化工进展 ›› 2024, Vol. 43 ›› Issue (4): 1897-1911.DOI: 10.16085/j.issn.1000-6613.2023-0661
• 材料科学与技术 • 上一篇
范文轩1,2,3(), 徐双平1,2(), 贾宏葛1,2, 张明宇1,2, 蘧延庆1,2
收稿日期:
2023-04-23
修回日期:
2023-05-29
出版日期:
2024-04-15
发布日期:
2024-05-13
通讯作者:
徐双平
作者简介:
范文轩(1995—),男,硕士研究生,研究方向为桥接聚硅氧烷气体分离膜的制备。E-mail:18340780380@163.com。
基金资助:
FAN Wenxuan1,2,3(), XU Shuangping1,2(), JIA Hongge1,2, ZHANG Mingyu1,2, QU Yanqing1,2
Received:
2023-04-23
Revised:
2023-05-29
Online:
2024-04-15
Published:
2024-05-13
Contact:
XU Shuangping
摘要:
聚合物链间距和链刚度是影响聚合物膜对气体渗透性能的决定因素,刚性基团(如芴基、酰亚胺基及萘基)引入聚合物链中,基于其大体积和扭曲结构能够有效阻碍分子链堆积,从而降低分子链堆积密度,使聚合物具有较高的自由体积,能有效改善膜对气体的渗透选择性。本文综述了近5年含芴基、酰亚胺基和萘基聚合物在气体分离中的研究,按结构分类,详细介绍了三类聚合物的合成以及膜对气体的选择性,分析了影响气体选择性的主要因素。最后,综合现有刚性聚合物的特点,从改性高气体渗透性低选择性材料、改性生物基材料及制备复合混合基质膜等角度出发,展望了此类材料的未来发展趋势,为制备高性能气体分离膜提供参考。
中图分类号:
范文轩, 徐双平, 贾宏葛, 张明宇, 蘧延庆. 芴基、酰亚胺基和萘基聚合物气体分离膜的研究进展[J]. 化工进展, 2024, 43(4): 1897-1911.
FAN Wenxuan, XU Shuangping, JIA Hongge, ZHANG Mingyu, QU Yanqing. Research progress on polymeric membranes containing fluorenyl, imide and naphthyl groups for gas separation[J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1897-1911.
聚合物 | 渗透性/Barrer | 选择性 | 参考文献 | |||||
---|---|---|---|---|---|---|---|---|
CO2 | CH4 | O2 | N2 | CO2/CH4 | CO2/N2 | O2/N2 | ||
6FDA-FBPF | 61.82 | 2.43 | 20.00 | 5.20 | 25.42 | 11.89 | 3.85 | [ |
MMBMDA-FDBDA | 876 | 34 | 172 | 38 | 26.2 | 23.2 | 4.56 | [ |
7.5% f-MWCNTs | 5300 | — | 180 | — | — | 11.0 | — | [ |
PIM-SBF-2 | 22300 | 2020 | 3820 | 1150 | 11.0 | 19.4 | 3.2 | [ |
PEBO-6FDA | 245.04 | — | 60.73 | 10.58 | — | 23.16 | 5.74 | [ |
TRCP-4∶6 | 269.0 | 4.60 | 46.8 | 5.20 | 58.48 | 51.73 | 9.00 | [ |
Am-PAFEK-60% | 4.67 | 0.14 | 0.55 | 0.15 | 33.36 | 31.13 | 3.67 | [ |
Ph-PEEK-3 | 17.14 | 1.18 | 4.08 | 1.05 | 14.59 | 16.35 | 3.89 | [ |
PEEK-3 | 14.08 | 1.06 | 3.50 | 1.01 | 13.30 | 14.00 | 3.48 | [ |
表1 含芴基聚合物膜气体渗透选择性
聚合物 | 渗透性/Barrer | 选择性 | 参考文献 | |||||
---|---|---|---|---|---|---|---|---|
CO2 | CH4 | O2 | N2 | CO2/CH4 | CO2/N2 | O2/N2 | ||
6FDA-FBPF | 61.82 | 2.43 | 20.00 | 5.20 | 25.42 | 11.89 | 3.85 | [ |
MMBMDA-FDBDA | 876 | 34 | 172 | 38 | 26.2 | 23.2 | 4.56 | [ |
7.5% f-MWCNTs | 5300 | — | 180 | — | — | 11.0 | — | [ |
PIM-SBF-2 | 22300 | 2020 | 3820 | 1150 | 11.0 | 19.4 | 3.2 | [ |
PEBO-6FDA | 245.04 | — | 60.73 | 10.58 | — | 23.16 | 5.74 | [ |
TRCP-4∶6 | 269.0 | 4.60 | 46.8 | 5.20 | 58.48 | 51.73 | 9.00 | [ |
Am-PAFEK-60% | 4.67 | 0.14 | 0.55 | 0.15 | 33.36 | 31.13 | 3.67 | [ |
Ph-PEEK-3 | 17.14 | 1.18 | 4.08 | 1.05 | 14.59 | 16.35 | 3.89 | [ |
PEEK-3 | 14.08 | 1.06 | 3.50 | 1.01 | 13.30 | 14.00 | 3.48 | [ |
聚合物 | 渗透性/Barrer | 选择性 | 参考文献 | |||||
---|---|---|---|---|---|---|---|---|
CO2 | CH4 | O2 | N2 | CO2/CH4 | CO2/N2 | O2/N2 | ||
PMHS-I | — | — | 31.00 | 6.98 | — | — | 4.44 | [ |
IBPPMS | — | — | 47.1 | 6.62 | — | — | 7.11 | [ |
UV-PIS-4 | 69 | 1.1 | 21.5 | 3.25 | 61.0 | 21.2 | 6.6 | [ |
CMS PILPSQ-20 | 2465 | 44.02 | — | — | 56 | — | — | [ |
PMDA-DAT | 51.4 | 1.6 | 9.4 | 1.5 | 32.1 | 34.27 | 6.3 | [ |
TB-CMS-800 | 4200 | 12.5 | 342 | 38 | 112 | 37 | 9.0 | [ |
m-TR400-2 | 29.7 | 0.97 | 7.8 | 1.7 | 30.62 | 17.47 | 4.62 | [ |
A40B40-TR-420 | 92 | 1.68 | — | — | 54.7 | — | — | [ |
TPI-PBO-0.75 | 505 | 18 | 107 | 25 | 28 | 20.2 | 4.3 | [ |
表2 含酰亚胺基聚合物气体渗透选择性
聚合物 | 渗透性/Barrer | 选择性 | 参考文献 | |||||
---|---|---|---|---|---|---|---|---|
CO2 | CH4 | O2 | N2 | CO2/CH4 | CO2/N2 | O2/N2 | ||
PMHS-I | — | — | 31.00 | 6.98 | — | — | 4.44 | [ |
IBPPMS | — | — | 47.1 | 6.62 | — | — | 7.11 | [ |
UV-PIS-4 | 69 | 1.1 | 21.5 | 3.25 | 61.0 | 21.2 | 6.6 | [ |
CMS PILPSQ-20 | 2465 | 44.02 | — | — | 56 | — | — | [ |
PMDA-DAT | 51.4 | 1.6 | 9.4 | 1.5 | 32.1 | 34.27 | 6.3 | [ |
TB-CMS-800 | 4200 | 12.5 | 342 | 38 | 112 | 37 | 9.0 | [ |
m-TR400-2 | 29.7 | 0.97 | 7.8 | 1.7 | 30.62 | 17.47 | 4.62 | [ |
A40B40-TR-420 | 92 | 1.68 | — | — | 54.7 | — | — | [ |
TPI-PBO-0.75 | 505 | 18 | 107 | 25 | 28 | 20.2 | 4.3 | [ |
聚合物 | 渗透性/Barrer | 选择性 | 参考文献 | |||||
---|---|---|---|---|---|---|---|---|
CO2 | CH4 | O2 | N2 | CO2/CH4 | CO2/N2 | O2/N2 | ||
NT-TR/BT (1/1) | 930 | 43.1 | 164 | 45.5 | 21.6 | 20.4 | 3.6 | [ |
XS10 | 25.9 | 0.41 | 4.89 | 0.78 | 63.2 | 33.2 | 6.3 | [ |
PI-3F | 845 | 55.3 | 99.8 | 53.8 | 15.4 | 15.7 | 1.9 | [ |
TNTDA-DAT | 728 | 24 | 159 | 32 | 29.7 | 22.6 | 4.93 | [ |
表3 含萘基聚合物气体渗透选择性
聚合物 | 渗透性/Barrer | 选择性 | 参考文献 | |||||
---|---|---|---|---|---|---|---|---|
CO2 | CH4 | O2 | N2 | CO2/CH4 | CO2/N2 | O2/N2 | ||
NT-TR/BT (1/1) | 930 | 43.1 | 164 | 45.5 | 21.6 | 20.4 | 3.6 | [ |
XS10 | 25.9 | 0.41 | 4.89 | 0.78 | 63.2 | 33.2 | 6.3 | [ |
PI-3F | 845 | 55.3 | 99.8 | 53.8 | 15.4 | 15.7 | 1.9 | [ |
TNTDA-DAT | 728 | 24 | 159 | 32 | 29.7 | 22.6 | 4.93 | [ |
11 | BASU Subhankar, KHAN Asim L, Angels CANO-ODENA, et al. Membrane-based technologies for biogas separations[J]. Chemical Society Reviews, 2010, 39(2): 750-768. |
12 | YUAN Z, HE G W, LI S X, et al. Gas separations using nanoporous atomically thin membranes: Recent theoretical, simulation, and experimental advances[J]. Advanced Materials, 2022, 34(32): e2201472. |
13 | HENIS Jay M S, TRIPODI Mary K. Composite hollow fiber membranes for gas separation: The resistance model approach[J]. Journal of Membrane Science, 1981, 8(3): 233-246. |
14 | BAKER Richard W, Bee Ting LOW. Gas separation membrane materials: A perspective[J]. Macromolecules, 2014, 47(20): 6999-7013. |
15 | WANG Fei, ZHANG Zhao, SHAKIR Imran, et al. 2D polymer nanosheets for membrane separation[J]. Advanced Science, 2022, 9(8): e2103814. |
16 | POWELL Clem E, QIAO Greg G. Polymeric CO2/N2 gas separation membranes for the capture of carbon dioxide from power plant flue gases[J]. Journal of Membrane Science, 2006, 279(1/2): 1-49. |
17 | VENNA Surendar R, CARREON Moises A. Metal organic framework membranes for carbon dioxide separation[J]. Chemical Engineering Science, 2015, 124: 3-19. |
18 | SUN Pengzhan, WANG Kunlin, ZHU Hongwei. Recent developments in graphene-based membranes: Structure, mass-transport mechanism and potential applications[J]. Advanced Materials, 2016, 28(12): 2287-2310. |
19 | ZHU Xiang, TIAN Chengcheng, CHAI Songhai, et al. New tricks for old molecules: Development and application of porous N-doped, carbonaceous membranes for CO2 separation[J]. Advanced Materials, 2013, 25(30): 4152-4158. |
20 | VERWEIJ H. Inorganic membranes[J]. Current Opinion in Chemical Engineering, 2012, 1(2): 156-162. |
21 | REZAKAZEMI Mashallah, EBADI AMOOGHIN Abtin, MONTAZER-RAHMATI Mohammad Mehdi, et al. State-of-the-art membrane based CO2 separation using mixed matrix membranes (MMMs): An overview on current status and future directions[J]. Progress in Polymer Science, 2014, 39(5): 817-861. |
22 | RAFIQ Sikander, DENG Liyuan, May-Britt HÄGG. Role of facilitated transport membranes and composite membranes for efficient CO2 capture—A review[J]. ChemBioEng Reviews, 2016, 3(2): 68-85. |
23 | RAFIQ Sikander, MAULUD Abdulhalim, MAN Zakaria, et al. Modelling in mixed matrix membranes for gas separation[J]. The Canadian Journal of Chemical Engineering, 2015, 93(1): 88-95. |
24 | WELLER Sol, STEINER Waldo A. Separation of gases by fractional permeation through membranes[J]. Journal of Applied Physics, 1950, 21(4): 279-283. |
25 | WANG Minghui, ZHAO Junjie, WANG Xiaoxue, et al. Recent progress on submicron gas-selective polymeric membranes[J]. Journal of Materials Chemistry A, 2017, 5(19): 8860-8886. |
26 | PARK H B, KAMCEV J, ROBESON L M, et al. Maximizing the right stuff: The trade-off between membrane permeability and selectivity[J]. Science, 2017, 356(6343): eaab0530. |
27 | ROBESON Lloyd M. The upper bound revisited[J]. Journal of Membrane Science, 2008, 320(1/2): 390-400. |
28 | MCHATTIE J S, KOROS W J, PAUL D R. Gas transport properties of polysulphones: 1. Role of symmetry of methyl group placement on bisphenol rings[J]. Polymer, 1991, 32(5): 840-850. |
29 | CHEN Guining, ZHU Haipeng, HANG Yingting, et al. Simultaneously enhancing interfacial adhesion and pervaporation separation performance of PDMS/ceramic composite membrane via a facile substrate surface grafting approach[J]. AIChE Journal, 2019, 65(11): e16773. |
30 | PIXTON M R, PAUL D R. Gas transport properties of polyarylates part I: Connector and pendant group effects[J]. Journal of Polymer Science Part B: Polymer Physics, 1995, 33(7): 1135-1149. |
31 | MAIER Gerhard. Gas separation with polymer membranes[J]. Angewandte Chemie International Edition, 1998, 37(21): 2960-2974. |
32 | ALEXANDER STERN S. Polymers for gas separations: The next decade[J]. Journal of Membrane Science, 1994, 94(1): 1-65. |
33 | CAMACHO-ZUÑIGA C, RUIZ-TREVIÑO F A, ZOLOTUKHIN M G, et al. Gas transport properties of new aromatic cardo poly(aryl ether ketone)S[J]. Journal of Membrane Science, 2006, 283(1/2): 393-398. |
34 | DU Naiying, PARK Ho Bum, DAL-CIN Mauro M, et al. Advances in high permeability polymeric membrane materials for CO2 separations[J]. Energy & Environmental Science, 2012, 5(6): 7306-7322. |
35 | XU Zhikang, DANNENBERG Christine, Jürgen SPRINGER, et al. Gas separation properties of polymers containing fluorene moieties[J]. Chemistry of Materials, 2002, 14(8): 3271-3276. |
36 | ZHANG Caili. Synthesis and characterization of bis(phenyl)fluorene-based cardo polyimide membranes for H2/CH4 separation[J]. Journal of Materials Science, 2019, 54(14): 10560-10569. |
37 | HU Xiaofan, PANG Yuanyuan, MU Hongliang, et al. Synthesis and gas separation performances of intrinsically microporous polyimides based on 4-methylcatechol-derived monomers[J]. Journal of Membrane Science, 2021, 620: 118825. |
38 | WANG L, LI Y, PU L M, et al. Copolyimide membranes fabricated by nonsolvent-induced phase separation for helium extraction from natural gas[J]. Separation and Purification Technology, 2023, 313: 123455. |
39 | BUDD Peter M, GHANEM Bader S, MAKHSEED Saad, et al. Polymers of intrinsic microporosity (PIMs): Robust, solution-processable, organic nanoporous materials[J]. Chemical Communications, 2004(2): 230-231. |
40 | ARABI SHAMSABADI Ahmad, REZAKAZEMI Mashallah, SEIDI Farzad, et al. Next generation polymers of intrinsic microporosity with tunable moieties for ultrahigh permeation and precise molecular CO2 separation[J]. Progress in Energy and Combustion Science, 2021, 84: 100903. |
41 | KANG Zixi, FAN Lili, SUN Daofeng. Recent advances and challenges of metal-organic framework membranes for gas separation[J]. Journal of Materials Chemistry A, 2017, 5(21): 10073-10091. |
42 | ZHAO Xiang, WANG Yanxiang, LI Dongsheng, et al. Metal-organic frameworks for separation[J]. Advanced Materials, 2018, 30(37): e1705189. |
43 | DECHNIK Janina, GASCON Jorge, DOONAN Christian J, et al. Mixed-matrix membranes[J]. Angewandte Chemie International Edition, 2017, 56(32): 9292-9310. |
44 | SUN Haixiang, GAO Wen, ZHANG Yanwei, et al. Bis(phenyl)fluorene-based polymer of intrinsic microporosity/functionalized multi-walled carbon nanotubes mixed matrix membranes for enhanced CO2 separation performance[J]. Reactive and Functional Polymers, 2020, 147: 104465. |
45 | HOU Shengtai, SUO Xian, CHEN Nanqing, et al. Facile synthesis of a linear porous organic polymer via Schiff-base chemistry for propyne/propylene separation[J]. Polymer Chemistry, 2020, 11(27): 4382-4386. |
46 | Grazia BEZZU C, CARTA Mariolino, FERRARI Maria-Chiara, et al. The synthesis, chain-packing simulation and long-term gas permeability of highly selective spirobifluorene-based polymers of intrinsic microporosity[J]. Journal of Materials Chemistry A, 2018, 6(22): 10507-10514. |
47 | HAN Sang Hoon, MISDAN Nurasyikin, KIM Seungju, et al. Thermally rearranged (TR) polybenzoxazole: Effects of diverse imidization routes on physical properties and gas transport behaviors[J]. Macromolecules, 2010, 43(18): 7657-7667. |
48 | PARK Ho Bum, JUNG Chul Ho, LEE Young Moo, et al. Polymers with cavities tuned for fast selective transport of small molecules and ions[J]. Science, 2007, 318(5848): 254-258. |
49 | SMITH Z P, TIWARI R R, MURPHY T M, et al. Hydrogen sorption in polymers for membrane applications[J]. Polymer, 2013, 54(12): 3026-3037. |
1 | Hyun-Taek OH, Jaesung KUM, PARK Junhyung, et al. Pre-combustion CO2 capture using amine-based absorption process for blue H2 production from steam methane reformer[J]. Energy Conversion and Management, 2022, 262: 115632. |
2 | LU Xinmei, REN Tingsheng, CAO Peizhi, et al. Construction of high performance binder-free zeolite monolith[J]. Chemical Engineering Journal, 2022, 447: 137558. |
3 | SHOLL David S, LIVELY Ryan P. Seven chemical separations to change the world[J]. Nature, 2016, 532(7600): 435-437. |
4 | 藏雨, 程伟东, 兰天宇, 等. 气体分离膜材料科学[M]. 哈尔滨: 哈尔滨工业大学出版社, 2017. |
ZANG Yu, CHENG Weidong, LAN Tianyu, et al. The science of material on gas separation membrane[M]. Harbin: Harbin Institute of Technology Press, 2017. | |
5 | TAN Xiaoyu, ROBIJNS Sven, Raymond THÜR, et al. Truly combining the advantages of polymeric and zeolite membranes for gas separations[J]. Science, 2022, 378(6625): 1189-1194. |
6 | LAI Holden W H, BENEDETTI Francesco M, Jun Myun AHN, et al. Hydrocarbon ladder polymers with ultrahigh permselectivity for membrane gas separations[J]. Science, 2022, 375(6587): 1390-1392. |
7 | JANG Doojoon, BAKLI Chirodeep, CHAKRABORTY Suman, et al. Molecular self-assembly enables tuning of nanopores in atomically thin graphene membranes for highly selective transport[J]. Advanced Materials, 2022, 34(11): e2108940. |
8 | EDENS Samuel J, MCGRATH Michael J, GUO Siyu, et al. An upper bound visualization of design trade-offs in adsorbent materials for gas separations: CO2, N2, CH4, H2, O2, Xe, Kr, and Ar adsorbents[J]. Advanced Science, 2023, 10(8): e2206437. |
9 | YING Yunpan, Shing Bo PEH, YANG Hao, et al. Ultrathin covalent organic framework membranes via a multi-interfacial engineering strategy for gas separation [J]. Advanced Materials, 2022, 34(25): e2270191. |
10 | WANG Can, CAI Zhili, XIE Wei, et al. Finely tuning the microporosity in dual thermally crosslinked polyimide membranes for plasticization resistance gas separations[J]. Journal of Membrane Science, 2022, 659: 120769. |
50 | KIM Seungju, LEE Young Moo. High performance polymer membranes for CO2 separation[J]. Current Opinion in Chemical Engineering, 2013, 2(2): 238-244. |
51 | LU Yunhua, ZHANG Jianhua, XIAO Guoyong, et al. Synthesis and gas permeation properties of thermally rearranged poly(ether-benzoxazole)s with low rearrangement temperatures[J]. RSC Advances, 2020, 10(30): 17461-17472. |
52 | ZHANG Jianhua, LU Yunhua, XIAO Guoyong, et al. Enhanced gas separation and mechanical properties of fluorene-based thermal rearrangement copolymers[J]. RSC Advances, 2021, 11(22): 13164-13174. |
53 | HOU Lei, WANG Zhe, XU Jingmei, et al. Poly(arylene ether ketone) containing amino and fluorenyl groups for highly selective of gas separation[J]. Journal of Polymer Research, 2019, 26(10): 243. |
54 | ZHENG Yayun, YANG Xing, YUAN Meng, et al. Synthesis and gas transport properties of novel poly(ether ether ketone)s containing fluorene group[J]. High Performance Polymers, 2019, 31(9/10): 1173-1182. |
55 | GARCÍA José M, GARCÍA Félix C, SERNA Felipe, et al. High-performance aromatic polyamides[J]. Progress in Polymer Science, 2010, 35(5): 623-686. |
56 | MORISATO A, GHOSAL K, FREEMAN B D, et al. Gas separation properties of aromatic polyamides containing hexafluoroisopropylidene groups[J]. Journal of Membrane Science, 1995, 104(3): 231-241. |
57 | PARK Sunghwan, LEE Albert S, Yu Seong DO, et al. Side-chain engineering of ladder-structured polysilsesquioxane membranes for gas separations[J]. Journal of Membrane Science, 2016, 516: 202-214. |
58 | SHIN Ju Ho, YU Hyun Jung, PARK Junhyung, et al. Fluorine-containing polyimide/polysilsesquioxane carbon molecular sieve membranes and techno-economic evaluation thereof for C3H6/C3H8 separation[J]. Journal of Membrane Science, 2020, 598: 117660. |
59 | SOMMER L H, PIETRUSZA E W, WHITMORE F C. Peroxide-catalyzed addition of trichlorosilane to 1-octene[J]. Journal of the American Chemical Society, 1947, 69(1): 188. |
60 | XU Shuangping, MA Wenqiang, ZHOU Hailiang, et al. A novel imide-bridged polysiloxane membrane was prepared via one-pot hydrosilylation reaction for O2/N2 separation[J]. ACS Omega, 2021, 6(30): 19553-19558. |
61 | ZHAO Wenwen, MA Wenqiang, XU Shuangping, et al. Soluble imide-bridged polypentamethyltrisiloxane (IBPPMS) with rationally designed ladder-like structure for O2/N2 permselectivity[J]. Macromolecules, 2022, 55(21): 9833-9840. |
62 | PARK J, GAINES K E, JHENG L C, et al. Characterization and gas transport properties of UV-irradiated polydimethylsiloxane (PDMS)-containing polyimide copolymer membranes[J]. Polymer, 2020, 210: 122966. |
63 | SHIN Ju Ho, YU Hyun Jung, AN Heseong, et al. Rigid double-stranded siloxane-induced high-flux carbon molecular sieve hollow fiber membranes for CO2/CH4 separation[J]. Journal of Membrane Science, 2019, 570/571: 504-512. |
64 | WANG T J, YAO H, SONG N N, et al. Construction of microporous polyimides with tunable pore size and high CO2 selectivity based on cross-linkable linear polyimides[J]. Industrial & Engineering Chemistry Research, 2020, 59(7): 2953-2959. |
65 | SONG Ningning, MA Tengning, WANG Tianjiao, et al. Microporous polyimides with high surface area and CO2 selectivity fabricated from cross-linkable linear polyimides[J]. Journal of Colloid and Interface Science, 2020, 573: 328-335. |
66 | LI Fenfen, ZHANG Caili, WENG Yunxuan. Preparation and gas separation properties of triptycene-based microporous polyimide[J]. Macromolecular Chemistry and Physics, 2019, 220(10): 1900047. |
67 | WANG Zhenggong, REN Huiting, ZHANG Shenxiang, et al. Carbon molecular sieve membranes derived from Tröger’s base-based microporous polyimide for gas separation[J]. ChemSusChem, 2018,11(5): 916-923. |
68 | JIANG Xuewei, XIAO Xian, DONG Jie, et al. Effects of non-TR-able codiamines and rearrangement conditions on the chain packing and gas separation performance of thermally rearranged poly(benzoxazole-co-imide) membranes[J]. Journal of Membrane Science, 2018, 564: 605-616. |
69 | GAN Feng, DONG Jie, ZHENG Sensen, et al. Constructing gas molecule transport channels in thermally rearranged multiblock poly(benzoxazole-co-imide) membranes for effective CO2/CH4 separation[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(26): 9669-9679. |
70 | LUO Shuangjiang, ZHANG Qinnan, BEAR Tyler K, et al. Triptycene-containing poly(benzoxazole-co-imide) membranes with enhanced mechanical strength for high-performance gas separation[J]. Journal of Membrane Science, 2018, 551: 305-314. |
71 | SHIN Dong Won, LEE So Young, KANG Na Rae, et al. Durable sulfonated poly(arylene sulfide sulfone nitrile)s containing naphthalene units for direct methanol fuel cells (DMFCs)[J]. Macromolecules, 2013, 46(9): 3452-3460. |
72 | SAWAI Takashi, WAKABAYASHI Kanji, YAMAZAKI Shinichi, et al. Synthesis and morphology control of self-condensable naphthalene-containing polyimide by using reaction-induced crystallization[J]. European Polymer Journal, 2013, 49(8): 2334-2343. |
73 | QIAN Kai, FANG Jianhua, LIU Rui, et al. Six-membered ring copolyimides as novel high performance membrane materials for gas separations[J]. Materials Today Communications, 2018, 14: 254-262. |
74 | DUJARDIN Wouter, VAN GOETHEM Cédric, ZHANG Zidan, et al. Fine-tuning the molecular structure of binaphthalene polyimides for gas separations[J]. European Polymer Journal, 2019, 114: 134-143. |
75 | DENG G X, LUO J Z, LIU S, et al. Molecular design and characterization of new polyimides based on binaphthyl-ether diamines for gas separation[J]. Separation and Purification Technology, 2020, 235: 116218. |
76 | LI Tianyun, LIU Junjie, ZHAO Shasha, et al. Microporous polyimides containing bulky tetra-o-isopropyl and naphthalene groups for gas separation membranes[J]. Journal of Membrane Science, 2019, 585: 282-288. |
77 | HU Xiaofan, MU Hongliang, MIAO Jie, et al. Synthesis and gas separation performance of intrinsically microporous polyimides derived from sterically hindered binaphthalenetetracarboxylic dianhydride[J]. Polymer Chemistry, 2020, 11(25): 4172-4179. |
[1] | 杨静, 李博, 李文军, 刘晓娜, 汤刘元, 刘月, 钱天伟. 焦化污染场地中萘降解菌的分离及降解特性[J]. 化工进展, 2023, 42(8): 4351-4361. |
[2] | 王兰江, 梁瑜, 汤琼, 唐明兴, 李学宽, 刘雷, 董晋湘. 快速热解铂前体合成高分散的Pt/HY催化剂及其萘深度加氢性能[J]. 化工进展, 2023, 42(8): 4159-4166. |
[3] | 罗伶萍, 王慧敏, 朱泰忠, 张良, 刘梦娇, 黄菲, 薛立新. 基于PI微球复合型全热交换膜的制备与性能[J]. 化工进展, 2023, 42(12): 6478-6489. |
[4] | 姜帅, 王姗, 韩旭辉, 张奇, 柴春鹏. 聚酰亚胺基固体润滑复合材料研究进展[J]. 化工进展, 2023, 42(11): 5811-5830. |
[5] | 蔡铭威, 王知, 卢小闯, 庄俊伟, 吴嘉豪, 张诗洋, 闵永刚. 聚酰亚胺薄膜在氢气分离中的研究进展[J]. 化工进展, 2023, 42(10): 5232-5248. |
[6] | 孔倩, 孙巾超, 葛佳琪, 张鹏, 马艳龙, 刘百军. 沉淀剂对NiW/TiO2-ASA催化剂加氢裂化性能的影响[J]. 化工进展, 2023, 42(1): 265-271. |
[7] | 程鹏, 赵山山, 杨文龙, 齐跃, 丁晓墅, 杨秋生, 张东升, 王延吉. 1,5-二氨基萘合成技术研究进展[J]. 化工进展, 2022, 41(9): 5011-5021. |
[8] | 苏少纯, 林成威, 周新华, 周红军. 硅烷化聚琥珀酰亚胺负载阿维菌素的制备与性能[J]. 化工进展, 2022, 41(8): 4481-4490. |
[9] | 洪乾, 白瑞, 彭欣华, 孙鸣, 刘珊珊, 焦林郁, 马晓迅. 负载型铜在萘的α-硝基化反应中的催化性能[J]. 化工进展, 2022, 41(4): 1894-1899. |
[10] | 宋梓豪, 王宏鑫, 杜博宇, 段秋阳, 卢晶虹, 江颖辉, 崔升. 聚酰亚胺气凝胶制备、性能及应用进展[J]. 化工进展, 2022, 41(2): 816-826. |
[11] | 洪海球, 邓宋, 赖仕全, 岳莉, 赵雪飞. 萘沥青及热转化产物的性质和结构表征[J]. 化工进展, 2020, 39(7): 2724-2733. |
[12] | 李恩田,徐洋,姚培,朱媛媛,张怿涵,朱霞石. β-环糊精协同乙烯基咪唑离子液体脱除溶剂油中的萘[J]. 化工进展, 2020, 39(4): 1321-1328. |
[13] | 贝鹏志, 刘红晶, 张莹, 高缨佳, 胡爱军, 宾华. 离子液体接枝型PI/GO膜的制备及CO2/N2分离的应用[J]. 化工进展, 2020, 39(11): 4550-4556. |
[14] | 党洪洋,张国亮,龙柱,王士华,李志强,胡爱林,郭帅,吕文志. 纳米结晶纤维素表面修饰聚酰亚胺纤维及其润湿功能性[J]. 化工进展, 2020, 39(1): 301-310. |
[15] | 窦梦迪,丁雪洁,刘雯欣,张伟,鲁墨弘,李明时,朱劼. 表面润湿性可控的碳纳米管负载钯催化剂及其在1,8-二硝基萘选择性加氢中的催化性能[J]. 化工进展, 2020, 39(1): 181-189. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |