化工进展 ›› 2024, Vol. 43 ›› Issue (1): 145-163.DOI: 10.16085/j.issn.1000-6613.2023-1260
• 专栏:化工过程强化 • 上一篇
罗芬(), 杨晓琪, 段方麟, 李小江, 吴亮(), 徐铜文()
收稿日期:
2023-07-21
修回日期:
2023-09-28
出版日期:
2024-01-20
发布日期:
2024-02-05
通讯作者:
吴亮,徐铜文
作者简介:
罗芬(1998—),女,博士研究生,研究方向为双极膜的制备与应用。E-mail:lfjy@mail.ustc.edu.cn。
基金资助:
LUO Fen(), YANG Xiaoqi, DUAN Fanglin, LI Xiaojiang, WU Liang(), XU Tongwen()
Received:
2023-07-21
Revised:
2023-09-28
Online:
2024-01-20
Published:
2024-02-05
Contact:
WU Liang, XU Tongwen
摘要:
双极膜是一类具有特殊“三明治”结构的离子交换膜。在反向偏压下,双极膜界面层独特的水解离行为使其具有在线生成H+和OH-能力,因而在酸碱生产、资源分离回收等领域发挥着越来越重要的作用。双极膜界面层催化剂的引入可以有效降低水解离反应电阻。然而,大部分双极膜由于界面层构筑不当使其存在水解离电压过高、膜层结合力差、催化剂泄漏以及第一极限电流密度大等问题,无法实现大规模的工业化制备及应用。因此,本文立足于双极膜及技术近期研究进展,从双极膜的水解离机理出发,综述了界面层催化剂的种类、界面构筑方式及膜层的复合工艺三个方面的研究进展,深度分析了浸蘸法、涂覆法、静电组装、原位生长、层层堆叠等界面催化剂固定方式的优缺点,力求为双极膜的规模化制备提供相应的理论支撑。文中也指出了双极膜在工业化酸碱生产过程中的瓶颈问题,提出了不对称双极膜电渗析在工业化酸碱生产应用中的关键作用。最后对双极膜的电化学应用前景进行了展望,即应该努力探索双极膜在电解水制氢、二氧化碳还原、电化学合成氨、燃料电池、液流电池等能源领域的应用前景,以此来推动双极膜的发展。
中图分类号:
罗芬, 杨晓琪, 段方麟, 李小江, 吴亮, 徐铜文. 双极膜研究进展及应用展望[J]. 化工进展, 2024, 43(1): 145-163.
LUO Fen, YANG Xiaoqi, DUAN Fanglin, LI Xiaojiang, WU Liang, XU Tongwen. Recent advances in the bipolar membrane and its applications[J]. Chemical Industry and Engineering Progress, 2024, 43(1): 145-163.
催化剂分类 | 代表性催化剂 |
---|---|
大分子物质催化剂 | 弱酸型:羧酸基[ 弱碱型:胺基[ 枝状大分子:PAMAM[ |
金属/金属配合物催化剂 | 金属盐:FeCl3[ 金属配合物:Fe(Ⅲ)@PEI[ |
金属氧化物 /氢氧化物催化剂 | 金属氧化物:TiO2[ 金属氢氧化物:Mg(OH)2[ |
金属有机框架(MOFs)催化剂 | Fe-MIL-101-NH2[ |
新型催化剂 | GO[ |
表1 水解离催化剂的种类
催化剂分类 | 代表性催化剂 |
---|---|
大分子物质催化剂 | 弱酸型:羧酸基[ 弱碱型:胺基[ 枝状大分子:PAMAM[ |
金属/金属配合物催化剂 | 金属盐:FeCl3[ 金属配合物:Fe(Ⅲ)@PEI[ |
金属氧化物 /氢氧化物催化剂 | 金属氧化物:TiO2[ 金属氢氧化物:Mg(OH)2[ |
金属有机框架(MOFs)催化剂 | Fe-MIL-101-NH2[ |
新型催化剂 | GO[ |
71 | ABOU-DIAB M, THIBODEAU J, FLISS I, et al. Eco-circular production of demineralized bioactive peptides from bovine hemoglobin by performing the necessary steps simultaneously using bipolar membrane electrodialysis[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(50): 16905-16917. |
72 | VERA E, SANDEAUX J, PERSIN F, et al. Deacidification of passion fruit juice by electrodialysis with bipolar membrane after different pretreatments[J]. Journal of Food Engineering, 2009, 90(1): 67-73. |
73 | WANG Yaoming, ZHANG Ni, HUANG Chuanhui, et al. Production of monoprotic, diprotic, and triprotic organic acids by using electrodialysis with bipolar membranes: Effect of cell configurations[J]. Journal of Membrane Science, 2011, 385/386: 226-233. |
74 | CHEN Riyao, HUANG Zhenxia, ZHENG Xi, et al. Paired electro-generation of glyoxylic acid using bipolar membrane made from sodium alginate and chitosan[J]. Chemical Engineering Communications, 2010, 197(12): 1476-1484. |
75 | YUAN Xiaole, LIU Jia, HAN Chunjiang, et al. Simultaneous nutrient-energy recovery from source-separated urine based on bioelectrically enhanced bipolar membrane-driven in situ alkali production coupling with gas-permeable membrane system[J]. Chemical Engineering Journal, 2022, 431: 134161. |
76 | ALVES DE OLIVEIRA R, SCHNEIDER R, HOSS LUNELLI B, et al. A simple biorefinery concept to produce 2G-lactic acid from sugar beet pulp (SBP): A high-value target approach to valorize a waste stream[J]. Molecules, 2020, 25(9): 2113. |
77 | LIU Guangli, LUO Haiping, WANG Haohao, et al. Malic acid production using a biological electrodialysis with bipolar membrane[J]. Journal of Membrane Science, 2014, 471: 179-184. |
78 | FU Rong, WANG Huangying, YAN Junying, et al. Asymmetric bipolar membrane electrodialysis for acid and base production[J]. AIChE Journal, 2023, 69(3): e17957. |
79 | GRIMAUD A. Acidic or basic oxides? Better together[J]. Joule, 2020, 4(11): 2251-2253. |
80 | KIM Byung Su, PARK Seul Chan, KIM Do-Hyeong, et al. Bipolar membranes to promote formation of tight ice-like water for efficient and sustainable water splitting[J]. Small, 2020, 16(41): 2002641. |
81 | MARIN D H, PERRYMAN J T, HUBERT M A, et al. Hydrogen production with seawater-resilient bipolar membrane electrolyzers[J]. Joule, 2023, 7(4): 765-781. |
82 | VERMAAS D A, SMITH W A. Synergistic electrochemical CO2 reduction and water oxidation with a bipolar membrane[J]. ACS Energy Letters, 2016, 1(6): 1143-1148. |
83 | CHEN Gaofeng, YUAN Yifei, JIANG Haifeng, et al. Electrochemical reduction of nitrate to ammonia via direct eight-electron transfer using a copper-molecular solid catalyst[J]. Nature Energy, 2020, 5(8): 605-613. |
84 | LAZOUSKI N, CHUNG M, WILLIAMS K, et al. Non-aqueous gas diffusion electrodes for rapid ammonia synthesis from nitrogen and water-splitting-derived hydrogen[J]. Nature Catalysis, 2020, 3(5): 463-469. |
85 | ÜNLÜ M, ZHOU J, KOHL P A. Hybrid anion and proton exchange membrane fuel cells[J]. The Journal of Physical Chemistry C, 2009, 113(26): 11416-11423. |
1 | BLOMMAERT M A, AILI D, TUFA R A, et al. Insights and challenges for applying bipolar membranes in advanced electrochemical energy systems[J]. ACS Energy Letters, 2021, 6(7): 2539-2548. |
2 | LUO Tao, ABDU S, WESSLING M. Selectivity of ion exchange membranes: A review[J]. Journal of Membrane Science, 2018, 555: 429-454. |
3 | FRILETTE V J. Preparation and characterization of bipolar ion exchange membranes[J]. The Journal of Physical Chemistry, 1956, 60(4): 435-439. |
4 | LOVRECEK B, DESPIC A, BOCKRIS J O M. Electrolytic junctions with rectifying properties[J]. The Journal of Physical Chemistry, 1959, 63(5): 750-751. |
5 | LOVREČEK B, KUNST B. Electrolytic junction with amplifying properties[J]. Nature, 1961, 189(4767): 804-806. |
6 | A. J. B. 肯佩曼. 双极膜技术手册[M]. 徐铜文, 傅荣强, 译. 北京: 化学工业出版社, 2004: 231. |
KEMPERMAN A J B. Handbook on bipolar membrane technology[M]. XU Tongwen, FU Rongqiang, trans. Beijing: Chemical Industry Press, 2004: 231. | |
7 | PÄRNAMÄE R, MAREEV S, NIKONENKO V, et al. Bipolar membranes: A review on principles, latest developments, and applications[J]. Journal of Membrane Science, 2021, 617: 118538. |
8 | WANG Yaoming, HUANG Chuanhui, XU Tongwen. Which is more competitive for production of organic acids, ion-exchange or electrodialysis with bipolar membranes?[J]. Journal of Membrane Science, 2011, 374(1/2): 150-156. |
9 | SIMONS R. Water splitting in ion exchange membranes[J]. Electrochimica Acta, 1985, 30(3): 275-282. |
10 | KAISER V, BRAMWELL S T, HOLDSWORTH P C W, et al. Onsager's Wien effect on a lattice[J]. Nature Materials, 2013, 12(11): 1033-1037. |
11 | VERMAAS D A, SASSENBURG M, SMITH W A. Photo-assisted water splitting with bipolar membrane induced pH gradients for practical solar fuel devices[J]. Journal of Materials Chemistry A, 2015, 3(38): 19556-19562. |
12 | LI Yuguang C, ZHOU Dekai, YAN Zhifei, et al. Electrolysis of CO2 to syngas in bipolar membrane-based electrochemical cells[J]. ACS Energy Letters, 2016, 1(6): 1149-1153. |
13 | ÜNLÜ M, ZHOU J, KOHL P A. Hybrid polymer electrolyte fuel cells: Alkaline electrodes with proton conducting membrane[J]. Angewandte Chemie International Edition, 2010, 49(7): 1299-1301. |
14 | XIA Jiabing, EIGENBERGER G, STRATHMANN H, et al. Flow battery based on reverse electrodialysis with bipolar membranes: Single cell experiments[J]. Journal of Membrane Science, 2018, 565: 157-168. |
15 | XU Ziang, WAN Lei, LIAO Yiwen, et al. Continuous ammonia electrosynthesis using physically interlocked bipolar membrane at 1000 mA·cm-2 [J]. Nature Communications, 2023, 14: 1619. |
16 | BALSTER J, SRINKANTHARAJAH S, SUMBHARAJU R, et al. Tailoring the interface layer of the bipolar membrane[J]. Journal of Membrane Science, 2010, 365(1/2): 389-398. |
17 | LI Geng, SHEHZAD M A, GE Zijuan, et al. In-situ grown polyaniline catalytic interfacial layer improves water dissociation in bipolar membranes[J]. Separation and Purification Technology, 2021, 275: 119167. |
18 | GE Zijuan, SHEHZAD M A, YANG Xiaoqi, et al. High-performance bipolar membrane for electrochemical water electrolysis[J]. Journal of Membrane Science, 2022, 656: 120660. |
19 | MEL'NIKOV S S, SHAPOVALOVA O V, SHEL'DESHOV N V, et al. Effect of d-metal hydroxides on water dissociation in bipolar membranes[J]. Petroleum Chemistry, 2011, 51(7): 577-584. |
20 | CHEN Lihaokun, XU Qiucheng, OENER S Z, et al. Design principles for water dissociation catalysts in high-performance bipolar membranes[J]. Nature Communications, 2022, 13: 3846. |
21 | RUBINSTEIN I. A diffusional model of "water splitting" in electrodialysis[J]. The Journal of Physical Chemistry, 1977, 81(14): 1431-1436. |
22 | SIMONS R. Electric field effects on proton transfer between ionizable groups and water in ion exchange membranes[J]. Electrochimica Acta, 1984, 29(2): 151-158. |
23 | GIESBRECHT P K, FREUND M S. Recent advances in bipolar membrane design and applications[J]. Chemistry of Materials, 2020, 32(19): 8060-8090. |
24 | WIEN M. On the validity of Ohm's laws for electrolytes in very high field forces[J]. Annalen Der Physik, 1924, 73(3/4): 161-181. |
25 | ONSAGER L. Deviations from Ohm's law in weak electrolytes[J]. The Journal of Chemical Physics, 1934, 2(9): 599-615. |
26 | ZABOLOTSKII V I, GANYCH V V, SHELDESHOV N V. Effect of copper-complexes with the ionogenic groups of the MA-40 anion-exchange membrane on the dissociation rate of water-molecules in the electric-field[J]. Soviet Electrochemistry, 1991, 27(10): 1098-1102. |
27 | STRATHMANN H, KROL J J, H-J RAPP, et al. Limiting Current density and water dissociation in bipolar membranes[J]. Journal of Membrane Science, 1997, 125(1): 123-142. |
28 | SIMONS R. Strong electric field effects on proton transfer between membrane-bound amines and water[J]. Nature, 1979, 280(5725): 824-826. |
29 | GREBEN V P, PIVOVAROV N Y, KOVARSKII N Y, et al. Influence of ionite nature on physicochemical properties of bipolar ion-exchange membranes[J]. Zhurnal Fiz Khimii, 1978, 52(10): 2641-2645. |
30 | XUE Yanhong, XU Tongwen, FU Rongqiang, et al. Catalytic water dissociation using hyperbranched aliphatic polyester (Boltorn® series) as the interface of a bipolar membrane[J]. Journal of Colloid and Interface Science, 2007, 316(2): 604-611. |
31 | ABDU S, SRICHAROEN K, WONG J E, et al. Catalytic polyelectrolyte multilayers at the bipolar membrane interface[J]. ACS Applied Materials & Interfaces, 2013, 5(21): 10445-10455. |
32 | ALCARAZ A, RAMÍ́REZ P, MAFÉ S, et al. Ion selectivity and water dissociation in polymer bipolar membranes studied by membrane potential and current-voltage measurements[J]. Polymer, 2000, 41(17): 6627-6634. |
33 | STRATHMANN H, H-J RAPP, BAUER B, et al. Theoretical and practical aspects of preparing bipolar membranes[J]. Desalination, 1993, 90(1/2/3): 303-323. |
34 | FU Rongqiang, XU Tongwen, CHENG Yiyun, et al. Fundamental studies on the intermediate layer of a bipolar membrane: Part Ⅲ. Effect of starburst dendrimer PAMAM on water dissociation at the interface of a bipolar membrane[J]. Journal of Membrane Science, 2004, 240: 141-147. |
35 | ZABOLOTSKY V, UTIN S, BESPALOV A, et al. Modification of asymmetric bipolar membranes by functionalized hyperbranched polymers and their investigation during pH correction of diluted electrolytes solutions by electrodialysis[J]. Journal of Membrane Science, 2015, 494: 188-195. |
36 | GE Zijuan, SHEHZAD M A, GE Liang, et al. Beneficial use of a coordination complex as the junction catalyst in a bipolar membrane[J]. ACS Applied Energy Materials, 2020, 3(6): 5765-5773. |
37 | FU Rongqiang, CHENG Yiyun, XU Tongwen, et al. Fundamental studies on the intermediate layer of a bipolar membrane. Part Ⅵ. Effect of the coordinated complex between starburst dendrimer PAMAM and chromium (Ⅲ) on water dissociation at the interface of a bipolar membrane[J]. Desalination, 2006, 196(1/2/3): 260-265. |
38 | OENER S Z, FOSTER M J, BOETTCHER S W. Accelerating water dissociation in bipolar membranes and for electrocatalysis[J]. Science, 2020, 369(6507): 1099-1103. |
39 | ODA Y, YAWATAYA T. Neutrality-disturbance phenomenon of membrane-solution systems[J]. Desalination, 1968, 5(2): 129-138. |
40 | WANG Qiuyue, WU Bin, JIANG Chenxiao, et al. Improving the water dissociation efficiency in a bipolar membrane with amino-functionalized MIL-101[J]. Journal of Membrane Science, 2017, 524: 370-376. |
41 | MCDONALD M B, FREUND M S. Graphene oxide as a water dissociation catalyst in the bipolar membrane interfacial layer[J]. ACS Applied Materials & Interfaces, 2014, 6(16): 13790-13797. |
42 | CHEN Yingying, WRUBEL J A, KLEIN W E, et al. High-performance bipolar membrane development for improved water dissociation[J]. ACS Applied Polymer Materials, 2020, 2(11): 4559-4569. |
43 | LIU Yaoxing, CHEN Jiahui, CHEN Riyao, et al. Effects of multi-walled carbon nanotubes on bipolar membrane properties[J]. Materials Chemistry and Physics, 2018, 203: 259-265. |
44 | BHOWMICK S, QURESHI M. Vanadium oxide nanosheet-infused functionalized polysulfone bipolar membrane for an efficient water dissociation reaction[J]. ACS Applied Materials & Interfaces, 2023, 15(4): 5466-5477. |
45 | AMORIM I, XU Junuyan, ZHANG Nan, et al. Dual-phase CoP-CoTe2 nanowires as an efficient bifunctional electrocatalyst for bipolar membrane-assisted acid-alkaline water splitting[J]. Chemical Engineering Journal, 2021, 420: 130454. |
46 | MARTÍNEZ R J, FARRELL J. Water splitting activity of oxygen-containing groups in graphene oxide catalyst in bipolar membranes[J]. Computational and Theoretical Chemistry, 2019, 1164: 112556. |
47 | ZHU Wen, WANG Haizhi, JING Guoshan, et al. Rapid spray-crosslinked assembly of a stable high-performance polyelectrolyte bipolar membrane[J]. RSC Advances, 2017, 7(58): 36313-36318. |
48 | XUE Yanhong, FU Rongqiang, FU Yanxun, et al. Fundamental studies on the intermediate layer of a bipolar membrane: Ⅴ. Effect of silver halide and its dope in gelatin on water dissociation at the interface of a bipolar membrane[J]. Journal of Colloid and Interface Science, 2006, 298(1): 313-320. |
49 | SIMONS R. A novel method for preparing bipolar membranes[J]. Electrochimica Acta, 1986, 31(9): 1175-1177. |
50 | 李耕. 原位生长法制备双极膜中间层[D]. 合肥: 中国科学技术大学, 2021. |
LI Geng. Preparing interfacial layer of bipolar membrane with in-situ growth method[D]. Hefei: University of Science and Technology of China, 2021. | |
51 | SHEHZAD M A, YASMIN A, GE X, et al. Shielded goethite catalyst that enables fast water dissociation in bipolar membranes[J]. Nature Communications, 2021, 12: 9. |
52 | 葛紫娟. 双极膜界面调控及电化学应用研究[D]. 合肥: 中国科学技术大学, 2022. |
GE Zijuan. Bipolar membrane interfacial modification and electrochemical applications[D]. Hefei: University of Science and Technology of China, 2022. | |
53 | 杨晓琪. 双极膜水解离催化层构筑与性能调控[D]. 合肥: 中国科学技术大学, 2023. |
YANG Xiaoqi. Precisely modify the interface layer and improve water dissociation property of bipolar membrane[D]. Hefei: University of Science and Technology of China, 2023. | |
54 | SIMONS R. Preparation of a high performance bipolar membrane[J]. Journal of Membrane Science, 1993, 78(1/2): 13-23 |
55 | CHABI S, WRIGHT A G, HOLDCROFT S, et al. Transparent bipolar membrane for water splitting applications[J]. ACS Applied Materials & Interfaces, 2017, 9(32): 26749-26755. |
56 | JEEVANANDA T, YEON Kyeong-Ho, MOON Seung-Hyeon. Synthesis and characterization of bipolar membrane using pyridine functionalized anion exchange layer[J]. Journal of Membrane Science, 2006, 283(1/2): 201-208. |
57 | BHADJA V, SHARMA S, KULSHRESTHA V, et al. Preparation of heterogeneous bipolar membranes and their performance evaluation for the regeneration of acid and alkali[J]. RSC Advances, 2015, 5(71): 57632-57639. |
58 | 刘颖, 王建友. 双极膜制备及改性研究进展[J]. 化工进展, 2016, 35(1): 157-165. |
LIU Ying, WANG Jianyou. Progress on preparation and modification of bipolar membrane[J]. Chemical Industry and Engineering Progress, 2016, 35(1): 157-165. | |
59 | PAN Jiefeng, HOU Linxiao, WANG Qiuyue, et al. Preparation of bipolar membranes by electrospinning[J]. Materials Chemistry and Physics, 2017, 186: 484-491. |
60 | SHEN Chunhui, WYCISK R, PINTAURO P N. High performance electrospun bipolar membrane with a 3D junction[J]. Energy & Environmental Science, 2017, 10(6): 1435-1442. |
61 | PARK E J, ARGES C G, XU Hui, et al. Membrane strategies for water electrolysis[J]. ACS Energy Letters, 2022, 7(10): 3447-3457. |
62 | LEE L, KIM D. Poly(arylene ether ketone)-based bipolar membranes for acid-alkaline water electrolysis applications[J]. Journal of Materials Chemistry A, 2021, 9(9): 5485-5496. |
63 | SIRITANARATKUL B, FORSTER M, GREENWELL F, et al. Zero-gap bipolar membrane electrolyzer for carbon dioxide reduction using acid-tolerant molecular electrocatalysts[J]. Journal of the American Chemical Society, 2022, 144(17): 7551-7556. |
64 | LI Tengfei, LEES E W, GOLDMAN M, et al. Electrolytic conversion of bicarbonate into CO in a flow cell[J]. Joule, 2019, 3(6): 1487-1497. |
65 | PENG Sikan, XU Xin, LU Shanfu, et al. A self-humidifying acidic-alkaline bipolar membrane fuel cell[J]. Journal of Power Sources, 2015, 299: 273-279. |
66 | AHLFIELD J M, LIU L, KOHL P A. PEM/AEM junction design for bipolar membrane fuel cells[J]. Journal of the Electrochemical Society, 2017, 164(12): F1165-F1171. |
67 | LOKTIONOV P, KONEV D, ANTIPOV A. Hydrogen-assisted neutralization flow battery with high power and energy densities[J]. Journal of Power Sources, 2023, 564: 232818. |
68 | METLAY A S, CHYI B, YOON Y, et al. Three-chamber design for aqueous acid-base redox flow batteries[J]. ACS Energy Letters, 2022, 7(3): 908-913. |
69 | LEI Chunxiao, LI Zichao, GAO Qi, et al. Comparative study on the production of gluconic acid by electrodialysis and bipolar membrane electrodialysis: Effects of cell configurations[J]. Journal of Membrane Science, 2020, 608: 118192. |
70 | RÓZSENBERSZKI T, KOMÁROMY P, HÜLBER-BEYER É, et al. Demonstration of bipolar membrane electrodialysis technique for itaconic acid recovery from real fermentation effluent of Aspergillus terreus [J]. Chemical Engineering Research and Design, 2021, 175: 348-357. |
[1] | 王达锐, 孙洪敏, 王一棪, 唐智谋, 李芮, 范雪研, 杨为民. 分子筛催化反应过程高效化的技术进展[J]. 化工进展, 2024, 43(1): 1-18. |
[2] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[3] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[4] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[5] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[6] | 王乐乐, 杨万荣, 姚燕, 刘涛, 何川, 刘逍, 苏胜, 孔凡海, 朱仓海, 向军. SCR脱硝催化剂掺废特性及性能影响[J]. 化工进展, 2023, 42(S1): 489-497. |
[7] | 邓丽萍, 时好雨, 刘霄龙, 陈瑶姬, 严晶颖. 非贵金属改性钒钛基催化剂NH3-SCR脱硝协同控制VOCs[J]. 化工进展, 2023, 42(S1): 542-548. |
[8] | 程涛, 崔瑞利, 宋俊男, 张天琪, 张耘赫, 梁世杰, 朴实. 渣油加氢装置杂质沉积规律与压降升高机理分析[J]. 化工进展, 2023, 42(9): 4616-4627. |
[9] | 王鹏, 史会兵, 赵德明, 冯保林, 陈倩, 杨妲. 过渡金属催化氯代物的羰基化反应研究进展[J]. 化工进展, 2023, 42(9): 4649-4666. |
[10] | 张启, 赵红, 荣峻峰. 质子交换膜燃料电池中氧还原反应抗毒性电催化剂研究进展[J]. 化工进展, 2023, 42(9): 4677-4691. |
[11] | 王伟涛, 鲍婷玉, 姜旭禄, 何珍红, 王宽, 杨阳, 刘昭铁. 醛酮树脂基非金属催化剂催化氧气氧化苯制备苯酚[J]. 化工进展, 2023, 42(9): 4706-4715. |
[12] | 葛亚粉, 孙宇, 肖鹏, 刘琦, 刘波, 孙成蓥, 巩雁军. 分子筛去除VOCs的研究进展[J]. 化工进展, 2023, 42(9): 4716-4730. |
[13] | 吴海波, 王希仑, 方岩雄, 纪红兵. 3D打印催化材料开发与应用进展[J]. 化工进展, 2023, 42(8): 3956-3964. |
[14] | 向阳, 黄寻, 魏子栋. 电催化有机合成反应的活性和选择性调控研究进展[J]. 化工进展, 2023, 42(8): 4005-4014. |
[15] | 王耀刚, 韩子姗, 高嘉辰, 王新宇, 李思琪, 杨全红, 翁哲. 铜基催化剂电还原二氧化碳选择性的调控策略[J]. 化工进展, 2023, 42(8): 4043-4057. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |