化工进展 ›› 2023, Vol. 42 ›› Issue (12): 6478-6489.DOI: 10.16085/j.issn.1000-6613.2023-0101

• 材料科学与技术 • 上一篇    

基于PI微球复合型全热交换膜的制备与性能

罗伶萍1(), 王慧敏1, 朱泰忠1, 张良1, 刘梦娇1, 黄菲1(), 薛立新1,2()   

  1. 1.浙江工业大学化工学院膜分离与水科学技术中心,浙江 杭州 310014
    2.温州大学化学与材料工程学院,浙江 温州 325035
  • 收稿日期:2023-01-29 修回日期:2023-03-04 出版日期:2023-12-25 发布日期:2024-01-08
  • 通讯作者: 黄菲,薛立新
  • 作者简介:罗伶萍(1997—),女,硕士研究生,研究方向为膜科学与技术。E-mail:2112001153@zjut.edu.cn
  • 基金资助:
    国家自然科学基金(NSFC-21975222)

Preparation and properties of composite total heat exchange membranes based on polyimide microspheres

LUO Lingping1(), WANG Huimin1, ZHU Taizhong1, ZHANG Liang1, LIU Mengjiao1, HUANG Fei1(), XUE Lixin1,2()   

  1. 1.Center for Membrane Separation and Water Science & Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
    2.College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, Zhejiang, China
  • Received:2023-01-29 Revised:2023-03-04 Online:2023-12-25 Published:2024-01-08
  • Contact: HUANG Fei, XUE Lixin

摘要:

聚酰亚胺(PI)是一类具备高热稳定性和化学稳定性的聚合物材料,已被广泛用于气体分离膜的制备。然而,当前将其作为新型有机填料的研究甚少,更没有应用在全热交换、新风系统领域的相关报道。因此,本文采用对苯二胺(pPDA)和3,3′,4,4′-二苯酮四甲酸二酐(BTDA)作为单体原料,通过溶剂热聚合法成功制备了具有片层结构的PI微球颗粒。通过界面聚合过程将所制备的PI微球引入聚酰胺(PA)分离层中,构建出一系列基于PI微球的PA复合型全热交换膜材料。深入探究了PI微球的添加方式(制膜工艺)和掺杂量对膜形貌、水接触角、表面粗糙度、CO2及水蒸气透过率、全热交换效率等的影响规律。研究结果表明,采用将PI微球均匀分散于均苯三甲酰氯(TMC)油相溶液中的制膜方法可确保粒子的负载与界面聚合反应同步进行,有效避免了颗粒堆叠和界面缺陷的问题。所制备的PI-PA-IV-2复合膜具有优异的透湿阻气性能,水蒸气渗透率从原膜的1763.45g/(m2·24h)提升至1949.51g/(m2·24h),CO2透过率从21.04GPU降至3.64GPU。与此同时,该膜拥有与商业纸膜相当的热交换效率(97.47%)和焓交换效率(71.41%),为新型高效全热交换膜的制备提供了可行方案。

关键词: 聚酰亚胺, 分离, 膜, 界面, 阻气, 全热交换效率

Abstract:

Polyimide (PI) is a highly stable class of polymeric materials widely used in gas separation applications. However, research on new organic fillers for PI is limited with few reports on their application in total heat exchange and fresh air systems. In this study, the flower-like PI microspheres with a lamellar structure were synthesized using 1,4-phenylenediamine (pPDA) and benzophenone-3,3′,4,4′-tetracarboxylic dianhydride (BTDA) as monomers via a solvothermal process polymerization. By introducing PI microspheres into the polyamide (PA) separation layer via interfacial polymerization (IP), a series of PI-PA composite total heat exchange membranes were successfully fabricated. The effects of the addition method and amount of PI microspheres on membrane morphology, water contact angle, surface roughness, CO2 and water vapor permeability, and total heat exchange efficiency were thoroughly investigated. The homogeneous dispersion of PI microspheres in trimesoyl chloride (TMC) oil phase ensured simultaneous PI loading and interfacial polymerization, effectively avoiding particle stacking and interfacial defects. The optimized PI-PA-Ⅳ-2 composite film demonstrated outstanding moisture permeability and gas resistance with CO2 permeability decreasing from 21.04GPU to 3.64GPU and water vapor permeability increasing from 1763.45g/(m2·24h) to 1949.51g/(m2·24h). Moreover, this membrane exhibited comparable heat exchange efficiency (97.47%) and enthalpy exchange efficiency (71.41%) to commercial paper membranes, highlighting its potential as a valuable approach for the high-efficiency total heat exchange membranes.

Key words: polyimide, separation, membranes, interface, gas barrier, total heat exchange efficiency

中图分类号: 

京ICP备12046843号-2;京公网安备 11010102001994号
版权所有 © 《化工进展》编辑部
地址:北京市东城区青年湖南街13号 邮编:100011
电子信箱:hgjz@cip.com.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn