科学与工程, 2020, 11(3): 18-32. |
ZHANG Mengfan, ZHANG Zhenmin, JIA Jingwen, et al. Research progress in the design, fabrication and application of Z-scheme heterojunction photocatalysts[J]. Nonferrous Metals Science and Engineering, 2020, 11(3): 18-32. | |
36 | DI Jun, SONG Pin, ZHU Chao, et al. Strain-engineering of Bi12O17Br2 nanotubes for boosting photocatalytic CO2 reduction[J]. ACS Materials Letters, 2020, 2(8): 1025-1032. |
37 | HIRAGOND Chaitanya B, POWAR Niket S, LEE Junho, et al. Single-atom catalysts (SACs) for photocatalytic CO2 reduction with H2O: Activity, product selectivity, stability, and surface chemistry[J]. Small, 2022, 18(29): e2201428. |
38 | HABISREUTINGER Severin N, Lukas SCHMIDT-MENDE, STOLARCZYK Jacek K. Photocatalytic reduction of CO2 on TiO2 and other semiconductors[J]. Angewandte Chemie International Edition, 2013, 52(29): 7372-7408. |
39 | SUN Zhenyu, TALREJA Neetu, TAO Hengcong, et al. Catalysis of carbon dioxide photoreduction on nanosheets: Fundamentals and challenges[J]. Angewandte Chemie International Edition, 2018, 57(26): 7610-7627. |
40 | ZHANG Yanzhao, XIA Bingquan, RAN Jingrun, et al. Atomic-level reactive sites for semiconductor-based photocatalytic CO2 reduction[J]. Advanced Energy Materials, 2020, 10(9): 1903879. |
41 | XIE Shunji, WANG Yu, ZHANG Qinghong, et al. MgO- and Pt-promoted TiO2 as an efficient photocatalyst for the preferential reduction of carbon dioxide in the presence of water[J]. ACS Catalysis, 2014, 4(10): 3644-3653. |
42 | KONG Tingting, JIANG Yawen, XIONG Yujie. Photocatalytic CO2 conversion: What can we learn from conventional CO x hydrogenation?[J]. Chemical Society Reviews, 2020, 49(18): 6579-6591. |
43 | ALBERO Josep, PENG Yong, Hermenegildo GARCÍA. Photocatalytic CO2 reduction to C2+ products[J]. ACS Catalysis, 2020, 10(10): 5734-5749. |
44 | YIN Shikang, ZHAO Xiaoxue, JIANG Enhui, et al. Boosting water decomposition by sulfur vacancies for efficient CO2 photoreduction[J]. Energy & Environmental Science, 2022, 15(4): 1556-1562. |
45 | CHEN Qian, ZHANG Yue, YOU Enming, et al. Accelerated water oxidation kinetics triggered by supramolecular porphyrin nanosheet for robust visible-light-driven CO2 reduction[J]. Small, 2022, 18(51): e2204924. |
46 | DILLA Martin, Robert SCHLÖGL, STRUNK Jennifer. Photocatalytic CO2 reduction under continuous flow high-purity conditions: Quantitative evaluation of CH4 formation in the steady-state[J]. ChemCatChem, 2017, 9(4): 696-704. |
47 | JIAO Long, SEOW Joanne Yen Ru, SKINNER William Scott, et al. Metal-organic frameworks: Structures and functional applications[J]. Materials Today, 2019, 27: 43-68. |
48 | HUANG Ningyu, LI Bai, WU Duojie, et al. Crystal engineering of MOF-derived bimetallic oxide solid solution anchored with Au nanoparticles for photocatalytic CO2 reduction to syngas and C2 hydrocarbons[J]. Angewandte Chemie International Edition, 2024, 63(21): e202319177. |
49 | NORDIN Nurul Atikah, MOHAMED Mohamad Azuwa, SALEHMIN Mohd Nur Ikhmal, et al. Photocatalytic active metal-organic framework and its derivatives for solar-driven environmental remediation and renewable energy[J]. Coordination Chemistry Reviews, 2022, 468: 214639. |
50 | LUO Tian, GILMANOVA Leisan, KASKEL Stefan. Advances of MOFs and COFs for photocatalytic CO2 reduction, H2 evolution and organic redox transformations[J]. Coordination Chemistry Reviews, 2023, 490: 215210. |
51 | WANG Yu, HUANG Ningyu, SHEN Jianqiang, et al. Hydroxide ligands cooperate with catalytic centers in metal-organic frameworks for efficient photocatalytic CO2 reduction[J]. Journal of the American Chemical Society, 2018, 140(1): 38-41. |
52 | MASOOMI Mohammad Yaser, MORSALI Ali, DHAKSHINAMOORTHY Amarajothi, et al. Mixed-metal MOFs: Unique opportunities in metal-organic framework (MOF) functionality and design[J]. Angewandte Chemie International Edition, 2019, 58(43): 15188-15205. |
53 | GUO Shaohong, QI Xiangjuan, ZHOU Huimin, et al. A bimetallic-MOF catalyst for efficient CO2 photoreduction from simulated flue gas to value-added formate[J]. Journal of Materials Chemistry A, 2020, 8(23): 11712-11718. |
54 | LAN Guangxu, LI Zhe, VERONEAU Samuel S, et al. Photosensitizing metal-organic layers for efficient sunlight-driven carbon dioxide reduction[J]. Journal of the American Chemical Society, 2018, 140(39): 12369-12373. |
55 | HUANG Ningyu, SHEN Jianqiang, ZHANG Xuewen, et al. Coupling ruthenium bipyridyl and cobalt imidazolate units in a metal-organic framework for an efficient photosynthetic overall reaction in diluted CO2 [J]. Journal of the American Chemical Society, 2022, 144(19): 8676-8682. |
56 | MA Yajuan, TANG Qian, SUN Weiyin, et al. Assembling ultrafine TiO2 nanoparticles on UiO-66 octahedrons to promote selective photocatalytic conversion of CO2 to CH4 at a low concentration[J]. Applied Catalysis B: Environmental, 2020, 270: 118856. |
57 | LI Jie, JING Xuechun, LI Qingqing, et al. Bulk COFs and COF nanosheets for electrochemical energy storage and conversion[J]. Chemical Society Reviews, 2020, 49(11): 3565-3604. |
58 | RAN Lei, LI Zhuwei, RAN Bei, et al. Engineering single-atom active sites on covalent organic frameworks for boosting CO2 photoreduction[J]. Journal of the American Chemical Society, 2022, 144(37): 17097-17109. |
59 | JIN Enquan, LAN Zhian, JIANG Qiuhong, et al. 2D sp2 carbon-conjugated covalent organic frameworks for photocatalytic hydrogen production from water[J]. Chem, 2019, 5(6): 1632-1647. |
60 | YANG Xianheng, LAN Xingwang, ZHANG Yize, et al. Rational design of MoS2@COF hybrid composites promoting C-C coupling for photocatalytic CO2 reduction to ethane[J]. Applied Catalysis B: Environmental, 2023, 325: 122393. |
61 | CUI Jinxian, WANG Lujie, FENG Liu, et al. A metal-free covalent organic framework as a photocatalyst for CO2 reduction at low CO2 concentration in a gas-solid system[J]. Journal of Materials Chemistry A, 2021, 9(44): 24895-24902. |
62 | YANG Ruigang, FU Yaomei, WANG Haining, et al. ZIF-8/covalent organic framework for enhanced CO2 photocatalytic reduction in gas-solid system[J]. Chemical Engineering Journal, 2022, 450: 138040. |
63 | Haowei LYU, LI Pengyue, LI Xiaoju, et al. Boosting photocatalytic reduction of the diluted CO2 over covalent organic framework[J]. Chemical Engineering Journal, 2023, 451: 138745. |
64 | YING Wen, CAI Jingsong, ZHOU Ke, et al. Ionic liquid selectively facilitates CO2 transport through graphene oxide membrane[J]. ACS Nano, 2018, 12(6): 5385-5393. |
65 | AVILA Jocasta, Fernando LEPRE L, SANTINI Catherine C, et al. High-performance porous ionic liquids for low-pressure CO2 capture[J]. Angewandte Chemie International Edition, 2021, 60(23): 12876-12882. |
66 | CHAVA Rama Krishna, JeongYeon DO, KANG Misook. Strategy for improving the visible photocatalytic H2 evolution activity of 2D graphitic carbon nitride nanosheets through the modification with metal and metal oxide nanocomponents[J]. Applied Catalysis B: Environmental, 2019, 248: 538-551. |
67 | QIAN Gan, Wenyuan LYU, ZHAO Xin, et al. Efficient photoreduction of diluted CO2 to tunable syngas by Ni-Co dual sites through d-band center manipulation[J]. Angewandte Chemie, 2022, 61(42): e202210576. |
68 | SHI Xian, DONG Xingan, HE Ye, et al. Photoswitchable chlorine vacancies in ultrathin Bi4O5Cl2 for selective CO2 photoreduction[J]. ACS Catalysis, 2022, 12(7): 3965-3973. |
69 | Wenyuan LYU, LIU Yang, ZHOU Jingyi, et al. Modulating the reaction configuration by breaking the structural symmetry of active sites for efficient photocatalytic reduction of low-concentration CO2 [J]. Angewandte Chemie International Edition, 2023, 62(42): e202310733. |
70 | HAN Bin, SONG Jianing, LIANG Shujie, et al. Hierarchical NiCo2O4 hollow nanocages for photoreduction of diluted CO2: Adsorption and active sites engineering[J]. Applied Catalysis B: Environmental, 2020, 260: 118208. |
71 | WANG Qianqian, WANG Wenzhong, ZHANG Ling, et al. Catalytic reduction of low-concentration CO2 with water by Pt/Co@NC[J]. Journal of Materials Science & Technology, 2018, 34(12): 2337-2341. |
72 | ZHONG Wanfu, Rongjian SA, LI Liuyi, et al. A covalent organic framework bearing single Ni sites as a synergistic photocatalyst for selective photoreduction of CO2 to CO[J]. Journal of the American Chemical Society, 2019, 141(18): 7615-7621. |
73 | LIANG Shujie, ZHONG Xiaohui, ZHONG Zuqi, et al. Highly dispersed nickel site catalysts for diluted CO2 photoreduction to CO with nearly 100% selectivity[J]. Applied Catalysis B: Environmental, 2023, 337: 122958. |
74 | WANG Kefu, ZHANG Ling, SU Yang, et al. Photoreduction of carbon dioxide of atmospheric concentration to methane with water over CoAl-layered double hydroxide nanosheets[J]. Journal of Materials Chemistry A, 2018, 6(18): 8366-8373. |
[1] | 高聪志, 张雅萱, 林璐, 邓晓婷, 殷霞, 丁一刚, 肖艳华, 杜治平. 新戊二醇的合成工艺[J]. 化工进展, 2024, 43(S1): 469-478. |
[2] | 王博葳, 郑明朕, 王乐萌, 付东, 王珊, 朱生俊, 赵昆, 张盼. Na2SO4电解制备NaOH捕集CO2[J]. 化工进展, 2024, 43(S1): 604-614. |
[3] | 李琳, 黄国勇, 徐盛明, 郁丰善, 翁雅青, 曹才放, 温嘉玮, 王春霞, 王俊莲, 顾斌涛, 张袁华, 刘斌, 王才平, 潘剑明, 徐泽良, 王翀, 王珂. 铝基废催化剂载体的回收与再生制备[J]. 化工进展, 2024, 43(S1): 640-649. |
[4] | 李新月, 李振京, 韩沂杭, 郭永强, 闫瑜, 哈力米热·卡热木拉提, 赵会吉, 柴永明, 刘东, 殷长龙. 油脂加氢脱氧生产绿色柴油催化剂的研究进展[J]. 化工进展, 2024, 43(S1): 351-364. |
[5] | 李帅哲, 聂懿宸, PHIDSAVARD Keomeesay, 顾雯, 张伟, 刘娜, 徐高翔, 刘莹, 李兴勇, 陈玉保. 非贵金属催化生物质加氢脱氧制备烃基生物燃料的研究进展[J]. 化工进展, 2024, 43(S1): 225-242. |
[6] | 熊磊, 丁飞燕, 李聪, 王群乐, 吕起, 翟晓娜, 刘峰. 金属Pt负载型非均相催化剂研究进展[J]. 化工进展, 2024, 43(S1): 295-304. |
[7] | 宋财城, 陈晓贞, 刘丽, 杨成敏, 郑步梅, 尹晓莹, 孙进, 姚运海, 段为宇. 碳基载体负载加氢脱硫催化剂的研究进展[J]. 化工进展, 2024, 43(S1): 305-314. |
[8] | 韩洪晶, 车宇, 田宇轩, 王海英, 张亚男, 陈彦广. 木质素催化氢解催化剂及溶剂的研究进展[J]. 化工进展, 2024, 43(S1): 315-324. |
[9] | 胡兴, 刘易, 杜泽学. 3-氯丙烯直接合成环氧氯丙烷催化剂研究进展[J]. 化工进展, 2024, 43(S1): 325-334. |
[10] | 何世坤, 张荣花, 李昊阳, 潘晖, 冯君锋. 脱铝分子筛固体酸催化葡萄糖制备5-羟甲基糠醛[J]. 化工进展, 2024, 43(S1): 374-381. |
[11] | 张日东, 吕建华, 刘继东, 郭豹, 李文松. Ru-K-NaY催化草酸二甲酯脱羰基制备碳酸二甲酯[J]. 化工进展, 2024, 43(S1): 382-390. |
[12] | 廖旭, 周骏, 罗杰, 曾瑞琳, 王泽宇, 李尊华, 林金清. 多孔离子聚合物催化二氧化碳环加成反应的研究进展[J]. 化工进展, 2024, 43(9): 4925-4940. |
[13] | 修浩然, 王云刚, 白彦渊, 刘涛, 张兴邦, 张益嘉. H2O2低温催化氧化法脱硫脱硝中试实验特性[J]. 化工进展, 2024, 43(9): 4941-4950. |
[14] | 付维, 宁淑英, 蔡晨, 陈佳音, 周皞, 苏亚欣. Cu改性MIL-100(Fe)催化剂的SCR-C3H6脱硝特性[J]. 化工进展, 2024, 43(9): 4951-4960. |
[15] | 马红周, 党煜博, 王耀宁, 曾劲阳, 赵小军, 史建伟. 废锌基脱硫剂与铜锌基催化剂协同真空碳热提取锌[J]. 化工进展, 2024, 43(9): 5275-5281. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |