化工进展 ›› 2024, Vol. 43 ›› Issue (7): 4005-4014.DOI: 10.16085/j.issn.1000-6613.2023-0919
• 资源与环境化工 • 上一篇
王娟1(), 卞春林1,2, 陈翔宇2,3, 王莹2,3, 王新东1, 左彦鑫4, 肖本益2,3()
收稿日期:
2023-06-05
修回日期:
2023-10-20
出版日期:
2024-07-10
发布日期:
2024-08-14
通讯作者:
肖本益
作者简介:
王娟(1987-),女,博士,副教授,研究方向为有机固体废弃物资源化、水环境污染治理。E-mail:wangjuan@imut.edu.cn。
基金资助:
WANG Juan1(), BIAN Chunlin1,2, CHEN Xiangyu2,3, WANG Ying2,3, WANG Xindong1, ZUO Yanxin4, XIAO Benyi2,3()
Received:
2023-06-05
Revised:
2023-10-20
Online:
2024-07-10
Published:
2024-08-14
Contact:
XIAO Benyi
摘要:
微好氧厌氧消化是一种介于厌氧环境和好氧环境之间、具有低浓度溶解氧的厌氧消化方式。该消化方式不需要额外处理单元,通气速率可精准调控,比传统厌氧消化更具优势,可实现更高的生物转化和甲烷产出,是一种可靠、有效的有机废弃物能源化方法。目前,微好氧厌氧消化已被证明在提高微生物多样性、加速水解、减少硫化氢生成、提高甲烷产量等方面具有独特优势,是近几年厌氧消化研究的新方向。本文通过对近20年微好氧厌氧消化相关研究进行梳理,阐述了微好氧厌氧消化的概念和机制,总结了微好氧对厌氧消化的影响及其应用,分析了影响微好氧厌氧消化的因素,并指出了其存在的问题和下一步发展方向,以期为微好氧厌氧消化系统的改进和应用提供科学依据及支撑。
中图分类号:
王娟, 卞春林, 陈翔宇, 王莹, 王新东, 左彦鑫, 肖本益. 微好氧厌氧消化研究进展[J]. 化工进展, 2024, 43(7): 4005-4014.
WANG Juan, BIAN Chunlin, CHEN Xiangyu, WANG Ying, WANG Xindong, ZUO Yanxin, XIAO Benyi. Research advances of microaerobic anaerobic digestion[J]. Chemical Industry and Engineering Progress, 2024, 43(7): 4005-4014.
基质 类型 | 传统厌氧消化系统 | 参考 文献 | |||||||
---|---|---|---|---|---|---|---|---|---|
细菌(属) | 古菌 | ||||||||
玉米 秸秆 | Sinibacillus | Tepidimicrobium | Clostridium | Methanothrix | Methanobacterium | Methanomassiliicoccus | [ | ||
畜禽 废水 | Ruminofilibacter(19.2%) | Clostridium | Treponema | Methanosaeta (92.5%) | Methanospirillum | [ | |||
水稻 秸秆 | Christensenellaceae(2.99%) | Paludibacter (1.42%) | Sedimentibacter (0.8%) | Methanospirillum (59.4%~63.6%) | Methanothrix (42.4%~59.4%) | [ | |||
玉米 秸秆 | Clostridium (16.36%) | Sinibacillus | Tepidimicrobium | Methanothrix | Methanobacterium | Methanomassiliicoccus | Methanosphaera | [ | |
工业 废水 | Lactococcus (7.64%) | Blastocatella (3.01%) | Nitrosomonadaceae (2.86%) | Nitrospira (2.83%) | — | [ | |||
废纸 | Clostridium (40.37%) | Staphylococcus(31.52%) | Bacillus (6.82%) | Methanosarcina | Methanosaeta | [ | |||
基质 类型 | 微好氧厌氧消化系统 | 参考 文献 | |||||||
细菌(属) | 古菌 | ||||||||
玉米 秸秆 | Sinibacillus | Tepidimicrobium | Clostridium | Dethiobacter | Methanobacterium | Methanomassiliicoccus | Methanothrix | [ | |
畜禽 废水 | Clostridium | Ruminofilibacter | Treponema | Turicibacter | Methanosaeta (86.0%) | Methanospirillum (7.6%) | Methanobacterium | [ | |
水稻 秸秆 | Christensenellaceae (4.78%) | Paludibacter(3.33%) | Sedimentibacter (2.07%) | Methanospirillum (70.3%~71.0%) | Methanothrix (58.5%~62.1%) | [ | |||
玉米 秸秆 | Clostridium (20.66%) | Sinibacillus | Bacillus | Methanothrix | Methanobacterium | Methanomassiliicoccus | [ | ||
工业 废水 | Anaerolineaceae(7.10%) | Sulfuritalea (5.60%) | Ottowia (4.16%) | Blastocatella(3.46%) | — | [ | |||
废纸 | Staphylococcus(51.42%) | Bacillus (9.07%) | Macellibacteroides | Acinetobacter | Methanosarcina | Methanosaeta | Methanomassiliicoccus | [ |
表1 微好氧压氧消化反应器中的微生物
基质 类型 | 传统厌氧消化系统 | 参考 文献 | |||||||
---|---|---|---|---|---|---|---|---|---|
细菌(属) | 古菌 | ||||||||
玉米 秸秆 | Sinibacillus | Tepidimicrobium | Clostridium | Methanothrix | Methanobacterium | Methanomassiliicoccus | [ | ||
畜禽 废水 | Ruminofilibacter(19.2%) | Clostridium | Treponema | Methanosaeta (92.5%) | Methanospirillum | [ | |||
水稻 秸秆 | Christensenellaceae(2.99%) | Paludibacter (1.42%) | Sedimentibacter (0.8%) | Methanospirillum (59.4%~63.6%) | Methanothrix (42.4%~59.4%) | [ | |||
玉米 秸秆 | Clostridium (16.36%) | Sinibacillus | Tepidimicrobium | Methanothrix | Methanobacterium | Methanomassiliicoccus | Methanosphaera | [ | |
工业 废水 | Lactococcus (7.64%) | Blastocatella (3.01%) | Nitrosomonadaceae (2.86%) | Nitrospira (2.83%) | — | [ | |||
废纸 | Clostridium (40.37%) | Staphylococcus(31.52%) | Bacillus (6.82%) | Methanosarcina | Methanosaeta | [ | |||
基质 类型 | 微好氧厌氧消化系统 | 参考 文献 | |||||||
细菌(属) | 古菌 | ||||||||
玉米 秸秆 | Sinibacillus | Tepidimicrobium | Clostridium | Dethiobacter | Methanobacterium | Methanomassiliicoccus | Methanothrix | [ | |
畜禽 废水 | Clostridium | Ruminofilibacter | Treponema | Turicibacter | Methanosaeta (86.0%) | Methanospirillum (7.6%) | Methanobacterium | [ | |
水稻 秸秆 | Christensenellaceae (4.78%) | Paludibacter(3.33%) | Sedimentibacter (2.07%) | Methanospirillum (70.3%~71.0%) | Methanothrix (58.5%~62.1%) | [ | |||
玉米 秸秆 | Clostridium (20.66%) | Sinibacillus | Bacillus | Methanothrix | Methanobacterium | Methanomassiliicoccus | [ | ||
工业 废水 | Anaerolineaceae(7.10%) | Sulfuritalea (5.60%) | Ottowia (4.16%) | Blastocatella(3.46%) | — | [ | |||
废纸 | Staphylococcus(51.42%) | Bacillus (9.07%) | Macellibacteroides | Acinetobacter | Methanosarcina | Methanosaeta | Methanomassiliicoccus | [ |
基质类型 | 通氧量/溶解氧 | OLR | VS降解率/% | COD降解率/% | 甲烷产率/mL·(g·VS)-1 | 硫化氢去除率/% | 参考文献 | |||
---|---|---|---|---|---|---|---|---|---|---|
厌氧 | 微好氧 | 厌氧 | 微好氧 | 厌氧 | 微好氧 | |||||
青贮饲料 | 2.5L空气·min-1 | — | 27 | 37 | 32.12 | 36.36 | 5.25 | 7.35 | — | [ |
餐厨垃圾 | 0.0375L氧气·L-1·d-1 | — | — | ↑10 | — | ↑56 | 0.13±0.02 | 0.20±0.03 | — | [ |
餐厨垃圾 | 258L空气·(kg TS)-1·d-1 | — | 61.2 | 66.3 | 43.2 | 59.7 | 0.23 | 0.27 | — | [ |
混合污泥 | 4g TS·min-1 | — | 18.3±2.6 | 24.5±3.6 | 44.84±5.24 | 53.7±5.41 | 109.3±16.1 | 93.9±17.8 | — | [ |
混合污泥 | 50L·h-1 | 2.15±0.75g Vs·L-1·d-1 | 41 | 45 | 59.33 | 57.78 | 20.538 | 21.19 | >90 | [ |
剩余污泥 | 0.35L空气·L-1·min-1 | 10g VS·L-1·d-1 | 11.5 | 23.6 | — | ↑17 | 16.35 | 35 | — | [ |
剩余污泥 | 1.6L空气·d-1 | 2.0g VS·L-1·d-1 | 65.2±4.7 | 63.6±4.1 | — | ↑33 | 195±28 | 188±21 | 99.7±0.2 | [ |
玉米秸秆 | 12.5mL 空气·L-1·d-1 | — | 49.22 | 54.3 | — | — | 186.03 | 216.8 | — | [ |
纸浆废水 | 3~6mL空气·L-1·min-1 | 8kg COD·m-3·d -1 | — | — | 40 | 80 | — | — | >30 | [ |
石化废水 | DO=0.2~0.3mg·L-1 | (0.352±0.06)g VS·L-1·d-1 | — | — | 10.9 | 31.6 | — | — | >99 | [ |
合成废水 | 0.2mL空气·min-1 | — | — | — | 90±7 | 89±6 | 33.4±3.29 | 28.6±5.31 | 93 | [ |
啤酒废水 | 1L空气·d-1 | 8g COD·L-1·d-1 | — | — | 89±5 | 90±4 | 8.5±2.0 | 9.6±1.6 | 73 | [ |
表2 微好氧对传统厌氧消化的影响
基质类型 | 通氧量/溶解氧 | OLR | VS降解率/% | COD降解率/% | 甲烷产率/mL·(g·VS)-1 | 硫化氢去除率/% | 参考文献 | |||
---|---|---|---|---|---|---|---|---|---|---|
厌氧 | 微好氧 | 厌氧 | 微好氧 | 厌氧 | 微好氧 | |||||
青贮饲料 | 2.5L空气·min-1 | — | 27 | 37 | 32.12 | 36.36 | 5.25 | 7.35 | — | [ |
餐厨垃圾 | 0.0375L氧气·L-1·d-1 | — | — | ↑10 | — | ↑56 | 0.13±0.02 | 0.20±0.03 | — | [ |
餐厨垃圾 | 258L空气·(kg TS)-1·d-1 | — | 61.2 | 66.3 | 43.2 | 59.7 | 0.23 | 0.27 | — | [ |
混合污泥 | 4g TS·min-1 | — | 18.3±2.6 | 24.5±3.6 | 44.84±5.24 | 53.7±5.41 | 109.3±16.1 | 93.9±17.8 | — | [ |
混合污泥 | 50L·h-1 | 2.15±0.75g Vs·L-1·d-1 | 41 | 45 | 59.33 | 57.78 | 20.538 | 21.19 | >90 | [ |
剩余污泥 | 0.35L空气·L-1·min-1 | 10g VS·L-1·d-1 | 11.5 | 23.6 | — | ↑17 | 16.35 | 35 | — | [ |
剩余污泥 | 1.6L空气·d-1 | 2.0g VS·L-1·d-1 | 65.2±4.7 | 63.6±4.1 | — | ↑33 | 195±28 | 188±21 | 99.7±0.2 | [ |
玉米秸秆 | 12.5mL 空气·L-1·d-1 | — | 49.22 | 54.3 | — | — | 186.03 | 216.8 | — | [ |
纸浆废水 | 3~6mL空气·L-1·min-1 | 8kg COD·m-3·d -1 | — | — | 40 | 80 | — | — | >30 | [ |
石化废水 | DO=0.2~0.3mg·L-1 | (0.352±0.06)g VS·L-1·d-1 | — | — | 10.9 | 31.6 | — | — | >99 | [ |
合成废水 | 0.2mL空气·min-1 | — | — | — | 90±7 | 89±6 | 33.4±3.29 | 28.6±5.31 | 93 | [ |
啤酒废水 | 1L空气·d-1 | 8g COD·L-1·d-1 | — | — | 89±5 | 90±4 | 8.5±2.0 | 9.6±1.6 | 73 | [ |
基质类型 | 反应规模 | 水力停留时间 | 通氧量/溶解氧 | 效果 | 性能提升原因 | 参考文献 |
---|---|---|---|---|---|---|
剩余污泥 | 中试 (200L) | 20d | 0.013~0.024L/d | 硫化氢去除率超99% | 微好氧抑制硫酸盐还原菌的生长,减少了硫化氢的产生 | [ |
剩余污泥 | 中试 (250L) | 18d | 50L/h | 提高系统稳定性 | 微好氧促进氢营养性产甲烷菌生长,微生物活性提高,加速有机物转化 | [ |
城市固体废弃物 | 中试 (375L) | 18d | 1L/min | 甲烷产率提升66% | 微好氧加速了水解/酸化进程,为产甲烷菌提供了底物 | [ |
牛粪 | 中试 (104L) | 17d | 5~150mL/min | 硫化氢去除率超85.79% | 气/液接触面积增大,表面生成生物膜,加速了硫氧化菌的生长 | [ |
石化废水 | 中试 (14.5m³) | — | 5.5~13.8L/m³ | 有机物去除率超78.3% | 水解酸化菌群落丰度和多样性均得到提高,加速了反应速率 | [ |
牛粪 | 工程应用 (338m³) | 14h | 1%沼气产率 | 硫化氢去除率超68.2% | 气液交界处与硫化物氧化及硫单质生成相关的两种菌种大量繁殖 | [ |
工厂废水 | 工程应用 (100000m³) | 17~24d | DO=0.4~0.5mg/L | 去除硫化氢 | 氧气促进了硫循环,降低了硫酸盐产量,减少了硫化氢的产生 | [ |
剩余污泥 | 工程应用 (4500m³) | 44~71d | DO=0.2~2.0mg/L | 硫化氢去除率100% | 高浓度总氮、氨氮限制了硫酸盐还原菌的产生 | [ |
城市废水 | 工程应用 (30000m³) | — | 0.28~6.0m³/h | 硫化氢去除率超74% | 硫化物氧化菌将硫酸盐转换 | [ |
表3 微好氧在中试及实际工程中的应用
基质类型 | 反应规模 | 水力停留时间 | 通氧量/溶解氧 | 效果 | 性能提升原因 | 参考文献 |
---|---|---|---|---|---|---|
剩余污泥 | 中试 (200L) | 20d | 0.013~0.024L/d | 硫化氢去除率超99% | 微好氧抑制硫酸盐还原菌的生长,减少了硫化氢的产生 | [ |
剩余污泥 | 中试 (250L) | 18d | 50L/h | 提高系统稳定性 | 微好氧促进氢营养性产甲烷菌生长,微生物活性提高,加速有机物转化 | [ |
城市固体废弃物 | 中试 (375L) | 18d | 1L/min | 甲烷产率提升66% | 微好氧加速了水解/酸化进程,为产甲烷菌提供了底物 | [ |
牛粪 | 中试 (104L) | 17d | 5~150mL/min | 硫化氢去除率超85.79% | 气/液接触面积增大,表面生成生物膜,加速了硫氧化菌的生长 | [ |
石化废水 | 中试 (14.5m³) | — | 5.5~13.8L/m³ | 有机物去除率超78.3% | 水解酸化菌群落丰度和多样性均得到提高,加速了反应速率 | [ |
牛粪 | 工程应用 (338m³) | 14h | 1%沼气产率 | 硫化氢去除率超68.2% | 气液交界处与硫化物氧化及硫单质生成相关的两种菌种大量繁殖 | [ |
工厂废水 | 工程应用 (100000m³) | 17~24d | DO=0.4~0.5mg/L | 去除硫化氢 | 氧气促进了硫循环,降低了硫酸盐产量,减少了硫化氢的产生 | [ |
剩余污泥 | 工程应用 (4500m³) | 44~71d | DO=0.2~2.0mg/L | 硫化氢去除率100% | 高浓度总氮、氨氮限制了硫酸盐还原菌的产生 | [ |
城市废水 | 工程应用 (30000m³) | — | 0.28~6.0m³/h | 硫化氢去除率超74% | 硫化物氧化菌将硫酸盐转换 | [ |
1 | CHEN Yang, YIN Yanan, WANG Jianlong. Recent advance in inhibition of dark fermentative hydrogen production[J]. International Journal of Hydrogen Energy, 2021, 46(7): 5053-5073. |
2 | 秦丞志, 张奇, 赵建伟, 等. 餐厨垃圾干式厌氧发酵技术研究进展及展望[J]. 现代化工, 2022, 42(2): 1-5, 9. |
QIN Chengzhi, ZHANG Qi, ZHAO Jianwei, et al. Research progress and prospect in dry anaerobic fermentation technology for kitchen waste[J]. Modern Chemical Industry, 2022, 42(2): 1-5, 9. | |
3 | 武鹏崑, 崔常桂, 查凯, 等. PFS对污泥厌氧消化中沼气脱硫的影响[J]. 中国给水排水, 2020, 36(17): 75-78. |
WU Pengkun, CUI Changgui, ZHA Kai, et al. Effect of polychloride ferric sulfate on desulfurization of biogas in sludge anaerobic digestion[J]. China Water & Wastewater, 2020, 36(17): 75-78. | |
4 | 袁志强, 尹常凯, 徐佳佳, 等. 污泥炭强化微生物电解池提高污泥厌氧消化甲烷产率与系统稳定性[J]. 环境工程学报, 2022, 16(1): 253-263. |
YUAN Zhiqiang, YIN Changkai, XU Jiajia, et al. Sludge-derived biochar enhanced microbial electrolysis cell for improving biomethane productivity and system stability in anaerobic digestion of waste activated sludge[J]. Chinese Journal of Environmental Engineering, 2022, 16(1): 253-263. | |
5 | 傅翔, 戴翎翎, 张栋, 等. 污泥产短链脂肪酸微生物的研究进展[J]. 环境工程, 2015, 33(5): 5-9, 53. |
FU Xiang, DAI Lingling, ZHANG Dong, et al. Research progress of microorganisms related to short-chain fatty acids production from sludge[J]. Environmental Engineering, 2015, 33(5): 5-9, 53. | |
6 | AHMAD Talha, AADIL Rana Muhammad, AHMED Haassan, et al. Treatment and utilization of dairy industrial waste: A review[J]. Trends in Food Science & Technology, 2019, 88: 361-372. |
7 | PIRT S J, LEE Y K. Enhancement of methanogenesis by traces of oxygen in bacterial digestion of biomass[J]. FEMS Microbiology Letters, 1983, 18(1/2): 61-63. |
8 | CHEN Qing, WU Wanqing, QI Dacheng, et al. Review on microaeration-based anaerobic digestion: State of the art, challenges, and prospectives[J]. Science of the Total Environment, 2020, 710: 136388. |
9 | NGUYEN Duc, KHANAL Samir Kumar. A little breath of fresh air into an anaerobic system: How microaeration facilitates anaerobic digestion process[J]. Biotechnology Advances, 2018, 36(7): 1971-1983. |
10 | KRAYZELOVA Lucie, BARTACEK Jan, Israel DÍAZ, et al. Microaeration for hydrogen sulfide removal during anaerobic treatment: A review[J]. Reviews in Environmental Science and Bio/Technology, 2015, 14(4): 703-725. |
11 | BRIOUKHANOV A L, NETRUSOV A I. Aerotolerance of strictly anaerobic microorganisms and factors of defense against oxidative stress: A review[J]. Applied Biochemistry and Microbiology, 2007, 43(6): 567-582. |
12 | HUNGATE R E. Chapter Ⅳ A roll tube method for cultivation of strict anaerobes[M]//Methods in Microbiology. Amsterdam: Elsevier, 1969: 117-132. |
13 | SONG Chao, LI Wanwu, CAI Fanfan, et al. Anaerobic and microaerobic pretreatment for improving methane production from paper waste in anaerobic digestion[J]. Frontiers in Microbiology, 2021, 12: 688290. |
14 | WANG Zhiqiang, LIU Jinming, TAN Feng. Effect of microaeration combined with ferric chloride pretreatment on anaerobic digestion of corn stalk[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2022: doi.org/10.1080/15567036.2022.2039330. |
15 | SHRESTHA Shilva, FONOLL Xavier, KHANAL Samir Kumar, et al. Biological strategies for enhanced hydrolysis of lignocellulosic biomass during anaerobic digestion: Current status and future perspectives[J]. Bioresource Technology, 2017, 245: 1245-1257. |
16 | JIANG Guangming, ZHOU Mi, CHIU Tsz Ho, et al. Wastewater-enhanced microbial corrosion of concrete sewers[J]. Environmental Science & Technology, 2016, 50(15): 8084-8092. |
17 | FU Shanfei, WANG Fei, YUAN Xianzheng, et al. The thermophilic (55℃) microaerobic pretreatment of corn straw for anaerobic digestion[J]. Bioresource Technology, 2015, 175: 203-208. |
18 | FU Shanfei, LIAN Shujuan, ANGELIDAKI Irini, et al. Micro-aeration: An attractive strategy to facilitate anaerobic digestion[J]. Trends in Biotechnology, 2023, 41(5): 714-726. |
19 | VICKERS Neil J. Animal communication: When I’m calling You, will You answer too?[J]. Current Biology, 2017, 27(14): R713-R715. |
20 | MAHDY Ahmed, SONG Yunlong, SALAMA Ali, et al. Simultaneous H2S mitigation and methanization enhancement of chicken manure through the introduction of the micro-aeration approach[J]. Chemosphere, 2020, 253: 126687. |
21 | ZHU Rong, WANG Donghui, ZHENG Yi, et al. Understanding the mechanisms behind micro-aeration to enhance anaerobic digestion of corn straw[J]. Fuel, 2022, 318: 123604. |
22 | MATHEWS Stephanie L, PAWLAK Joel, GRUNDEN Amy M. Bacterial biodegradation and bioconversion of industrial lignocellulosic streams[J]. Applied Microbiology and Biotechnology, 2015, 99(7): 2939-2954. |
23 | RUAN Danian, ZHOU Zhen, PANG Hongjian, et al. Enhancing methane production of anaerobic sludge digestion by microaeration: Enzyme activity stimulation, semi-continuous reactor validation and microbial community analysis[J]. Bioresource Technology, 2019, 289: 121643. |
24 | YANG Hongnan, DENG Liangwei. Using air instead of biogas for mixing and its effect on anaerobic digestion of animal wastewater with high suspended solids[J]. Bioresource Technology, 2020, 318: 124047. |
25 | SIQUEIRA João Paulo S, PEREIRA Andrey M, DUTRA Amanda Maria M, et al. Process bioengineering applied to BTEX degradation in microaerobic treatment systems[J]. Journal of Environmental Management, 2018, 223: 426-432. |
26 | KHAN Aman, CHEN Zhengjun, ZHAO Shuai, et al. Micro-aeration in anode chamber promotes p-nitrophenol degradation and electricity generation in microbial fuel cell[J]. Bioresource Technology, 2019, 285: 121291. |
27 | KRAYZELOVA Lucie, BARTACEK Jan, KOLESAROVA Nina, et al. Microaeration for hydrogen sulfide removal in UASB reactor[J]. Bioresource Technology, 2014, 172: 297-302. |
28 | FDZ-POLANCO M, DÍAZ I, PÉREZ S I, et al. Hydrogen sulphide removal in the anaerobic digestion of sludge by micro-aerobic processes: Pilot plant experience[J]. Water Science and Technology, 2009, 60(12): 3045-3050. |
29 | FAN Fuqiang, XU Ronghua, WANG Depeng, et al. Application of activated sludge for odor control in wastewater treatment plants: Approaches, advances and outlooks[J]. Water Research, 2020, 181: 115915. |
30 | Lucie POKORNA-KRAYZELOVA, Dana VEJMELKOVÁ, SELAN Lara, et al. Final products and kinetics of biochemical and chemical sulfide oxidation under microaerobic conditions[J]. Water Science and Technology, 2018, 78(9): 1916-1924. |
31 | JENICEK P, CELIS C A, KOUBOVA J, et al. Comparison of microbial activity in anaerobic and microaerobic digesters[J]. Water Science and Technology, 2011, 63(10): 2244-2249. |
32 | RASHVANLOU Reza Barati, REZAEE Abbas, FARZADKIA Mahdi, et al. Effect of micro-aerobic process on improvement of anaerobic digestion sewage sludge treatment: Flow cytometry and ATP assessment[J]. RSC Advances, 2020, 10(59): 35718-35728. |
33 | FU Shanfei, WANG Fei, SHI Xiaoshuang, et al. Impacts of microaeration on the anaerobic digestion of corn straw and the microbial community structure[J]. Chemical Engineering Journal, 2016, 287: 523-528. |
34 | RAMOS I, FDZ-POLANCO M. The potential of oxygen to improve the stability of anaerobic reactors during unbalanced conditions: Results from a pilot-scale digester treating sewage sludge[J]. Bioresource Technology, 2013, 140: 80-85. |
35 | ZHEN Feng, LUO Xinjian, XING Tao, et al. Performance evaluation and microbial community analysis of microaerobic pretreatment on thermophilic dry anaerobic digestion[J]. Biochemical Engineering Journal, 2021, 167: 107873. |
36 | AMIN Farrukh Raza, KHALID Habiba, LI Wanwu, et al. Enhanced methane production and energy potential from rice straw by employing microaerobic pretreatment via anaerobic digestion[J]. Journal of Cleaner Production, 2021, 296: 126434. |
37 | AHMADI M, VAHABZADEH F, BONAKDARPOUR B, et al. Application of the central composite design and response surface methodology to the advanced treatment of olive oil processing wastewater using Fenton’s peroxidation[J]. Journal of Hazardous Materials, 2005, 123(1/2/3): 187-195. |
38 | YANG Qi, XIONG Panpan, DING Pengyuan, et al. Treatment of petrochemical wastewater by microaerobic hydrolysis and anoxic/oxic processes and analysis of bacterial diversity[J]. Bioresource Technology, 2015, 196: 169-175. |
39 | JAGADABHI Padma Shanthi, KAPARAJU Prasad, RINTALA Jukka. Effect of micro-aeration and leachate replacement on COD solubilization and VFA production during mono-digestion of grass-silage in one-stage leach-bed reactors[J]. Bioresource Technology, 2010, 101(8): 2818-2824. |
40 | GUIMARÃES DE OLIVEIRA Maurício, MARQUES MOURÃO José Marcos, MARQUES DE OLIVEIRA Ana Katherinne, et al. Microaerophilic treatment enhanced organic matter removal and methane production rates during swine wastewater treatment: A long-term engineering evaluation[J]. Renewable Energy, 2021, 180: 691-699. |
41 | XU Suyun, SELVAM Ammaiyappan, WONG Jonathan W C. Optimization of micro-aeration intensity in acidogenic reactor of a two-phase anaerobic digester treating food waste[J]. Waste Management, 2014, 34(2): 363-369. |
42 | MONTALVO Silvio, OJEDA Felipe, César HUILIÑIR, et al. Performance evaluation of micro-aerobic hydrolysis of mixed sludge: Optimum aeration and effect on its biochemical methane potential[J]. Journal of Environmental Science and Health, Part A, 2016, 51(14): 1269-1277. |
43 | JENICEK P, CELIS C A, KRAYZELOVA L, et al. Improving products of anaerobic sludge digestion by microaeration[J]. Water Science and Technology, 2014, 69(4): 803-809. |
44 | ZHOU Weili, IMAI Tsuyoshi, UKITA Masao, et al. Effect of limited aeration on the anaerobic treatment of evaporator condensate from a sulfite pulp mill[J]. Chemosphere, 2007, 66(5): 924-929. |
45 | WU Changyong, ZHOU Yuexi, WANG Peichao, et al. Improving hydrolysis acidification by limited aeration in the pretreatment of petrochemical wastewater[J]. Bioresource Technology, 2015, 194: 256-262. |
46 | SOUSA M R, OLIVEIRA C J S, LOPES A C, et al. Technical, economical, and microbiological aspects of the microaerobic process on H2S removal for low sulfate concentration wastewaters[J]. Applied Biochemistry and Biotechnology, 2016, 180(7): 1386-1400. |
47 | NIELFA A, CANO R, FDZ-POLANCO M. Theoretical methane production generated by the co-digestion of organic fraction municipal solid waste and biological sludge[J]. Biotechnology Reports, 2015, 5: 14-21. |
48 | Lucie POKORNA-KRAYZELOVA, MAMPAEY Kris E, VANNECKE Thomas P W, et al. Model-based optimization of microaeration for biogas desulfurization in UASB reactors[J]. Biochemical Engineering Journal, 2017, 125: 171-179. |
49 | MENEZES Osmar, BRITO Rhayssa, HALLWASS Fernando, et al. Coupling intermittent micro-aeration to anaerobic digestion improves tetra-azo dye Direct Black 22 treatment in sequencing batch reactors[J]. Chemical Engineering Research and Design, 2019, 146: 369-378. |
50 | TARTAKOVSKY B, MEHTA P, J-S BOURQUE, et al. Electrolysis-enhanced anaerobic digestion of wastewater[J]. Bioresource Technology, 2011, 102(10): 5685-5691. |
51 | KHANAL Samir Kumar, HUANG Juchang. Online oxygen control for sulfide oxidation in anaerobic treatment of high-sulfate wastewater[J]. Water Environment Research, 2006, 78(4): 397-408. |
52 | ALEXANDER John, ADAM Brookes, IRENE Carra, et al. Microbubbles and their application to ozonation in water treatment: A critical review exploring their benefit and future application[J]. Critical Reviews in Environmental Science and Technology, 2022, 52(9): 1561-1603. |
53 | LIU Wenzong, CAI Weiwei, GUO Zechong, et al. Microbial electrolysis contribution to anaerobic digestion of waste activated sludge, leading to accelerated methane production[J]. Renewable Energy, 2016, 91: 334-339. |
54 | MULBRY Walter, SELMER Kaitlyn, LANSING Stephanie. Effect of liquid surface area on hydrogen sulfide oxidation during micro-aeration in dairy manure digesters[J]. PLoS One, 2017, 12(10): e0185738. |
55 | GIORDANO Andrea, DI CAPUA Francesco, ESPOSITO Giovanni, et al. Long-term biogas desulfurization under different microaerobic conditions in full-scale thermophilic digesters co-digesting high-solid sewage sludge[J]. International Biodeterioration & Biodegradation, 2019, 142: 131-136. |
56 | LOUGHRIN John, LOVANH Nanh. Aeration to improve biogas production by recalcitrant feedstock[J]. Environments, 2019, 6(4): 44. |
57 | César HUILIÑIR, Jhosané PAGÉS-DÍAZ, VARGAS Gustavo, et al. Microaerobic condition as pretreatment for improving anaerobic digestion: A review[J]. Bioresource Technology, 2023, 384: 129249. |
58 | NGUYEN P H L, KURUPARAN P, VISVANATHAN C. Anaerobic digestion of municipal solid waste as a treatment prior to landfill[J]. Bioresource Technology, 2007, 98(2): 380-387. |
59 | CHU Libing, DING Pengyuan, DING Mingcong. Pilot-scale microaerobic hydrolysis-acidification and anoxic-oxic processes for the treatment of petrochemical wastewater[J]. Environmental Science and Pollution Research, 2021, 28(41): 58677-58687. |
60 | KOBAYASHI Takuro, LI Yuyou, KUBOTA Kengo, et al. Characterization of sulfide-oxidizing microbial mats developed inside a full-scale anaerobic digester employing biological desulfurization[J]. Applied Microbiology and Biotechnology, 2012, 93(2): 847-857. |
61 | WU Changyong, LI Yanan, ZHOU Yuexi, et al. Upgrading the Chinese biggest petrochemical wastewater treatment plant: Technologies research and full scale application[J]. Science of the Total Environment, 2018, 633: 189-197. |
62 | JENÍČEK P, HOREJŠ J, POKORNÁ-KRAYZELOVÁ L, et al. Simple biogas desulfurization by microaeration—Full scale experience[J]. Anaerobe, 2017, 46: 41-45. |
[1] | 靳立军, 刘铮铮, 李扬, 杨赫, 胡浩权. 耦合富氢小分子催化活化的煤热解提高焦油产率策略与实践[J]. 化工进展, 2024, 43(7): 3613-3619. |
[2] | 黄军, 张应娟, 林茵童, 韦雪纯, 吴雨桐, 毋高博, 莫钧麟, 赵祯霞, 赵钟兴. 蚕沙基生物多孔炭的制备及对杀虫单/呋虫胺的协同吸附与缓释性能[J]. 化工进展, 2024, 43(7): 3964-3971. |
[3] | 王涛, 高翔, 高继峰, 邓海全, 余显涌, 周振华, 唐玲, 吕航. 改性Cu-BTC基混合基质膜在CO2分离中的应用[J]. 化工进展, 2024, 43(6): 3240-3246. |
[4] | 冯勇强, 王洁茹, 王超娴, 李芳, 苏婉婷, 孙宇, 赵彬然. γ-Al2O3 负载的Ni、Fe、Cu对介质阻挡放电等离子体转化CO2/CH4的影响[J]. 化工进展, 2024, 43(5): 2705-2713. |
[5] | 苗诒贺, 王耀祖, 刘雨杭, 朱炫灿, 李佳, 于立军. 添加剂改性固态胺吸附剂用于碳捕集的研究进展[J]. 化工进展, 2024, 43(5): 2739-2759. |
[6] | 庞淑馨, 王昊, 王健宇, 朱卡克, 刘志成. 基于Aspen Plus的甲烷联合重整制合成气过程热力学计算[J]. 化工进展, 2024, 43(5): 2890-2900. |
[7] | 王嘉锐, 刘大伟, 邓耀, 徐瑾, 马晓迅, 徐龙. 载氧体在甲烷化学链重整反应中的研究进展[J]. 化工进展, 2024, 43(5): 2235-2253. |
[8] | 李思, 陶艺月, 肖振翀, 张亮, 李俊, 朱恂, 廖强. 热再生电池堆-二氧化碳电化学还原池系统耦合特性[J]. 化工进展, 2024, 43(5): 2568-2575. |
[9] | 张金鹏, 屈婷, 荆洁颖, 李文英. 吸附强化水气变换制氢复合催化剂研究进展[J]. 化工进展, 2024, 43(5): 2629-2644. |
[10] | 李凯, 魏鹤琳, 左夏华, 杨卫民, 阎华, 安瑛. 水基炭黑-胶原蛋白纳米流体制备及稳定性实验[J]. 化工进展, 2024, 43(4): 1944-1952. |
[11] | 齐亚兵, 吴子波, 杨清翠. Pickering乳液制备及稳定性研究进展[J]. 化工进展, 2024, 43(4): 2017-2030. |
[12] | 王彦红, 蒋雷, 薛帅, 李洪伟, 贾玉婷. 预冷通道中超临界甲烷换热特性分析[J]. 化工进展, 2024, 43(4): 1690-1699. |
[13] | 刘涵, 曲明璐, 叶振东, 杨帆, 黄蓓佳, 张亚宁, 刘洪芝. 钙镁二元盐复合材料的储热性能[J]. 化工进展, 2024, 43(4): 1764-1773. |
[14] | 郭潇东, 毛玉娇, 刘相洋, 邱丽, 于峰, 闫晓亮. Ni/Sm2O3-CeO2/Al2O3催化剂氧空位对二氧化碳低温甲烷化的影响[J]. 化工进展, 2024, 43(4): 1840-1850. |
[15] | 卢志强, 石雨, 陈鹏宇, 张亮, 李俊, 付乾, 朱恂, 廖强. 具有高浓度氨腔室的立式热再生氨电池性能特性[J]. 化工进展, 2024, 43(3): 1224-1231. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |