化工进展 ›› 2024, Vol. 43 ›› Issue (6): 3209-3220.DOI: 10.16085/j.issn.1000-6613.2023-0753
• 材料科学与技术 • 上一篇
孙悦1(), 邢宝林1,2(), 张耀杰1, 冯来宏3, 曾会会1, 蒋振东1, 徐冰1, 贾建波1, 张传祥1,2, 谌伦建1, 张越1, 张文豪1
收稿日期:
2023-05-08
修回日期:
2023-08-11
出版日期:
2024-06-15
发布日期:
2024-07-02
通讯作者:
邢宝林
作者简介:
孙悦(1992—),女,博士研究生,研究方向为矿产资源加工利用。E-mail:1509047307@qq.com。
基金资助:
SUN Yue1(), XING Baolin1,2(), ZHANG Yaojie1, FENG Laihong3, ZENG Huihui1, JIANG Zhendong1, XU Bing1, JIA Jianbo1, ZHANG Chuanxiang1,2, CHEN Lunjian1, ZHANG Yue1, ZHANG Wenhao1
Received:
2023-05-08
Revised:
2023-08-11
Online:
2024-06-15
Published:
2024-07-02
Contact:
XING Baolin
摘要:
负极材料是影响锂离子电池(LIBs)性能的关键因素之一,孔隙结构调控和杂原子掺杂是提高负极材料电化学性能的有效手段。以褐煤为前体,采用化学氧化法制备煤基碳纳米片(CS),再以氧化硼(B2O3)为添加剂,得到B掺杂多孔碳纳米片(BPCS);采用扫描电镜(SEM)、透射电镜(TEM)、X射线衍射(XRD)、拉曼光谱(Raman)、氮气吸附仪、X射线光电子能谱(XPS)等手段对CS和BPCS微观结构和用作锂离子电池负极材料的电化学性能表征与测试。结果表明,B2O3具有模板、造孔、掺杂三重作用,当B2O3用量为0.5g时,BPCS-0.5呈现三维多孔结构,比表面积为1216.20m2/g,总孔容1.027cm3/g,B原子含量为4.20%;BPCS-0.5的多孔结构为离子的存储和传输提供足够的空间和通道,B元素的引入增加了BPCS的表面化学活性,从而增强了储锂性能。BPCS-0.5用作锂离子电池负极材料时,在0.05A/g电流密度下首次可逆容量达826mA·h/g,且在5A/g大电流密度下可逆容量仍有143mA·h/g,循环500次的容量保持率为172%,表明该材料具有较高的储锂容量和优异的循环寿命。
中图分类号:
孙悦, 邢宝林, 张耀杰, 冯来宏, 曾会会, 蒋振东, 徐冰, 贾建波, 张传祥, 谌伦建, 张越, 张文豪. B掺杂多孔碳纳米片的制备及其储锂性能[J]. 化工进展, 2024, 43(6): 3209-3220.
SUN Yue, XING Baolin, ZHANG Yaojie, FENG Laihong, ZENG Huihui, JIANG Zhendong, XU Bing, JIA Jianbo, ZHANG Chuanxiang, CHEN Lunjian, ZHANG Yue, ZHANG Wenhao. Preparation of B-doped porous carbon nanosheets and their lithium storage performance[J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3209-3220.
样品名称 | 比表面积/m2·g-1 | 总孔容/cm3·g-1 | 微孔孔容/cm3·g-1 | 微孔率/% | 中孔孔容/cm3·g-1 | 中孔率/% | 大孔孔容/cm3·g-1 | 大孔率/% |
---|---|---|---|---|---|---|---|---|
CS | 440.78 | 0.316 | 0.292 | 92.40 | 0.055 | 5.53 | 0.007 | 2.21 |
BPCS-0.25 | 1298.10 | 1.174 | 0.474 | 40.41 | 0.611 | 52.05 | 0.088 | 7.53 |
BPCS-0.5 | 1216.20 | 1.027 | 0.415 | 40.37 | 0.561 | 54.66 | 0.051 | 4.95 |
BPCS-1 | 301.04 | 0.451 | 0.087 | 19.31 | 0.222 | 49.33 | 0.141 | 31.35 |
表1 CS和BPCS的比表面积和孔径参数
样品名称 | 比表面积/m2·g-1 | 总孔容/cm3·g-1 | 微孔孔容/cm3·g-1 | 微孔率/% | 中孔孔容/cm3·g-1 | 中孔率/% | 大孔孔容/cm3·g-1 | 大孔率/% |
---|---|---|---|---|---|---|---|---|
CS | 440.78 | 0.316 | 0.292 | 92.40 | 0.055 | 5.53 | 0.007 | 2.21 |
BPCS-0.25 | 1298.10 | 1.174 | 0.474 | 40.41 | 0.611 | 52.05 | 0.088 | 7.53 |
BPCS-0.5 | 1216.20 | 1.027 | 0.415 | 40.37 | 0.561 | 54.66 | 0.051 | 4.95 |
BPCS-1 | 301.04 | 0.451 | 0.087 | 19.31 | 0.222 | 49.33 | 0.141 | 31.35 |
样品名称 | C含量 | O含量 | B含量 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
总含量 | C—B | C | C—O | C | COOH | 总含量 | 总含量 | BC3 | BC2O | BCO2 | |
CS | 91.11 | — | 79.40 | 12.00 | 5.40 | 3.00 | 7.24 | — | — | — | — |
BPCS-0.25 | 85.07 | 1.48 | 75.41 | 14.49 | 5.72 | 2.89 | 11.73 | 3.20 | 23.33 | 72.39 | 4.27 |
BPCS-0.5 | 83.49 | 1.73 | 72.61 | 15.89 | 6.22 | 3.35 | 12.31 | 4.20 | 17.54 | 74.37 | 8.00 |
BPCS-1 | 77.21 | 2.40 | 71.78 | 16.53 | 5.43 | 3.84 | 16.25 | 6.54 | 14.87 | 80.23 | 4.89 |
表2 CS和BPCS官能团的相对含量
样品名称 | C含量 | O含量 | B含量 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
总含量 | C—B | C | C—O | C | COOH | 总含量 | 总含量 | BC3 | BC2O | BCO2 | |
CS | 91.11 | — | 79.40 | 12.00 | 5.40 | 3.00 | 7.24 | — | — | — | — |
BPCS-0.25 | 85.07 | 1.48 | 75.41 | 14.49 | 5.72 | 2.89 | 11.73 | 3.20 | 23.33 | 72.39 | 4.27 |
BPCS-0.5 | 83.49 | 1.73 | 72.61 | 15.89 | 6.22 | 3.35 | 12.31 | 4.20 | 17.54 | 74.37 | 8.00 |
BPCS-1 | 77.21 | 2.40 | 71.78 | 16.53 | 5.43 | 3.84 | 16.25 | 6.54 | 14.87 | 80.23 | 4.89 |
样品 | 不同电流密度下的第10次充电比容量/mA·h·g-1 | |||||||
---|---|---|---|---|---|---|---|---|
0.05A·g-1 | 0.1A·g-1 | 0.2A·g-1 | 0.5A·g-1 | 1A·g-1 | 2A·g-1 | 5A·g-1 | 0.05A·g-1 | |
CS | 285 | 246 | 218 | 184 | 164 | 143 | 88 | 312 |
BPCS-0.25 | 641 | 471 | 390 | 302 | 234 | 171 | 94 | 498 |
BPCS-0.5 | 715 | 559 | 457 | 360 | 296 | 231 | 143 | 571 |
BPCS-1 | 570 | 443 | 375 | 304 | 250 | 195 | 124 | 507 |
表3 CS和BPCS在不同电流密度下第10次的可逆比容量
样品 | 不同电流密度下的第10次充电比容量/mA·h·g-1 | |||||||
---|---|---|---|---|---|---|---|---|
0.05A·g-1 | 0.1A·g-1 | 0.2A·g-1 | 0.5A·g-1 | 1A·g-1 | 2A·g-1 | 5A·g-1 | 0.05A·g-1 | |
CS | 285 | 246 | 218 | 184 | 164 | 143 | 88 | 312 |
BPCS-0.25 | 641 | 471 | 390 | 302 | 234 | 171 | 94 | 498 |
BPCS-0.5 | 715 | 559 | 457 | 360 | 296 | 231 | 143 | 571 |
BPCS-1 | 570 | 443 | 375 | 304 | 250 | 195 | 124 | 507 |
序号 | 样品 | 比容量/mA·h·g-1,电流密度/A·g-1 | 比容量/mA·h·g-1,循环次数,电流密度/A·g-1 | 参考文献 |
---|---|---|---|---|
1 | 0.5BN-CQD | 130,3 | 485,100,0.1 | [ |
2 | B-CNT | 345,0.1 | 261,500,0.5 | [ |
3 | B-G | 353,0.5 | 548,30,0.1 | [ |
4 | BNCF-800 | 417,0.1 | 416,450,0.1 | [ |
5 | Py-B-CNTs | 474,0.05 | 548,300,0.1 | [ |
6 | B-CQD | 443,0.1 | 405,100,0.1 | [ |
7 | BPCS-0.5 | 715,0.05 559,0.1 360,0.5 | 486,500,1 | 本工作 |
表4 BPCS-0.5和其他碳材料储锂性能的对比
序号 | 样品 | 比容量/mA·h·g-1,电流密度/A·g-1 | 比容量/mA·h·g-1,循环次数,电流密度/A·g-1 | 参考文献 |
---|---|---|---|---|
1 | 0.5BN-CQD | 130,3 | 485,100,0.1 | [ |
2 | B-CNT | 345,0.1 | 261,500,0.5 | [ |
3 | B-G | 353,0.5 | 548,30,0.1 | [ |
4 | BNCF-800 | 417,0.1 | 416,450,0.1 | [ |
5 | Py-B-CNTs | 474,0.05 | 548,300,0.1 | [ |
6 | B-CQD | 443,0.1 | 405,100,0.1 | [ |
7 | BPCS-0.5 | 715,0.05 559,0.1 360,0.5 | 486,500,1 | 本工作 |
1 | TING Peimin, HUANG Junying, MURUGANANTHAM Rasu, et al. Nitrogen-doping effects on few-layer graphene as an anode material for lithium-ion batteries[J]. Materials Today Communications, 2022, 31: 103498. |
2 | LI Yuda, CHEN Xingqi, ZENG Zihao, et al. Coal-based electrodes for energy storage systems: Development, challenges, and prospects[J]. ACS Applied Energy Materials, 2022, 5(6): 7874-7888. |
3 | YE Han, ZHENG Guoxu, YANG Xu, et al. Application of different carbon-based transition metal oxide composite materials in lithium-ion batteries[J]. Journal of Electroanalytical Chemistry, 2021, 898: 115652. |
4 | ZHU Zhenglu, ZUO Haibin, LI Shijie, et al. Preparation of petaloid graphite nanoflakes in molten salt for high-performance lithium-ion batteries[J]. Ionics, 2020, 26(7): 3351-3358. |
5 | Junke OU, DENG Haixin, LI Bo, et al. High content of nitrogen doped porous carbon prepared by one-step calcination for enviable rate lithium ion batteries[J]. Diamond and Related Materials, 2023, 133: 109696. |
6 | CHENG X, TANG C, YAN C, et al. Preparation of porous carbon spheres and their application as anode materials for lithium-ion batteries: A review[J]. Materials Today Nano, 2023, 22: 100321. |
7 | ZHENG Shuang, LUO Yuan, ZHANG Kaiyou, et al. Nitrogen and phosphorus co-doped mesoporous carbon nanosheets derived from bagasse for lithium-ion batteries[J]. Materials Letters, 2021, 290: 129459. |
8 | QIN Fangfang, TIAN Xiaodong, GUO Zhongya, et al. Asphaltene-based porous carbon nanosheet as electrode for supercapacitor[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(11): 15708-15719. |
9 | WANG Rou, LEE Jang-Mee, KHOSHK RISH Salman, et al. One-pot synthesis of N-doped carbon nanosheets from Victorian brown coal with enhanced lithium storage[J]. Fuel Processing Technology, 2022, 238: 107498. |
10 | 曾会会, 邢宝林, 徐冰, 等. 煤基碳纳米片宏观体的结构调控及电化学性能[J]. 煤炭学报, 2021, 46(4): 1182-1193. |
ZENG Huihui, XING Baolin, XU Bing, et al. Microstructural regulation of coal-based carbon nanosheets and their electrochemical performance[J]. Journal of China Coal Society, 2021, 46(4): 1182-1193. | |
11 | CHEN Weimin, WAN Min, LIU Qing, et al. Heteroatom-doped carbon materials: Synthesis, mechanism, and application for sodium-ion batteries[J]. Small Methods, 2019, 3(4): 1800323. |
12 | ZHU Yinghuai, GAO Shanmin, HOSMANE Narayan S. Boron-enriched advanced energy materials[J]. Inorganica Chimica Acta, 2018, 471: 577-586. |
13 | Muthu PANDIAN P, PANDURANGAN A. Flexible asymmetric solid-state supercapacitor of boron doped reduced graphene for high energy density and power density in energy storage device[J]. Diamond and Related Materials, 2021, 118: 108495. |
14 | UMEZAWA Shigeyuki, DOUURA Takashi, YOSHIKAWA Koji, et al. Supercapacitor electrode with high charge density based on boron-doped porous carbon derived from covalent organic frameworks[J]. Carbon, 2021, 184: 418-425. |
15 | XIA Tianyu, ZHU Youqi. Hierarchical B-doped carbon nanotube with enhanced electrochemical lithium storage[J]. Microporous and Mesoporous Materials, 2019, 284: 276-282. |
16 | WEN Lina, QIN Xue, MENG Wei, et al. Boron oxide-tin oxide/graphene composite as anode materials for lithium ion batteries[J]. Materials Science and Engineering: B, 2016, 213: 63-68. |
17 | GENG Qianhao, HUANG Guangxu, LIU Yingbin, et al. Facile synthesis of B/N co-doped 2D porous carbon nanosheets derived from ammonium humate for supercapacitor electrodes[J]. Electrochimica Acta, 2019, 298: 1-13. |
18 | JIA Jianbo, SUN Yue, ZHANG Yaojie, et al. Facile and efficient fabrication of bandgap tunable carbon quantum dots derived from anthracite and their photoluminescence properties[J]. Frontiers in Chemistry, 2020, 8: 123. |
19 | 马爱玲, 黄光许, 耿乾浩, 等. 硼/氮共掺杂多孔碳纳米片的制备及其电化学性能[J]. 化工进展, 2021, 40(8): 4388-4396. |
MA Ailing, HUANG Guangxu, GENG Qianhao, et al. Preparation and electrochemical properties of B/N co-doped porous carbon nanosheets[J]. Chemical Industry and Engineering Progress, 2021, 40(8): 4388-4396. | |
20 | YANG Xinxin, ZHENG Xuchao, YAN Zhanheng, et al. Construction and preparation of nitrogen-doped porous carbon material based on waste biomass for lithium-ion batteries[J]. International Journal of Hydrogen Energy, 2021, 46(33): 17267-17281. |
21 | JIANG Zhendong, ZHANG Chuanxiang, QU Xiaoxiao, et al. Humic acid resin-based amorphous porous carbon as high rate and cycle performance anode for sodium-ion batteries[J]. Electrochimica Acta, 2021, 372: 137850. |
22 | ZHANG Xin, WANG Huan, PUSHPARAJ Robert Ilango, et al. Coal-derived graphene foam and micron-sized silicon composite anodes for lithium-ion batteries[J]. Electrochimica Acta, 2022, 434: 141329. |
23 | Junke OU, ZOU Liang, JIN Feng, et al. Hierarchically porous nitrogen, oxygen-rich carbons derived from filter paper for high-performance lithium ion battery anodes[J]. Powder Technology, 2020, 371: 64-73. |
24 | ZHANG Haibang, YANG Zexu, QIAO Kaiyuan, et al. Green preparation of N-doped hierarchical porous carbon composites from humic acid extraction residue of lignite as anodes for lithium/sodium-ion batteries[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 648: 129400. |
25 | LIU Shuai, REN Zhuoya, FAKUDZE Sandile, et al. Structural evolution of graphitic carbon derived from ionic liquids-dissolved cellulose and its application as lithium-ion battery anodes[J]. Langmuir, 2022, 38(1): 320-331. |
26 | ZHANG Su, ZHU Jiayao, QING Yan, et al. Construction of hierarchical porous carbon nanosheets from template-assisted assembly of coal-based graphene quantum dots for high performance supercapacitor electrodes[J]. Materials Today Energy, 2017, 6: 36-45. |
27 | 韩娜, 张冬冬, 武婷婷, 等. B/N共掺杂多孔碳片的制备及其储钾性能[J]. 燃料化学学报(中英文), 2023, 51(6): 863-872. |
HAN Na, ZHANG Dongdong, WU Tingting, et al. Preparation of B/N co-doped porous carbon sheets and their potassium storage properties[J]. Journal of Fuel Chemistry and Technology, 2023, 51(6): 863-872. | |
28 | DENG Rongyu, CHU Fulu, YU Huanyu, et al. Electrochemical performance of expanded graphite prepared from anthracite via a microwave method[J]. Fuel Processing Technology, 2022, 227: 107100. |
29 | CHEN Jiasheng, WANG Xuan liang, JIN Enmei, et al. Optimization of B2O3 coating process for NCA cathodes to achieve long-term stability for application in lithium ion batteries[J]. Energy, 2021, 222: 119913. |
30 | MEHLER Julian, ERMER Matthias, PAAP Ulrike, et al. B/N-doped carbon sheets from a new ionic liquid with excellent sorption properties for methylene blue[J]. Journal of Ionic Liquids, 2021, 1(1): 100004. |
31 | XING Baolin, ZENG Huihui, HUANG Guangxu, et al. Porous graphene prepared from anthracite as high performance anode materials for lithium-ion battery applications[J]. Journal of Alloys and Compounds, 2019, 779: 202-211. |
32 | KIM Kue-Ho, Hyo-Jin AHN. Surface functional group-tailored B and N co-doped carbon quantum dot anode for lithium-ion batteries[J]. International Journal of Energy Research, 2022, 46(6): 8367-8375. |
33 | WANG Qian, XIE Zhiyong, LIANG Yili, et al. Facile synthesis of boron-doped porous carbon as anode for lithium-ion batteries with excellent electrochemical performance[J]. Ionics, 2019, 25(5): 2111-2119. |
34 | XU Zhixiang, MA Xueqin, SHAN Yaqi, et al. DES mediated synthesis of sewage sludge-derived B, N-doped carbons for electrochemical applications[J]. Chemosphere, 2022, 308: 135840. |
35 | YUAN Yu, CHEN Ziwei, YU Haoxiang, et al. Heteroatom-doped carbon-based materials for lithium and sodium ion batteries[J]. Energy Storage Materials, 2020, 32: 65-90. |
36 | YUN Binna, DU Hoang Long, HWANG Jang-Yeon, et al. Improved electrochemical performance of boron-doped carbon-coated lithium titanate as an anode material for sodium-ion batteries[J]. Journal of Materials Chemistry A, 2017, 5(6): 2802-2810. |
37 | HOU Jiazi, MAO Xinyu, WANG Jinyang, et al. Preparation of rice husk-derived porous hard carbon: A self-template method for biomass anode material used for high-performance lithium-ion battery[J]. Chemical Physics, 2021, 551: 111352. |
38 | SHI Feng, XING Baolin, ZENG Huihui, et al. Ice template induced assembly strategy for preparation of 3D porous carbon frameworks from low-cost carbon quantum dots for high-performance lithium-ion batteries[J]. Journal of Energy Storage, 2023, 70: 107982. |
39 | LI Desheng, WANG Dongya, RUI Kun, et al. Flexible phosphorus doped carbon nanosheets/nanofibers: Electrospun preparation and enhanced Li-storage properties as free-standing anodes for lithium ion batteries[J]. Journal of Power Sources, 2018, 384: 27-33. |
40 | GAO Shasha, LIU Lang, MAO Feifei, et al. Coal-based ultrathin N-doped carbon nanosheets synthesized by molten-salt method for high-performance lithium-ion batteries[J]. Nanotechnology, 2022, 33(42): 425401. |
41 | YU Kaifeng, ZHANG Zhifei, LIANG Jicai, et al. Natural biomass-derived porous carbons from buckwheat hulls used as anode for lithium-ion batteries[J]. Diamond and Related Materials, 2021, 119: 108553. |
42 | GONG Xin, GUO Shuhai, DING Yuanyuan, et al. Preparation of mesocarbon microbeads as anode material for lithium-ion battery by co‑carbonization of FCC decant oil and conductive carbon black[J]. Fuel Processing Technology, 2022, 227: 107110. |
43 | LI Xiao, CHU Qian, SONG Mingqi, et al. Porous CoO/Co3O4 nanoribbons as a superior performance anode material for lithium-ion batteries[J]. Applied Surface Science, 2023, 618: 156658. |
44 | SUN Mingjun, QU Yaohui, ZENG Fanyan, et al. Hierarchical porous and sandwich-like sulfur-doped carbon nanosheets as high-performance anodes for sodium-ion batteries[J]. Industrial & Engineering Chemistry Research, 2022, 61(5): 2126-2135. |
45 | 张亚婷, 李可可, 任绍昭, 等. 煤基石墨烯/Fe2O3自支撑电极的制备及其储锂性能[J]. 煤炭学报, 2021, 46(4): 1173-1181. |
ZHANG Yating, LI Keke, REN Shaozhao, et al. Coal-based graphene/Fe2O3 nanostructures grow on nickel foams as an enhanced free-standing anode for lithium-ion batteries[J]. Journal of China Coal Society, 2021, 46(4): 1173-1181. | |
46 | CHEN He, SUN Ning, WANG Yingxian, et al. One stone two birds: Pitch assisted microcrystalline regulation and defect engineering in coal-based carbon anodes for sodium-ion batteries[J]. Energy Storage Materials, 2023, 56: 532-541. |
47 | WANG Sihao, WANG Tingyu, KONG Xianglong, et al. Ultrafine aluminum sulfide nanocrystals anchored on two-dimensional carbon sheets for high-performance lithium-ion batteries[J]. Journal of Colloid and Interface Science, 2023, 630: 204-211. |
48 | QU Dongyang, ZHAO Bolin, SONG Zhongqian, et al. Two-dimensional N/O co-doped porous turbostratic carbon nanomeshes with expanded interlayer spacing as host material for potassium/lithium half/full batteries[J]. Journal of Materials Chemistry A, 2021, 9(44): 25094-25103. |
49 | ZHU Guanjia, TANG Cheng, JIANG Miaomiao, et al. Regulating the interfacial behavior of carbon nanotubes for fast lithium storage[J]. Electrochimica Acta, 2021, 388: 138591. |
50 | ZENG Huihui, XING Baolin, ZHANG Chuanxiang, et al. Edge-boron-functionalized coal-derived graphite nanoplatelets prepared via mechanochemical modification for enhanced Li-ion storage at low-voltage plateau[J]. Applied Surface Science, 2023, 621: 156870. |
51 | SAHOO Madhumita, SREENA K P, VINAYAN B P, et al. Green synthesis of boron doped graphene and its application as high performance anode material in Li ion battery[J]. Materials Research Bulletin, 2015, 61: 383-390. |
52 | ZHAO Yaxin, YING Li, NING Zheng, et al. Boron and nitrogen double-doped carbon flower prepared by in situ copolymerization as anode materials for lithium-ion batteries[J]. Journal of Applied Polymer Science, 2023, 140(9): e53544. |
53 | WANG Lei, GUO Wenlei, LU Pengyi, et al. A flexible and boron-doped carbon nanotube film for high-performance Li storage[J]. Frontiers in Chemistry, 2019, 7: 832. |
54 | WANG Huiqi, MA Canliang, YANG Xueteng, et al. Fabrication of boron-doped carbon fibers by the decomposition of B4C and its excellent rate performance as an anode material for lithium-ion batteries[J]. Solid State Sciences, 2015, 41: 36-42. |
[1] | 李莹莹, 刘安, 姜乐妍, 李晖, 陈春钰, 居殿春. 过渡金属硫化物Co9S8的制备及电化学性能研究进展[J]. 化工进展, 2024, 43(6): 3114-3127. |
[2] | 刘思宇, 杨卷, 陈培, 陈祖田, 闫斌, 刘育红, 邱介山. 富氮多孔碳纳米片的氮掺杂构型调控及其储锌性能[J]. 化工进展, 2024, 43(5): 2673-2683. |
[3] | 周铭贤, 叶小舟. 废锂离子电池碳热还原优先提锂工艺优化[J]. 化工进展, 2024, 43(4): 2174-2182. |
[4] | 楚振普, 陈禹蒙, 李俊国, 孙庆轩, 刘科. 废旧锂离子电池负极石墨循环再生的研究进展[J]. 化工进展, 2024, 43(3): 1524-1534. |
[5] | 吴剑扬, 申兰耀, 于永利, 王汝娜, 蒋宁, 杨新河, 邱景义, 周恒辉. 锂离子电池高镍正极材料的制备及性能优化[J]. 化工进展, 2024, 43(3): 1387-1394. |
[6] | 陈国徽, 王君雷, 李世龙, 李金宇, 徐运飞, 罗俊潇, 王昆. 火焰喷雾热解制备锂离子电池三元正极材料研究进展[J]. 化工进展, 2024, 43(2): 971-983. |
[7] | 卜祥宁, 任玺冰, 童正, 倪梦茜, 倪超, 谢广元. 功率超声对废旧锂离子电池资源化回收利用过程的影响研究进展[J]. 化工进展, 2024, 43(1): 514-528. |
[8] | 于松民, 金洪波, 杨明虎, 余海峰, 江浩. 氟掺杂改性LiMn0.5Fe0.5PO4正极材料及其电化学性能[J]. 化工进展, 2024, 43(1): 302-309. |
[9] | 马伊, 曹世伟, 王家骏, 林立群, 邢延, 曹腾良, 卢峰, 赵振伦, 张志军. 低共熔溶剂回收废旧锂离子电池正极材料的研究进展[J]. 化工进展, 2023, 42(S1): 219-232. |
[10] | 雷伟, 姜维佳, 王玉高, 和明豪, 申峻. N、S共掺杂煤基碳量子点的电化学氧化法制备及用于Fe3+检测[J]. 化工进展, 2023, 42(9): 4799-4807. |
[11] | 王知彩, 刘伟伟, 周璁, 潘春秀, 闫洪雷, 李占库, 颜井冲, 任世彪, 雷智平, 水恒福. 基于煤基腐殖酸的高效减水剂合成与性能表征[J]. 化工进展, 2023, 42(7): 3634-3642. |
[12] | 王昊, 霍进达, 曲国瑞, 杨家琪, 周世伟, 李博, 魏永刚. 退役锂电池正极材料资源化回收技术研究进展[J]. 化工进展, 2023, 42(5): 2702-2716. |
[13] | 于捷, 张文龙. 锂离子电池隔膜的发展现状与进展[J]. 化工进展, 2023, 42(4): 1760-1768. |
[14] | 李龙, 邢宝林, 鲍倜傲, 靳鹏, 曾会会, 郭晖, 张越, 张文豪. 微扩层改性对煤基石墨微观结构和储锂性能的影响[J]. 化工进展, 2023, 42(12): 6259-6269. |
[15] | 田晓录, 易义坤, 海峰, 吴振迪, 郑申拓, 郭靖宇, 李明涛. 剪切增稠流体在锂离子电池电解质方面的研究进展[J]. 化工进展, 2023, 42(11): 5786-5800. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |