化工进展 ›› 2024, Vol. 43 ›› Issue (7): 3729-3746.DOI: 10.16085/j.issn.1000-6613.2023-2277
• 专栏:热化学反应工程技术 • 上一篇
陈良1(), 罗冬梅1, 王正豪1, 钟山1, 唐思扬1, 梁斌1,2()
收稿日期:
2023-12-27
修回日期:
2024-03-25
出版日期:
2024-07-10
发布日期:
2024-08-14
通讯作者:
梁斌
作者简介:
陈良(1996—),男,博士研究生,研究方向为化学链制氢。E-mail:1573496497@qq.com。
基金资助:
CHEN Liang1(), LUO Dongmei1, WANG Zhenghao1, ZHONG Shan1, TANG Siyang1, LIANG Bin1,2()
Received:
2023-12-27
Revised:
2024-03-25
Online:
2024-07-10
Published:
2024-08-14
Contact:
LIANG Bin
摘要:
我国的工业副产气年产量巨大,是一种重要的制氢资源。由于其高杂质含量,回收其中的H2需要采用复杂的工艺且成本较高,导致副产气的利用率低。相比传统方法,化学链制氢技术只需两步或三步即可制得H2,为工业副产气转化为高纯H2提供了一条很有前景的途径。本文针对工业副产气化学链制氢技术的研究进展,讨论了工业副产气化学链制氢工艺的技术优势,总结了不同还原气对化学链制氢过程的影响。在化学链制氢反应过程中,H2的反应活性优于CO,而CH4的反应过程复杂,反应温度对不同气体的反应特性影响较为显著,杂质气体N2和CO2会对制氢过程产生不利影响。针对载氧体,高活性和稳定性载氧体是研究的重点,设计复合型载氧体、掺杂异价元素和负载离子导体等方法是改善载氧体反应性能的重要途径。总的来讲,化学链制氢技术取得了较快的进展,也为其他化学链反应研究提供了借鉴。
中图分类号:
陈良, 罗冬梅, 王正豪, 钟山, 唐思扬, 梁斌. 工业副产气化学链回收氢气技术研究进展[J]. 化工进展, 2024, 43(7): 3729-3746.
CHEN Liang, LUO Dongmei, WANG Zhenghao, ZHONG Shan, TANG Siyang, LIANG Bin. Research progress of industrial by-product gas-fueled chemical looping hydrogen generation technology[J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3729-3746.
类型 | H2/% | CO/% | CH4/% | N2/% | CO2/% | 其他 /% | 年产量 /108·m-3 |
---|---|---|---|---|---|---|---|
焦炉煤气 | 54~59 | 5~8 | 23~27 | 3~6 | 2~4 | 2~3 | 1114 [ |
高炉煤气 | 1~2 | 28~33 | 0.2~0.5 | 55~60 | 6~12 | — | 18000 [ |
甲醇驰放气 | 60~75 | 5~7 | 5~11 | 0.5~2 | 2~13 | — | 239 [ |
氯碱尾气 | 92 | — | — | — | — | 8 | 5.27 [ |
醋酸尾气 | 5~15 | 60~85 | 1~3 | 4~7 | 6~15 | — | 7.20 [ |
表1 可燃工业副产气类型、气体体积分数以及年产量
类型 | H2/% | CO/% | CH4/% | N2/% | CO2/% | 其他 /% | 年产量 /108·m-3 |
---|---|---|---|---|---|---|---|
焦炉煤气 | 54~59 | 5~8 | 23~27 | 3~6 | 2~4 | 2~3 | 1114 [ |
高炉煤气 | 1~2 | 28~33 | 0.2~0.5 | 55~60 | 6~12 | — | 18000 [ |
甲醇驰放气 | 60~75 | 5~7 | 5~11 | 0.5~2 | 2~13 | — | 239 [ |
氯碱尾气 | 92 | — | — | — | — | 8 | 5.27 [ |
醋酸尾气 | 5~15 | 60~85 | 1~3 | 4~7 | 6~15 | — | 7.20 [ |
因素 | 化学链制氢 (载氧体:Fe2O3/MgAl2O4) | 化学链制氢 (载氧体:Fe2O3/ZrO2) | 甲烷蒸汽重整 |
---|---|---|---|
总投资/×106USD | 369.6 | 369.6 | 678.1 |
总运行成本/×106USD | 246.5 | 289 | 207.7 |
年产氢量/Mt | 0.24 | 0.24 | 0.24 |
利率/% | 10 | 10 | 10 |
寿命/年 | 25 | 25 | 25 |
年生产成本/×106USD | 287.2 | 329.7 | 332.7 |
H2生产成本/USD·kg-1 | 1.41 | 1.62 | 1.64 |
表2 化学链制氢与甲烷蒸汽重整制氢的成本比较[31]
因素 | 化学链制氢 (载氧体:Fe2O3/MgAl2O4) | 化学链制氢 (载氧体:Fe2O3/ZrO2) | 甲烷蒸汽重整 |
---|---|---|---|
总投资/×106USD | 369.6 | 369.6 | 678.1 |
总运行成本/×106USD | 246.5 | 289 | 207.7 |
年产氢量/Mt | 0.24 | 0.24 | 0.24 |
利率/% | 10 | 10 | 10 |
寿命/年 | 25 | 25 | 25 |
年生产成本/×106USD | 287.2 | 329.7 | 332.7 |
H2生产成本/USD·kg-1 | 1.41 | 1.62 | 1.64 |
85 | CAO Zhihe, MA Baozhong, ZHOU Jiashun, et al. The study for reduction roasting of laterite residue in the presence of CaF2 [J]. Process Safety and Environmental Protection, 2022, 168: 1-9. |
86 | MA Jinchen, HUANG Haodong, ZHENG Chaohe, et al. Identification of HCl corrosion mechanism on Cu-based oxygen carriers in chemical looping combustion[J]. Fuel, 2024, 359: 130373. |
87 | HUANG Haodong, MA Jinchen, ZHAO Haibo, et al. Behavior of coal-chlorine in chemical looping combustion[J]. Proceedings of the Combustion Institute, 2023, 39(4): 4437-4446. |
88 | KUMAR Sonu, MOHAPATRA Pinak, JOSHI Rushikesh K, et al. Synergistic chemical looping process coupling natural gas conversion and NO x purification[J]. Energy & Fuels, 2023, 37(10): 7268-7279. |
89 | MAYRHUBER Stefan, NORMANN Fredrik, YILMAZ Duygu, et al. Effect of the oxygen carrier ilmenite on NO x formation in chemical-looping combustion[J]. Fuel Processing Technology, 2021, 222: 106962. |
90 | HU Donghai, CAO Guoqiang, DU Meijie, et al. Insight into the biomass pyrolysis volatiles reaction with an iron-based oxygen carrier in a two-stage fixed-bed reactor[J]. Chemical Engineering Journal, 2023, 465: 142860. |
91 | ZENG Jimin, HU Jiawei, QIU Yu, et al. Multi-function of oxygen carrier for in-situ tar removal in chemical looping gasification: Naphthalene as a model compound[J]. Applied Energy, 2019, 253: 113502. |
92 | ZHEN Huang, WANG Yonghao, FANG Shiwen, et al. Chemical looping gasification of benzene as a biomass tar model compound using hematite modified by Ni as an oxygen carrier[J]. Applications in Energy and Combustion Science, 2023, 15: 100172. |
93 | Hyungseok NAM, WANG Zhouhong, SHANMUGAM Saravanan R, et al. Chemical looping dry reforming of benzene as a gasification tar model compound with Ni- and Fe-based oxygen carriers in a fluidized bed reactor[J]. International Journal of Hydrogen Energy, 2018, 43(41): 18790-18 800. |
94 | SVOBODA K, SLOWINSKI G, ROGUT J, et al. Thermodynamic possibilities and constraints for pure hydrogen production by iron based chemical looping process at lower temperatures[J]. Energy Conversion and Management, 2007, 48(12): 3063-3073. |
95 | DAS S, BISWAS A, TIWARY C S, et al. Hydrogen production using chemical looping technology: A review with emphasis on H2 yield of various oxygen carriers[J]. International Journal of Hydrogen Energy, 2022, 47(66): 2832-28352. |
96 | HE Fang, WEI Yonggang, LI Haibin, et al. Synthesis gas generation by chemical-looping reforming using Ce-based oxygen carriers modified with Fe, Cu, and Mn oxides[J]. Energy & Fuels, 2009, 23(4): 2095-2102. |
97 | MATTISSON Tobias, Anders JÄRDNÄS, LYNGFELT Anders. Reactivity of some metal oxides supported on alumina with alternating methane and oxygen-application for chemical-looping combustion[J]. Energy & Fuels, 2003, 17(3): 643-651. |
98 | 孔庆峰. 煤化学链燃烧中过渡金属载氧体晶格氧迁移转化特性研究[D]. 南京: 东南大学, 2022. |
KONG Qingfeng. Characterization of transition metal oxygen carrers' lattice oxygen migration transformation during chemical looping combustion of coal[D]. Nanjing: Southeast University, 2022. | |
99 | SVOBODA Karel, SIEWIOREK Aleksandra, BAXTER David, et al. Thermodynamic possibilities and constraints for pure hydrogen production by a nickel and cobalt-based chemical looping process at lower temperatures[J]. Energy Conversion and Management, 2008, 49(2): 221-231. |
100 | ALALWAN Hayder A, AUGUSTINE Logan J, HUDSON Blake G, et al. Linking solid-state reduction mechanisms to size-dependent reactivity of metal oxide oxygen carriers for chemical looping combustion[J]. ACS Applied Energy Materials, 2021, 4(2): 1163-1172. |
101 | SVOBODA K, SIEWIOREK A, BAXTER D, et al. Thermodynamic possibilities and constraints of pure hydrogen production by a chromium, nickel, and manganese-based chemical looping process at lower temperatures[J]. Chemical Papers, 2007, 61(2): 110-120. |
102 | KANG Kyoung-Soo, KIM Chang-Hee, Ki-Kwang BAE, et al. Oxygen-carrier selection and thermal analysis of the chemical-looping process for hydrogen production[J]. International Journal of Hydrogen Energy, 2010, 35(22): 12246-12254. |
103 | SHARMA Jeet Prakash, KUMAR Ravinder, AHMADI Mohammad H, et al. Thermodynamic analysis on CSP integrated cerium oxide (CeO2-CeO1.72/1.83) water splitting cycle for hydrogen production[J]. International Journal of Hydrogen Energy, 2024, 53: 1259-1268. |
104 | ZHAO Longfei, DOU Binlin, ZHANG Hua, et al. Oxygen carriers for chemical-looping water splitting to hydrogen production: A critical review[J]. Carbon Capture Science & Technology, 2021, 1: 100006. |
105 | KHAN M N, SHAMIM T. Comparison of iron and tungsten based oxygen carriers for hydrogen production using chemical looping reforming[C]. proceedings of the 2nd International Conference on Green Energy Technology (ICGET), SAPIENZA Univ Rome, Rome, ITALY, 2017. |
106 | GUAN Yu, LIU Yinhe, LIN Xiaolong, et al. Research progress and perspectives of solid fuels chemical looping reaction with Fe-based oxygen carriers[J]. Energy & Fuels, 2022, 36(23): 13956-13984. |
107 | ZHAO Xiao, ZHOU Hui, SIKARWAR Vineet Singh, et al. Biomass-based chemical looping technologies: The good, the bad and the future[J]. Energy & Environmental Science, 2017, 10(9): 1885-1910. |
108 | HU Qiang, SHEN Ye, CHEW Jia Wei, et al. Chemical looping gasification of biomass with Fe2O3/CaO as the oxygen carrier for hydrogen-enriched syngas production[J]. Chemical Engineering Journal, 2020, 379: 122346. |
109 | HE Fang, ZHAO Kun, HUANG Zhen, et al. Synthesis of three-dimensionally ordered macroporous LaFeO3 perovskites and their performance for chemical-looping reforming of methane[J]. Chinese Journal of Catalysis, 2013, 34(6): 1242-1249. |
110 | YIN Xianglei, WANG Shen, WANG Baoyi, et al. Perovskite-type LaMn1- x B x O3+ δ (B=Fe, Co and Ni) as oxygen carriers for chemical looping steam methane reforming[J]. Chemical Engineering Journal, 2021, 422: 128751. |
111 | WANG Yajing, ZHENG Yane, WANG Yuhao, et al. Evaluation of Fe substitution in perovskite LaMnO3 for the production of high purity syngas and hydrogen[J]. Journal of Power Sources, 2020, 449: 227505. |
112 | LOKHANDE C D, GUJAR T P, SHINDE V R, et al. Electrochemical supercapacitor application of pervoskite thin films[J]. Electrochemistry Communications, 2007, 9(7): 1805-1809. |
113 | 杨坤. 焦炉煤气化学链制氢基础研究[D]. 昆明: 昆明理工大学, 2020. |
YANG Kun. Basic research on chemical looping hydrogen production of coke oven gas-oxygen carrier selection and cycle performance[D]. Kunming: Kunming University of Science and Technology, 2020. | |
114 | ZHAO Kun, SHEN Yang, HE Fang, et al. Preparation of double perovskite-type oxide LaSrFeCoO6 for chemical looping steam methane reforming to produce syngas and hydrogen[J]. Journal of Rare Earths, 2016, 34(10): 1032-1041. |
115 | ZHAO Kun, HE Fang, HUANG Zhen, et al. Perovskite-type oxides LaFe1- x Co x O3 for chemical looping steam methane reforming to syngas and hydrogen co-production[J]. Applied Energy, 2016, 168: 193-203. |
116 | LIU Feng, DAI Jinxin, LIU Jing, et al. Density functional theory study on the reaction mechanism of spinel CoFe2O4 with CO during chemical-looping combustion[J]. The Journal of Physical Chemistry C, 2019, 123(28): 17335-17342. |
117 | HAN Yujia, TIAN Ming, WANG Chaojie, et al. High-entropy spinel oxide (Fe0.2Mg0.2Mn0.1Al0.3Cr0.2)3O4 as a highly active and stable redox material for methane driven solar thermochemical water splitting[J]. Applied Catalysis B: Environmental, 2023, 339: 123096. |
118 | LI Min, QIU Yu, MA Li, et al. Chemical looping hydrogen storage and production: Use of binary ferrite-spinel as oxygen carrier materials[J]. Sustainable Energy & Fuels, 2020, 4(4): 1665-1673. |
1 | LI Guang, CHANG Yuxue, LIU Tao, et al. Hydrogen element flow and economic analyses of a coal direct chemical looping hydrogen generation process[J]. Energy, 2020, 206: 118243. |
2 | Aravindan M, Madhan Kumar V, HARIHARAN V S, et al. Fuelling the future: A review of non-renewable hydrogen production and storage techniques[J]. Renewable and Sustainable Energy Reviews, 2023, 188: 113791. |
3 | SHAO Lei, XU Jin, Henrik SAXÉN, et al. A numerical study on process intensification of hydrogen reduction of iron oxide pellets in a shaft furnace[J]. Fuel, 2023, 348: 128375. |
4 | 刘化章. 合成氨工业: 过去、现在和未来——合成氨工业创立100周年回顾、启迪和挑战[J]. 化工进展, 2013, 32(9): 1995-2005. |
LIU Huazhang. Ammonia synthesis industry: Past, present and future——Retrospect,enlightenment and challenge from 100 years of ammonia synthesis industry[J]. Chemical Industry and Engineering Progress, 2013, 32(9): 1995-2005. | |
5 | 李忠, 郑华艳, 谢克昌. 甲醇燃料的研究进展与展望[J]. 化工进展, 2008, 27(11): 1684-1695. |
LI Zhong, ZHENG Huayan, XIE Kechang. Advances and prospects of methand fuel[J]. Chemical Industry and Engineering Progress, 2008, 27(11): 1684-1695. | |
6 | 曹军文, 张文强, 李一枫, 等. 中国制氢技术的发展现状[J]. 化学进展, 2021, 33(12): 2215-2244. |
CAO Junwen, ZHANG Wenqiang, LI Yifeng, et al. Current status of hydrogen production in China[J]. Progress in Chemistry, 2021, 33(12): 2215-2244. | |
7 | CHO Won Chul, LEE Doyeon, KIM Chang Hee, et al. Feasibility study of the use of by-product iron oxide and industrial off-gas for application to chemical looping hydrogen production[J]. Applied Energy, 2018, 216: 466-481. |
8 | 陈健, 姬存民, 卜令兵. 碳中和背景下工业副产气制氢技术研究与应用[J]. 化工进展, 2022, 41(3): 1479-1486. |
CHEN Jian, JI Cunmin, BU Lingbing. Research and application of hydrogen production technology from industrial by-product gas under the background of carbon neutrality[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1479-1486. | |
119 | ZENG Dewang, LI Min, QIU Yu, et al. A high-performance ternary ferrite-spinel material for hydrogen storage via chemical looping redox cycles[J]. International Journal of Hydrogen Energy, 2020, 45(3): 2034-2043. |
120 | CUI Dongxu, QIU Yu, LI Min, et al. Cu-Fe-Al-O mixed spinel oxides as oxygen carrier for chemical looping hydrogen generation[J]. International Journal of Hydrogen Energy, 2020, 45(21): 11908-11915. |
121 | QIU Yu, MA Li, KONG Qingfeng, et al. Earth abundant spinel for hydrogen production in a chemical looping scheme at 550℃[J]. Green Energy & Environment, 2021, 6(5): 780-789. |
122 | ZENG Dewang, CUI Dongxu, QIU Yu, et al. Mn-Fe-Al-O mixed spinel oxides as oxygen carrier for chemical looping hydrogen production with CO2 capture[J]. Fuel, 2020, 274: 117854. |
123 | ZENG Dewang, QIU Yu, LI Min, et al. Ternary mixed spinel oxides as oxygen carriers for chemical looping hydrogen production operating at 550 degrees C[J]. ACS Appl Mater Interfaces, 2019, 11(47): 44223-44232. |
124 | YUE Caixia, ZHANG Wenying, WANG Min, et al. Crystal structure and octahedral deformation of orthorhombic perovskite ABO3: Case study of SrRuO3 [J]. Journal of Solid State Chemistry, 2022, 309: 122998. |
125 | TAHIR Muhammad, FAKHAR-E-ALAM M, ATIF M, et al. Investigation of optical, electrical and magnetic properties of hematite α - F e 2 O 3 nanoparticles via sol-gel and co-precipitation method[J]. Journal of King Saud University—Science, 2023, 35(5): 102695. |
126 | CHEN Liang, WANG Zhenghao, QIN Zhifeng, et al. Investigation of the selective oxidation roasting of vanadium‑iron spinel[J]. Powder Technology, 2021, 387: 434-443. |
127 | 马忠. 化学链循环反应中铁基载氧体烧结失活机理及抑制机制研究[D]. 南京: 东南大学, 2019. |
MA Zhong. Sintering deactivation and inhibition mechanisms of iron-based oxygen carrier in chemical looping process[D]. Nanjing: Southeast University, 2019. | |
128 | MA Zhong, XIAO Rui, CHEN Liangyong. Redox reaction induced morphology and microstructure evolution of iron oxide in chemical looping process[J]. Energy Conversion and Management, 2018, 168: 288-295. |
129 | LIU Feng, LIU Jing, YANG Yingju. Review on the theoretical understanding of oxygen carrier development for chemical-looping technologies[J]. Energy & Fuels, 2022, 36(17): 9373-9384. |
9 | 王一坤, 雷小苗, 邓磊, 等. 可燃废气利用技术研究进展(Ⅰ):高炉煤气、转炉煤气和焦炉煤气[J]. 热力发电, 2014, 43(7): 1-9, 14. |
WANG Yikun, LEI Xiaomiao, DENG Lei, et al. A review on utilization of combustible waste gas (Ⅰ): Blast furnace gas converter gas and coke oven gas[J]. Thermal Power Generation, 2014, 43(7): 1-9, 14. | |
10 | 刘福建, 郑勇, 曹彦宁, 等. 高炉煤气/转炉煤气低碳高效合成氨工艺流程[J]. 过程工程学报, 2023, 23(3): 350-358. |
LIU Fujian, ZHENG Yong, CAO Yanning, et al. Low-carbon and high-efficiency ammonia synthesis process from blast furnace gas/converter gas[J]. The Chinese Journal of Process Engineering, 2023, 23(3): 350-358. | |
11 | 任冰朗. 高温转炉煤气与焦炉煤气混合重整研究[D]. 北京: 北京科技大学, 2022. |
REN Binglang. The mixed reforming of high temperature converter gas and coke oven gas[D]. Beijing: University of Science and Technology Beijing, 2022. | |
12 | WANG Iwei, GAO Yunfei, WANG Xijun, et al. Liquid metal shell as an effective iron oxide modifier for redox-based hydrogen production at intermediate temperatures[J]. ACS Catalysis, 2021, 11(16): 10228-10238. |
13 | Jorge PERPIÑÁN, Begoña PEÑA, BAILERA Manuel, et al. Integration of carbon capture technologies in blast furnace based steel making: A comprehensive and systematic review[J]. Fuel, 2023, 336: 127074. |
14 | THURSFIELD Alan, MURUGAN Arul, FRANCA Rafael, et al. Chemical looping and oxygen permeable ceramic membranes for hydrogen production—A review[J]. Energy & Environmental Science, 2012, 5(6): 7421-7459. |
15 | YANG Qingchun, LI Xufang, YANG Qing, et al. Opportunities for CO2 utilization in coal to green fuel process: Optimal design and performance evaluation[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(3): 1329-1342. |
16 | GUO Zhancheng, WANG Shiwei, BAI Dingrong. Engineering thermochemistry: The science critical for the paradigm shift toward carbon neutrality[J]. Resources Chemicals and Materials, 2023, 2(4): 331-334. |
17 | XU Guangwen, BAI Dingrong, XU Chunming, et al. Challenges and opportunities for engineering thermochemistry in carbon-neutralization technologies[J]. National Science Review, 2022, 10(9)nwac217. |
130 | CHEN Shubo, XIANG Wenguo, CHEN Shiyi. Influence mechanism of inert carrier on the anti-carbon deposition effect of nickel-based oxygen carrier in chemical looping methane reforming process[J]. Applied Surface Science, 2022, 602: 154373. |
131 | MA Shiwei, CHEN Shiyi, SOOMRO Ahsanullah, et al. Characterization of Fe2O3/CeO2 oxygen carriers for chemical looping hydrogen generation[J]. International Journal of Hydrogen Energy, 2018, 43(6): 3154-3164. |
132 | MA Shiwei, LI Meng, WANG Genbao, et al. Effects of Zr doping on Fe2O3/CeO2 oxygen carrier in chemical looping hydrogen generation[J]. Chemical Engineering Journal, 2018, 346: 712-725. |
133 | JI Jinqing, SHEN Laihong. Enhanced morphological maintenance and redox stability by dispersing nickel ferrite into silica matrix for chemical looping hydrogen production via water splitting[J]. Fuel Processing Technology, 2023, 251: 107946. |
134 | HU Jiawei, POELMAN Hilde, MARIN Guy B, et al. FeO controls the sintering of iron-based oxygen carriers in chemical looping CO2 conversion[J]. Journal of CO2 Utilization, 2020, 40: 101216. |
135 | ZONG Teng, LI Lin, HAN Yujia, et al. Influence of the encapsulation degree of Fe0 active sites on performance of garnets for chemical looping partial oxidation of CH4 [J]. Applied Catalysis B: Environmental, 2022, 312: 121421. |
136 | HE Jiahui, YANG Qian, SONG Zhe, et al. Improving the carbon resistance of iron-based oxygen carrier for hydrogen production via chemical looping steam methane reforming: A review[J]. Fuel, 2023, 351: 128864. |
137 | LI Chen, SHI Yixiang, CAI Ningsheng. Carbon deposition on nickel cermet anodes of solid oxide fuel cells operating on carbon monoxide fuel[J]. Journal of Power Sources, 2013, 225: 1-8. |
138 | NARINDRI RARA WINAYU Birgitta, LI Chunta, CHU Hsin. Effective performance of ilmenite oxygen carrier for chemical looping combustion of carbon monoxide, hydrogen, and methane in a fluidized bed reactor[J]. Journal of Cleaner Production, 2022, 379: 134881. |
139 | HUANG Yanli, LI Xiaodong, ZHANG Qian, et al. Carbon deposition behaviors in dry reforming of CH4 at elevated pressures over Ni/MoCeZr/MgAl2O4-MgO catalysts[J]. Fuel, 2022, 310: 122449. |
140 | ZHU Min, CHEN Shiyi, SOOMRO Ahsanullah, et al. Effects of supports on reduction activity and carbon deposition of iron oxide for methane chemical looping hydrogen generation[J]. Applied Energy, 2018, 225: 912-921. |
141 | ZHAO Kun, FANG Xiaojie, CUI Chaoxian, et al. Co-production of syngas and H2 from chemical looping steam reforming of methane over anti-coking CeO2/La0.9Sr0.1Fe1- x Ni x O3 composite oxides[J]. Fuel, 2022, 317: 123455. |
18 | HAN Zhennan, JIA Xin, SONG Xingfei, et al. Engineering thermochemistry to cope with challenges in carbon neutrality[J]. Journal of Cleaner Production, 2023, 416: 137943. |
19 | ZENG Liang, CHENG Zhuo, FAN Jonathan A, et al. Metal oxide redox chemistry for chemical looping processes[J]. Nature Reviews Chemistry, 2018, 2(11): 349-364. |
20 | SONG Tao, SHEN Laihong. Review of reactor for chemical looping combustion of solid fuels[J]. International Journal of Greenhouse Gas Control, 2018, 76: 92-110. |
21 | NANDY Anirban, LOHA Chanchal, GU Sai, et al. Present status and overview of Chemical Looping Combustion technology[J]. Renewable and Sustainable Energy Reviews, 2016, 59: 597-619. |
22 | MATTISSON Tobias, KELLER Martin, LINDERHOLM Carl, et al. Chemical-looping technologies using circulating fluidized bed systems: Status of development[J]. Fuel Processing Technology, 2018, 172: 1-12. |
23 | ZHAO Haibo, TIAN Xin, MA Jinchen, et al. Development of tailor-made oxygen carriers and reactors for chemical looping processes at Huazhong University of Science & Technology[J]. International Journal of Greenhouse Gas Control, 2020, 93: 102898. |
24 | DE LEEUWE Christopher, ABBAS Syed Zaheer, AMIEIRO Alvaro, et al. Carbon-neutral and carbon-negative chemical looping processes using glycerol and methane as feedstock[J]. Fuel, 2023, 353: 129001. |
25 | HOSSEINI Davood, ABDALA Paula M, DONAT Felix, et al. Bifunctional core-shell architecture allows stable H2 production utilizing CH4 and CO2 in a catalytic chemical looping process[J]. Applied Catalysis B: Environmental, 2019, 258: 117946. |
26 | KONG Fanhe, SWIFT Jordan, ZHANG Qiaochu, et al. Biogas to H2 conversion with CO2 capture using chemical looping technology: Process simulation and comparison to conventional reforming processes[J]. Fuel, 2020, 279: 118479. |
27 | SAJJADI Baharak, CHEN Weiyin, FAN Maohong, et al. A techno-economic analysis of solar catalytic chemical looping biomass refinery for sustainable production of high purity hydrogen[J]. Energy Conversion and Management, 2021, 243: 114341. |
28 | REN Ke, ZHANG Tianzuo, BAI Yueyang, et al. Environmental and economical assessment of high-value utilization routes for coke oven gas in China[J]. Journal of Cleaner Production, 2022, 353: 131668. |
29 | 张艳. 中国焦炉煤气利用现状评述[J]. 山东化工, 2019, 48(16): 172-3, 80. |
ZHANG Yan. Review on the current status of coke oven gas utilization in China[J]. Shangdong Chemical Industry, 2019, 48(16): 172-3, 80. | |
142 | WANG Fangjun, CHEN Shiyi, CHEN Shubo, et al. Double adjustment of Ni and Co in CeO2/La2Ni2- x Co x O6 double perovskite type oxygen carriers for chemical looping steam methane reforming[J]. Chemical Engineering Journal, 2023, 465: 143041. |
143 | ZENG Dewang, LIU Tong, LI Yanzhi, et al. One dimensional nano-fiber structured Fe2O3/ZrO2 to enable efficient hydrogen production via water gas shift with chemical looping[J]. Fuel Processing Technology, 2023, 241: 107581. |
144 | 朱茜. 铁基载氧体释氧性能及微观机理研究[D]. 徐州: 中国矿业大学, 2020. |
ZHU Qian. Study on oxygen release performance and microscopic mechanism of iron-based oxygen carrier[D]. Xuzhou: China University of Mining and Technology, 2020. | |
145 | 袁妮妮, 白红存, 安梅, 等. 化学链过程中Cu低浓度掺杂改性Fe-基载氧体反应性能:实验与理论模拟[J]. 化工学报, 2020, 71(11): 5294-5302. |
YUAN Nini, BAI Hongcun, AN Mei, et al. Reactivity of low-concentration Cu-doped modified Fe-based oxygen carrier in chemical looping: experiments and theoretical simulations[J]. CIESC Journal, 2020, 71(11): 5294-5302. | |
146 | AN Mei, YUAN Nini, GUO Qingjie. Analysis of the role of Cu for improving the reactivity of Cu-modified Fe2O3 oxygen carriers in the chemical looping gasification process with coal[J]. Fuel, 2021, 305: 121619. |
147 | YIN Xianglei, SHEN Laihong, WANG Shen, et al. Double adjustment of Co and Sr in LaMnO3+ δ perovskite oxygen carriers for chemical looping steam methane reforming[J]. Applied Catalysis B: Environmental, 2022, 301: 120816. |
148 | XU Tingting, WANG Xun, ZHAO Haibo, et al. Modulating lattice oxygen activity of Ca2Fe2O5 brownmillerite for the co-production of syngas and high purity hydrogen via chemical looping steam reforming of toluene[J]. Applied Catalysis B: Environmental, 2023, 320: 122010. |
149 | GUAN Yu, ZHANG Guohong, WANG Ruru, et al. Study on the synergistic effect and oxygen vacancy of CeO2/Fe2O3 oxygen carrier for improving reactivity in carbon monoxide chemical looping combustion[J]. Fuel, 2024, 357: 129832. |
150 | 马士伟. 基于改性Fe2O3/CeO2载氧体制氢特性研究[D]. 南京: 东南大学, 2019. |
MA Siwei. Characterization of modified Fe2O3/CeO2 oxygen carrier for chemical looping hydrogen generation[D]. Nanjing: Southeast University, 2019. | |
30 | XIANG Dong, ZHAO Shuang. Parameter optimization and thermodynamic analysis of COG direct chemical looping hydrogen processes[J]. Energy Conversion and Management, 2018, 172: 1-8. |
31 | BAHZAD Husain, SHAH Nilay, DOWELL Niall Mac, et al. Development and techno-economic analyses of a novel hydrogen production process via chemical looping[J]. International Journal of Hydrogen Energy, 2019, 44(39): 21251-21263. |
32 | HENG Lijun, ZHANG Huiyan, XIAO Rui. Hydrogen production from heavy fraction of bio-oil using iron-based chemical looping process: Thermodynamic simulation and performance analysis[J]. International Journal of Hydrogen Energy, 2016, 41(40): 17771-17783. |
33 | KATHE Mandar V, EMPFIELD Abbey, NA Jing, et al. Hydrogen production from natural gas using an iron-based chemical looping technology: Thermodynamic simulations and process system analysis[J]. Applied Energy, 2016, 165: 183-201. |
34 | ZHANG Fan, ZHU Lin, WANG Yuan, et al. Exergy analysis on the process for three reactors chemical looping hydrogen generation[J]. International Journal of Hydrogen Energy, 2020, 45(46): 24322-24332. |
35 | 张凡. 煤气化与化学链制氢系统集成及性能研究[D]. 成都: 西南石油大学, 2023. |
ZHANG Fan. Research on integration and performance of coal gasification and chemical chain hydrogen production system[D]. Chengdu: Southwest Petroleum University, 2023. | |
36 | CHISALITA Dora-Andreea, PETRESCU Letitia, GALUSNYAK Stefan Cristian, et al. Environmental evaluation of hydrogen production employing innovative chemical looping technologies-A Romanian case study[J]. International Journal of Hydrogen Energy, 2023, 48(32): 12112-12128. |
37 | ZHAO Yaxian, ZHAO Yingjie, YI Qun, et al. Highly flexible and energy-efficient process for converting coke-oven gas and pulverized coke into methanol and ammonia using chemical looping technology[J]. Energy Conversion and Management, 2021, 248: 114796. |
38 | ZHAO Yaxian, ZHAO Yingjie, WANG Jiancheng, et al. Highly simplified and efficient process for methanol and ammonia synthesis from coke-oven gas and pulverized coke using chemical looping technology[J]. International Journal of Hydrogen Energy, 2023, 4(99): 39330-39346. |
39 | XIANG Dong, ZHOU Yunpeng. Concept design and techno-economic performance of hydrogen and ammonia co-generation by coke-oven gas-pressure swing adsorption integrated with chemical looping hydrogen process[J]. Applied Energy, 2018, 229: 1024-1034. |
40 | PALONE Orlando, GAGLIARDI Gabriele G, MECHELLI Marco, et al. Techno-economic analysis of sustainable methanol and ammonia production by chemical looping hydrogen generation from waste plastic[J]. Energy Conversion and Management, 2023, 292: 117389. |
41 | WANG Qiang, YANG Yong, ZHOU Huairong. Highly efficient CO2 capture and utilization of coal and coke-oven gas coupling for urea synthesis process integrated with chemical looping technology: Modeling, parameter optimization, and performance analysis[J]. Process, 2023, 11(3): 960. |
42 | HARIBAL Vasudev Pralhad, WANG Xijun, DUDEK Ryan, et al. Modified ceria for "low-temperature" CO2 utilization: A chemical looping route to exploit industrial waste heat[J]. Advanced Energy Materials, 2019, 9(41): 1901963. |
43 | HARIBAL Vasudev Pralhad, HE Feng, MISHRA Amit, et al. Iron-doped BaMnO3 for hybrid water splitting and syngas generation[J]. ChemSusChem, 2017, 10(17): 3402-3408. |
44 | YESOL Woo, MIN Park Jae, WOOK Bae Jong, et al. Kinetic modeling of the steam reforming of light hydrocarbon mixture from waste resources: Effects of gas composition on hydrogen production[J]. International Journal of Hydrogen Energy, 2023, 48(41): 15383-15391. |
45 | AL-FATESH Ahmed S, AL-GARADI Najib Y A, OSMAN Ahmed I, et al. From plastic waste pyrolysis to Fuel: Impact of process parameters and material selection on hydrogen production[J]. Fuel, 2023, 344: 128107. |
46 | 王一迪. 化学链产氢还原阶段Fe2O3动力学研究[D]. 东营: 中国石油大学(华东), 2017. |
WANG Yidi. Reduction kinetics of Fe2O3 for chemical looping hydrogen generation[D]. Dongying: China University of Petroleum (East China), 2017. | |
47 | WANG Haiming, LIU Bingjie, YANG Guangyao, et al. Multistep kinetic study of Fe2O3 reduction by H2 based on isothermal thermogravimetric analysis data deconvolution[J]. International Journal of Hydrogen Energy, 2023, 48(44): 16601-16613. |
48 | WANG Yidi, WANG Xinyue, HUA Xiuning, et al. The reduction mechanism and kinetics of Fe2O3 by hydrogen for chemical-looping hydrogen generation[J]. Journal of Thermal Analysis and Calorimetry, 2017, 129(3): 1831-1838. |
49 | KUHN C, DÜLL A, ROHLFS P, et al. Iron as recyclable energy carrier: Feasibility study and kinetic analysis of iron oxide reduction[J]. Applications in Energy and Combustion Science, 2022, 12: 100096. |
50 | GARG Pritesh, HU Xiaojun, LI Yuan, et al. Kinetics of iron oxide reduction in H2/H2O gas mixture: Global and stepwise reduction[J]. Metallurgical and Materials Transactions B-Process Metallurgy and Materials Processing Science, 2022, 53(3): 1759-1774. |
51 | XU Chenyang, ZHANG Jianliang, WANG Yaozu, et al. Study on the reduction of Fe2O3 pellets by CO-CO2 and H2-H2O: Reaction kinetics and pore network model[J]. Minerals Engineering, 2023, 202: 108248. |
151 | MA Zhong, WU Kai, WANG Haolin, et al. Mechanism of solid state diffusion on the performance evolution of iron-based oxygen carrier at different operating conditions for chemical looping process[J]. Fuel, 2023, 331: 125699. |
152 | MA Li, QIU Yu, LI Min, et al. Efficient hydrogen production through the chemical looping redox cycle of YSZ supported iron oxides[J]. Green Energy & Environment, 2021, 6(6): 875-883. |
153 | ZENG Dewang, KANG Fengwen, QIU Yu, et al. Iron oxides with gadolinium-doped cerium oxides as active supports for chemical looping hydrogen production[J]. Chemical Engineering Journal, 2020, 396: 125153. |
52 | 胡月. 生物质废物化学链制氢工艺中铁基载氧体制备与性能研究[D]. 北京: 清华大学, 2014. |
HU Yue. Preparation and reactivity investigation of iron-based oxygen carriers for hydrogen production via biomass derived syngas chemical looping process[D]. Beijing: Tsinghua University, 2014. | |
53 | SUN Eddie, WAN Gang, HARIBAL Vasudev, et al. Low-temperature carbon dioxide conversion via reverse water-gas shift thermochemical looping with supported iron oxide[J]. Cell Reports Physical Science, 2023, 4(9): 101581. |
54 | 陈庚. 气基还原氧化铁动力学机理研究[D]. 大连: 大连理工大学, 2011. |
CHEN Geng. The kinetics of the gas-based reduxtion of iron ore[D]. Dalian: Dalian University of Technology, 2011. | |
55 | PIOTROWSKI Krzysztof, MONDAL Kanchan, LORETHOVA Hana, et al. Effect of gas composition on the kinetics of iron oxide reduction in a hydrogen production process[J]. International Journal of Hydrogen Energy, 2005, 30(15): 1543-1554. |
56 | CAVALIERE Pasquale, PERRONE Angelo, MARSANO Debora. Effect of reducing atmosphere on the direct reduction of iron oxides pellets[J]. Powder Technology, 2023, 426: 118650. |
57 | TAHARI Maratun Najiha ABU, SALLEH Fairous, TENGKU SAHARUDDIN Tengku Shafazila, et al. Influence of hydrogen and carbon monoxide on reduction behavior of iron oxide at high temperature: Effect on reduction gas concentrations[J]. International Journal of Hydrogen Energy, 2021, 46(48): 24791-24805. |
58 | WANG Y D, HUA X N, ZHAO C C, et al. Step-wise reduction kinetics of Fe2O3 by CO/CO2 mixtures for chemical looping hydrogen generation[J]. International Journal of Hydrogen Energy, 2017, 42(9): 5667-75. |
59 | 花秀宁. 生物质废物热解气深度还原化学链制氢工艺及其机理研究[D] 北京: 清华大学, 2017. |
HUA Xiuning. Deep reduction chemical looping hydrogen generation with pyrolysis gas from biomass waste as fuel: technical and mechanism investigation[D]. Beijing: Tsinghua University, 2017. | |
60 | HUA Xiuning, WANG Wei, WANG Feng. Performance and kinetics of iron-based oxygen carriers reduced by carbon monoxide for chemical looping combustion[J]. Frontiers of Environmental Science & Engineering, 2015, 9(6): 1130-1138. |
61 | FU Tiantian, TURAP Yusan, WANG Iwei, et al. Using high/low WHSV value to uncover the reaction behavior between methane and iron oxide in packed bed for chemical looping hydrogen generation process[J]. Industrial & Engineering Chemistry Research, 2020, 59(8): 3301-3309. |
62 | CHENG Zhuo, QIN Lang, GUO Mengqing, et al. Oxygen vacancy promoted methane partial oxidation over iron oxide oxygen carriers in the chemical looping process[J]. Physical Chemistry Chemical Physics, 2016, 18(47): 32418-32428. |
63 | FENG Yuchuan, WANG Nana, GUO Xin, et al. Characteristics of dopant distribution and surface oxygen vacancy formation for modified Fe2O3 in chemical looping combustion[J]. Fuel, 2020, 276: 117942. |
64 | CHENG Xianming, LI Kongzhai, WANG Hua, et al. Chemical looping combustion of methane in a large laboratory unit: Model study on the reactivity and effective utilization of typical oxygen carriers[J]. Chemical Engineering Journal, 2017, 328: 382-396. |
65 | Qing LYU, Yana QIE, LIU Xiaojie, et al. Effect of hydrogen addition on reduction behavior of iron oxides in gas-injection blast furnace[J]. Thermochimica Acta, 2017, 648: 79-90. |
66 | 郭培民, 赵沛, 王磊, 等. 移动床内氧化铁还原及还原气体氧化行为分析[J]. 钢铁研究学报, 2018, 30(5): 348-53. |
GUO Peimin, ZHAO Pei, WANG Lei, et al. Analysis of reduction of iron ore and oxidation of reducing gas in moving bed[J]. Journal of Iron and Steel Research, 2018, 30(5): 348-353. | |
67 | SUN Zhenkun, RASI Negar Manafi, LU Dennis Y, et al. Chemical looping reforming for syngas production with co-conversion of CH4 and CO2 by using ilmenite ore as both oxygen carrier and catalyst[J]. Chemical Engineering Science, 2023, 280: 119050. |
68 | WANG Zhentong, GONG Zhiqiang, TURAP Yusan, et al. Renewable hydrogen production from biogas using iron-based chemical looping technology[J]. Chemical Engineering Journal, 2022, 429: 132192. |
69 | CHEN Wei-Hsin, LIN Murong, YU A B, et al. Hydrogen production from steam reforming of coke oven gas and its utility for indirect reduction of iron oxides in blast furnace[J]. International Journal of Hydrogen Energy, 2012, 37(16): 11748-11758. |
70 | YANG Kun, GU Zhenhua, LONG Yanhui, et al. Hydrogen production via chemical looping reforming of coke oven gas[J]. Green Energy & Environment, 2021, 6(5): 678-692. |
71 | 祝捷. 生物质废物热解气单塔固定床化学链制氢系统实验研究[D]. 北京: 清华大学, 2015. |
ZHU Jie. Study on hydrogen generation from biomass pyrolysis gas by packed bed technology based chemical looping process[D]. Beijing: Tsinghua University, 2015. | |
72 | GUO Rui, LI Leiming, CHANG Chenggong, et al. Steel slag-enhanced reforming process for blue hydrogen production from coke oven gas: Techno-economic evaluation[J]. Journal of Cleaner Production, 2022, 379: 134778. |
73 | JIANG Xiaofeng, ZHENG Hao, WU Yazhou, et al. Chemical looping preferential oxidation of CO over ceria-supported γ - F e 2 O 3 [J]. Chemical Engineering Journal, 2023, 476: 146482. |
74 | LONG Yanhui, YANG Kun, GU Zhenhua, et al. Hydrogen generation from water splitting over polyfunctional perovskite oxygen carriers by using coke oven gas as reducing agent[J]. Applied Catalysis B: Environmental, 2022, 301: 120778. |
75 | ZUO Huicong, LU Chunqiang, JIANG Lei, et al. Hydrogen production and CO2 capture from Linz-Donawitz converter gas via a chemical looping concept[J]. Chemical Engineering Journal, 2023, 477: 146870. |
76 | YIN Fan, SUN Liyan, ZENG Dewang, et al. Investigations on oxygen carriers derived from natural ores or industrial solid wastes for chemical looping hydrogen generation using biomass pyrolysis gas[J]. Energy, 2024, 293: 130501. |
77 | ZENG Liang, TONG Andrew, KATHE Mandar, et al. Iron oxide looping for natural gas conversion in a countercurrent moving bed reactor[J]. Applied Energy, 2015, 157: 338-347. |
78 | WANG Kun, TIAN Xin, ZHAO Haibo. Sulfur behavior in chemical-looping combustion using a copper ore oxygen carrier[J]. Applied Energy, 2016, 166: 84-95. |
79 | PACHLER Robert F, MAYER Karl, PENTHOR Stefan, et al. Fate of sulfur in chemical looping combustion of gaseous fuels using a copper-based oxygen carrier[J]. International Journal of Greenhouse Gas Control, 2018, 71: 86-94. |
80 | GU Haiming, SHEN Laihong, XIAO Jun, et al. Evaluation of the effect of sulfur on iron-ore oxygen carrier in chemical-looping combustion[J]. Industrial & Engineering Chemistry Research, 2013, 52(5): 1795-1805. |
81 | NIU Xin, SHEN Laihong. Release and transformation of phosphorus in chemical looping combustion of sewage sludge[J]. Chemical Engineering Journal, 2018, 335: 621-630. |
82 | YANG Jing, MA Liping, LIU Hongpan, et al. Chemical behavior of fluorine and phosphorus in chemical looping gasification using phosphogypsum as an oxygen carrier[J]. Chemosphere, 2020, 248: 125979. |
83 | YAN Jingchun, SHI Chuang, SHEN Yongze, et al. Intensified effect of phosphorus doping to La-Fe-O perovskite-type oxygen carrier in microalgae chemical looping gasification for enhanced syngas production[J]. Fuel, 2024, 366: 131345. |
84 | GAO Enxia, ZHOU Yuzhao, GENG Chao, et al. Effects of CaF2 on the direct reduction of beach titanomagnetite at different temperatures[J]. Environmental Progress & Sustainable Energy, 2023, 42(2): e14013. |
[1] | 赵伟, 江雨寒, 李振, 李毅红, 周安宁, 王宏. 煤岩显微组分电浮选分离与制氢过程中氢/氧气泡的影响机制[J]. 化工进展, 2024, 43(5): 2428-2435. |
[2] | 邓耀, 赵青鹏, 徐瑾, 刘大伟, 马晓迅, 徐龙. 球磨法制备堇青石负载Fe/Ce载氧体的甲烷化学链重整性能[J]. 化工进展, 2024, 43(5): 2396-2408. |
[3] | 王嘉锐, 刘大伟, 邓耀, 徐瑾, 马晓迅, 徐龙. 载氧体在甲烷化学链重整反应中的研究进展[J]. 化工进展, 2024, 43(5): 2235-2253. |
[4] | 张鹏飞, 陈伟鹏, 肖卓楠, 吕青岗, 张顺风, 张子峰. 红砖掺杂改性白云鄂博铁精矿载氧体性能[J]. 化工进展, 2024, 43(4): 2226-2234. |
[5] | 王旭栋, 刘敦禹, 许开龙, 刘秋祺, 范昀培, 金晶. CeO2载氧体对煤化学链燃烧中汞迁移影响机制[J]. 化工进展, 2024, 43(4): 2191-2200. |
[6] | 孙崇正, 李玉星, 许洁, 韩辉, 宋光春, 卢晓. 浮式氢能储运过程中FLH2通道管外降膜流动的海上适应性强化机理[J]. 化工进展, 2024, 43(1): 338-352. |
[7] | 朱杰, 金晶, 丁正浩, 杨会盼, 侯封校. 化学链气化中准东煤灰对CaSO4载氧体改性及其作用机理[J]. 化工进展, 2023, 42(9): 4628-4635. |
[8] | 龚陈俊, 梅道锋. 钨修饰对镍载氧体的沼气化学链重整制氢性能影响[J]. 化工进展, 2023, 42(4): 2130-2141. |
[9] | 范昀培, 金晶, 刘敦禹, 王静杰, 刘秋祺, 许开龙. CaSO4载氧体在煤气化化学链燃烧中的脱汞[J]. 化工进展, 2023, 42(3): 1638-1648. |
[10] | 孙崇正, 樊欣, 李玉星, 许洁, 韩辉, 刘亮. 海上多孔介质通道内氢气换热与正仲氢转化的耦合特性[J]. 化工进展, 2023, 42(3): 1281-1290. |
[11] | 陈波, 刘爱贤, 孙强, 王逸伟, 郭绪强, 杨庆伟, 龙有, 肖树萌, 马绍坤. 柴油加氢尾气中氢气的水合物法回收工业侧线试验[J]. 化工进展, 2022, 41(6): 2924-2930. |
[12] | 陈健, 姬存民, 卜令兵. 碳中和背景下工业副产气制氢技术研究与应用[J]. 化工进展, 2022, 41(3): 1479-1486. |
[13] | 朱庆山. 超低碳炼铁技术路径分析[J]. 化工进展, 2022, 41(3): 1391-1398. |
[14] | 安阳, 袁思杰, 高振东, 吴曼, 王凌云, 郭庆杰. Mg修饰Fe/Al载氧体煤化学链制氢[J]. 化工进展, 2022, 41(2): 648-654. |
[15] | 高逸飞, 易群, 齐凯, 高丽丽, 李雪莲. MOFs基膜材料的研究现状及其在H2/CH4分离中的应用[J]. 化工进展, 2022, 41(12): 6395-6407. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |