1 |
DOUGLAS A E. Strategies for enhanced crop resistance to insect pests[J]. Annual Review of Plant Biology, 2018, 69: 637-660.
|
2 |
DE OLIVEIRA J L, CAMPOS E V R, BAKSHI M, et al. Application of nanotechnology for the encapsulation of botanical insecticides for sustainable agriculture: prospects and promises[J]. Biotechnology Advances, 2014, 32(8): 1550-1561.
|
3 |
RAI M, RIBEIRO C, MATTOSO L, et al. Nanotechnologies in food and agriculture[M]. Cham: Springer International Publishing, 2015.
|
4 |
FENNER K, CANONICA S, WACKETT L P, et al. Evaluating pesticide degradation in the environment: blind spots and emerging opportunities[J]. Science, 2013, 341(6147): 752-758.
|
5 |
陈龙, 周红军, 江海科, 等. 叶面亲和型阿维菌素微胶囊的制备及pH响应性释放性能[J]. 化工进展, 2020, 39(1): 348-355.
|
|
CHEN Long, ZHOU Hongjun, JIANG Haike, et al. Preparation and pH responsive release properties of foliar affinity avermectin microcapsules[J]. Chemical Industry and Engineering Progress, 2020, 39(1): 348-355.
|
6 |
KAZIEM A E, GAO Y H, ZHANG Y, et al. α-Amylase triggered carriers based on cyclodextrin anchored hollow mesoporous silica for enhancing insecticidal activity of avermectin against Plutella xylostella[J]. Journal of Hazardous Materials, 2018, 359: 213-221.
|
7 |
庞煜霞, 李媛, 周明松, 等. 羧甲基化碱木质素对农药的吸附分散作用机理[J]. 化工学报, 2016, 67(11): 4858-4865.
|
|
PANG Yuxia, LI Yuan, ZHOU Mingsong, et al. Influence of carboxymethylated lignin as pesticide dispersant on adsorption and dispersion[J]. CIESC Journal, 2016, 67(11): 4858-4865.
|
8 |
ZHAO K F, WANG B, ZHANG C H, et al. Catechol functionalized hat-shape carriers for prolonging pesticide retention and flush resistance on foliage[J]. Chemical Engineering Journal, 2021, 420: 127689.
|
9 |
ZHAO X, CUI H, WANG Y, et al. Development strategies and prospects of nano-based smart pesticide formulation[J]. Journal of Agricultural and Food Chemistry, 2018, 66(26): 6504-6512.
|
10 |
郝丽, 黄丹丹, 关梅, 等. 氨基-酰胺类智能超分子水凝胶农药载体制备[J]. 化工学报, 2020, 71(8): 3819-3829.
|
|
HAO Li, HUANG Dandan, GUAN Mei, et al. Preparation of supramolecular-assemble hydrogels as pesticide carriers based on amphiphilic amino-amide compounds[J]. CIESC Journal, 2020, 71(8): 3819-3829.
|
11 |
CHEN H, ZHI H, LIANG J, et al. Development of leaf-adhesive pesticide nanocapsules with pH-responsive release to enhance retention time on crop leaves and improve utilization efficiency[J]. Journal of Materials Chemistry B, 2021, 9(3): 783-792.
|
12 |
PENG R F, YANG D J, QIU X Q, et al. Preparation of self-dispersed lignin-based drug-loaded material and its application in avermectin nano-formulation[J]. International Journal of Biological Macromolecules, 2020, 151: 421-427.
|
13 |
HAO L, GONG L H, CHEN L, et al. Composite pesticide nanocarriers involving functionalized boron nitride nanoplatelets for pH-responsive release and enhanced UV stability[J]. Chemical Engineering Journal, 2020, 396: 125233.
|
14 |
SONG S, WANG Y, XIE J, et al. Carboxymethyl chitosan modified carbon nanoparticle for controlled emamectin benzoate delivery: improved solubility, pH-responsive release, and sustainable pest control[J]. ACS Applied Materials & Interfaces, 2019, 11(37): 34258-34267.
|
15 |
XIN X P, HE Z L, HILL M R, et al. Efficiency of biodegradable and pH-responsive polysuccinimide nanoparticles (PSI-NPs) as smart nanodelivery systems in grapefruit: in vitro cellular investigation[J]. Macromolecular Bioscience, 2018, 18(7): 1800159.
|
16 |
HERNÁNDEZ-GONZÁLEZ M, PÉREZ BERUMEN C M, SÁNCHEZ RUÍZ H, et al. Polysuccinimide functionalized with oregano’s essential oil extracts, an antimicrobial extended release bio-material[J]. Materials Letters, 2017, 191: 73-76.
|
17 |
LEE M, JEONG J, KIM D. Intracellular uptake and pH-dependent release of doxorubicin from the self-assembled micelles based on amphiphilic polyaspartamide graft copolymers[J]. Biomacromolecules, 2015, 16(1): 136-144.
|
18 |
XU M, ZHAO Y F, FENG M. Polyaspartamide derivative nanoparticles with tunable surface charge achieve highly efficient cellular uptake and low cytotoxicity[J]. Langmuir, 2012, 28(31): 11310-11318.
|
19 |
GU X, WANG J J, LIU X F, et al. Temperature-responsive drug delivery systems based on polyaspartamides with isopropylamine pendant groups[J]. Soft Matter, 2013, 9(30): 7267.
|
20 |
HILL M R, MACKRELL E J, FORSTHOEFEL C P, et al. Biodegradable and pH-responsive nanoparticles designed for site-specific delivery in agriculture[J]. Biomacromolecules, 2015, 16(4): 1276-1282.
|
21 |
XIN X P, ZHAO F L, RHO J Y, et al. Use of polymeric nanoparticles to improve seed germination and plant growth under copper stress[J]. Science of the Total Environment, 2020, 745: 141055.
|
22 |
WU H X, HU P T, XU Y, et al. Phloem delivery of fludioxonil by plant amino acid transporter-mediated polysuccinimide nanocarriers for controlling fusarium wilt in banana[J]. Journal of Agricultural and Food Chemistry, 2021, 69(9): 2668-2678.
|
23 |
PAN X J, KADLA J F, EHARA K, et al. Organosolv ethanol lignin from hybrid poplar as a radical scavenger: relationship between lignin structure, extraction conditions, and antioxidant activity[J]. Journal of Agricultural and Food Chemistry, 2006, 54(16): 5806-5813.
|
24 |
MAGGIO R M, CASTELLANO P M, KAUFMAN T S. A new principal component analysis-based approach for testing “similarity” of drug dissolution profiles[J]. European Journal of Pharmaceutical Sciences, 2008, 34(1): 66-77.
|
25 |
中华人民共和国国家质量监督检验检疫总局. 农药热贮稳定性测定方法: [S]. 北京: 中国标准出版社, 2003.
|
|
General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. Testing method for the storage stability at elevated temperature of pesticides: [S]. Beijing: Standards Press of China, 2003.
|
26 |
KIM J R, YEON S H, KIM H S, et al. Larvicidal activity against Plutella xylostella of cordycepin from the fruiting body of Cordyceps militaris[J]. Pest Management Science, 2002, 58(7): 713-717.
|
27 |
CHEN J X, XU L H, HAN J, et al. Synthesis of modified polyaspartic acid and evaluation of its scale inhibition and dispersion capacity[J]. Desalination, 2015, 358: 42-48.
|
28 |
GUNDA N S K, SINGH M, NORMAN L, et al. Optimization and characterization of biomolecule immobilization on silicon substrates using (3-aminopropyl)triethoxysilane (APTES) and glutaraldehyde linker[J]. Applied Surface Science, 2014, 305: 522-530.
|
29 |
ZHANG Q, FANG J J, LIU W J, et al. Synthesis and characterization of poly(D, L-lactide-co-glycolide) modified by maleic anhydride and 1, 4-butanediamine[J]. International Journal of Polymer Analysis and Characterization, 2018, 23(5): 474-482.
|
30 |
MAJOUL N, AOUIDA S, BESSAÏS B. Progress of porous silicon APTES-functionalization by FTIR investigations[J]. Applied Surface Science, 2015, 331: 388-391.
|
31 |
VELAZCO-DE-LA-GARZA J, AVÉROUS L, SOSA-SANTILLÁN G D J, et al. Biological properties of novel polysuccinimide derivatives synthesized via quaternary ammonium grafting[J]. European Polymer Journal, 2020, 131: 109705.
|
32 |
SHEN S C, NG W K, CHIA L, et al. Sonochemical synthesis of (3-aminopropyl)triethoxysilane-modified monodispersed silica nanoparticles for protein immobilization[J]. Materials Research Bulletin, 2011, 46(10): 1665-1669.
|
33 |
PONTÓN P I, D’ALMEIDA J R M, MARINKOVIC B A, et al. The effects of the chemical composition of titanate nanotubes and solvent type on 3-aminopropyltriethoxysilane grafting efficiency[J]. Applied Surface Science, 2014, 301: 315-322.
|
34 |
POUSSARD L, MARIAGE J, GRIGNARD B, et al. Non-isocyanate polyurethanes from carbonated soybean oil using monomeric or oligomeric diamines to achieve thermosets or thermoplastics[J]. Macromolecules, 2016, 49(6): 2162-2171.
|
35 |
KONO H, UNO T, TSUJISAKI H, et al. Nanofibrillated bacterial cellulose modified with (3-aminopropyl)trimethoxysilane under aqueous conditions: applications to poly(methyl methacrylate) fiber-reinforced nanocomposites[J]. ACS Omega, 2020, 5(45): 29561-29569.
|
36 |
南鹏林, 张维磊, 赵彦生, 等. 改性聚天冬氨酸/聚丙烯酸/羧甲基纤维素复合高吸水性树脂的制备及其性能[J]. 精细化工, 2017, 34(7): 751-759.
|
|
Penglin NAN, ZHANG Weilei, ZHAO Yansheng, et al. Synthesis and properties of modified poly(aspartic acid)/poly(acrylic acid)/carboxymethyl cellulose composite superabsorbent resins[J]. Fine Chemicals, 2017, 34(7): 751-759.
|
37 |
ZHU Y X, GONG H J. Beneficial effects of silicon on salt and drought tolerance in plants[J]. Agronomy for Sustainable Development, 2014, 34(2): 455-472.
|
38 |
ETESAMI H, JEONG B R. Silicon (Si): Review and future prospects on the action mechanisms in alleviating biotic and abiotic stresses in plants[J]. Ecotoxicology and Environmental Safety, 2018, 147: 881-896.
|
39 |
HAO L, LIN G Q, CHEN C Y, et al. Phosphorylated zein as biodegradable and aqueous nanocarriers for pesticides with sustained-release and anti-UV properties[J]. Journal of Agricultural and Food Chemistry, 2019, 67(36): 9989-9999.
|