化工进展 ›› 2023, Vol. 42 ›› Issue (9): 4504-4513.DOI: 10.16085/j.issn.1000-6613.2022-1899
收稿日期:
2022-10-13
修回日期:
2022-12-22
出版日期:
2023-09-15
发布日期:
2023-09-28
通讯作者:
王斯民
作者简介:
董佳宇(1997—),男,博士研究生,研究方向为超声强化结晶。E-mail:sxdjy1997@163.com。
基金资助:
Received:
2022-10-13
Revised:
2022-12-22
Online:
2023-09-15
Published:
2023-09-28
Contact:
WANG Simin
摘要:
对二甲苯(PX)是石油化工中最重要的芳烃原料之一。随着对PX的需求日益增长,迫切需要开发一种成本更低、效率更高的对二甲苯生产工艺。本文将超声引入到PX结晶过程,分析了不同工况下PX的超溶解度、介稳区宽度和诱导期等数据。基于经典成核理论,探究了PX的结晶特性和超声强化PX的作用机制。结果如下:超声减小了PX结晶过程的介稳区宽度和诱导期,加快了晶体成核速率,并避免了爆发成核。当过饱和度低于1.055时,PX成核机制为非均相成核;当过饱和度高于1.055时,PX为均相成核。晶体生长机制为连续生长。超声降低了PX的临界成核半径和临界成核自由能,也降低了两种成核机制对应的界面张力和表面熵因子,同时提高了体系的扩散系数。当超声功率从0变化到88W时,晶体成核速率常数增大了22.4倍,扩散系数增大了11.86倍。所得结论可为PX结晶工艺的改进提供参考。
中图分类号:
董佳宇, 王斯民. 超声强化对二甲苯结晶特性及调控机理实验[J]. 化工进展, 2023, 42(9): 4504-4513.
DONG Jiayu, WANG Simin. Experimental on ultrasound enhancement of para-xylene crystallization characteristics and regulation mechanism[J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4504-4513.
表面熵因子f | 生长机理 | 表面特性 |
---|---|---|
f<3 | 连续型生长 | 表面粗糙 |
3<f<5 | 二维扩散型生长 | 表面较光滑 |
f>5 | 螺旋位错型生长 | 表面光滑 |
表1 表面熵因子与晶体生长机理关系
表面熵因子f | 生长机理 | 表面特性 |
---|---|---|
f<3 | 连续型生长 | 表面粗糙 |
3<f<5 | 二维扩散型生长 | 表面较光滑 |
f>5 | 螺旋位错型生长 | 表面光滑 |
过饱和度 | 超声功率 | |||
---|---|---|---|---|
0 | 44W | 66W | 88W | |
1.04 | 560 | 456 | 446 | 437 |
1.05 | 291 | 237 | 232 | 227 |
1.06 | 171 | 139 | 136 | 133 |
1.07 | 109 | 89 | 87 | 85 |
1.08 | 74 | 60 | 59 | 58 |
表2 不同条件下临界晶核分子数
过饱和度 | 超声功率 | |||
---|---|---|---|---|
0 | 44W | 66W | 88W | |
1.04 | 560 | 456 | 446 | 437 |
1.05 | 291 | 237 | 232 | 227 |
1.06 | 171 | 139 | 136 | 133 |
1.07 | 109 | 89 | 87 | 85 |
1.08 | 74 | 60 | 59 | 58 |
功率/W | 均相成核界面张力/mJ·m-2 | 异相成核界面张力/mJ·m-2 |
---|---|---|
0 | 1.032 | 0.517 |
44 | 0.964 | 0.511 |
66 | 0.957 | 0.507 |
88 | 0.950 | 0.481 |
表3 不同超声功率下界面张力值
功率/W | 均相成核界面张力/mJ·m-2 | 异相成核界面张力/mJ·m-2 |
---|---|---|
0 | 1.032 | 0.517 |
44 | 0.964 | 0.511 |
66 | 0.957 | 0.507 |
88 | 0.950 | 0.481 |
功率/W | 均相成核表面熵因子 | 异相成核表面熵因子 | 均相f/异相f |
---|---|---|---|
0 | 0.368 | 0.184 | 2 |
44 | 0.344 | 0.182 | 1.89 |
66 | 0.342 | 0.181 | 1.89 |
88 | 0.339 | 0.172 | 1.97 |
表4 均相成核及异相成核表面熵因子值
功率/W | 均相成核表面熵因子 | 异相成核表面熵因子 | 均相f/异相f |
---|---|---|---|
0 | 0.368 | 0.184 | 2 |
44 | 0.344 | 0.182 | 1.89 |
66 | 0.342 | 0.181 | 1.89 |
88 | 0.339 | 0.172 | 1.97 |
功率/W | 斜率 | lnσ= -2.75对应间距 | 成核级数 |
---|---|---|---|
0 | -5.77 | 6.163 | 5.77 |
44 | -4.66 | 4.144 | 4.66 |
66 | -4.57 | 3.620 | 4.57 |
88 | -4.51 | 3.054 | 4.51 |
表5 不同超声功率下各成核参数值
功率/W | 斜率 | lnσ= -2.75对应间距 | 成核级数 |
---|---|---|---|
0 | -5.77 | 6.163 | 5.77 |
44 | -4.66 | 4.144 | 4.66 |
66 | -4.57 | 3.620 | 4.57 |
88 | -4.51 | 3.054 | 4.51 |
1 | Quanming LYU, DONG Jian, HE Renchu, et al. Modeling of the Co-Mn-Br catalyzed liquid phase oxidation of p-xylene to terephthalic acid and m-xylene to isophthalic acid[J]. Chemical Engineering Science, 2021, 232: 116340. |
2 | FARUQUE HASAN M M, FIRST Eric L, FLOUDAS Christodoulos A. Discovery of novel zeolites and multi-zeolite processes for p-xylene separation using simulated moving bed (SMB) chromatography[J]. Chemical Engineering Science, 2017, 159: 3-17. |
3 | 安超. 全球对二甲苯供需分析与预测[J]. 世界石油工业, 2021, 28(3): 37-43. |
AN Chao. Analysis and forecast of global p-xylene supply and demand[J]. World Petroleum Industry, 2021, 28(3): 37-43. | |
4 | SHI Qian, GONÇALVES Jonathan C, FERREIRA Alexandre F P, et al. A review of advances in production and separation of xylene isomers[J]. Chemical Engineering and Processing-Process Intensification, 2021, 169: 108603. |
5 | SHIAU Lie-Ding. Purification of m-xylene from the mixed xylenes by stripping crystallization[J]. Separation and Purification Technology, 2021, 255: 117688. |
6 | 李贵贤, 张军强, 杨勇, 等. 基于PX选择性强化的短流程甲苯甲醇甲基化PX生产新工艺[J]. 化工进展, 2022, 41(6): 2939-2947. |
LI Guixian, ZHANG Junqiang, YANG Yong, et al. A novel PX production shortcut through PX selectivity intensification in toluene and methanol methylation[J]. Chemical Industry and Engineering Progress, 2022, 41(6): 2939-2947. | |
7 | 冯培曦, 周震寰, 康承琳, 等. SKI-210催化二甲苯异构化反应的动力学研究[J]. 石油炼制与化工, 2022, 53(3): 73-78. |
FENG Peixi, ZHOU Zhenhuan, KANG Chenglin, et al. Kinetics of xylene isomerization catalyzed by SKI-210 catalyst[J]. Petroleum Processing and Petrochemicals, 2022, 53(3): 73-78. | |
8 | 沈澍, 李士雨. 熔融结晶法分离提纯对二甲苯[J]. 化工进展, 2017, 36(5): 1605-1611. |
SHEN Shu, LI Shiyu. Purification of p-xylene by melt crystallization[J]. Chemical Industry and Engineering Progress, 2017, 36(5): 1605-1611. | |
9 | 景博, 常泽伟, 贾晟哲, 等. 熔融结晶的过程强化[J]. 化工学报, 2021, 72(8): 3907-3918. |
JING Bo, CHANG Zewei, JIA Shengzhe, et al. Process intensification of melt crystallization[J]. CIESC Journal, 2021, 72(8): 3907-3918. | |
10 | DURĎÁKOVÁ Tereza Markéta, Štěpán HOVORKA, Zdeněk HRDLIČKA, et al. Comparison of pervaporation and perstraction for the separation of p‑xylene/m‑xylene mixtures using PDMS and CTA membranes[J]. Separation and Purification Technology, 2021, 274: 118986. |
11 | KAUR BHANGU Sukhvir, ASHOKKUMAR Muthupandian, LEE Judy. Ultrasound assisted crystallization of paracetamol: Crystal size distribution and polymorph control[J]. Crystal Growth & Design, 2016, 16(4): 1934-1941. |
12 | SABNIS Sarvesh S, GOGATE Parag R. Ultrasound assisted size reduction of DADPS based on recrystallization[J]. Ultrasonics Sonochemistry, 2019, 54: 198-209. |
13 | SÁNCHEZ-GARCÍA Yanira I, ASHOKKUMAR Muthupandian, MASON Timothy J, et al. Influence of ultrasound frequency and power on lactose nucleation[J]. Journal of Food Engineering, 2019, 249: 34-39. |
14 | VISHWAKARMA Rakhi S, GOGATE Parag R. Intensified oxalic acid crystallization using ultrasonic reactors: Understanding effect of operating parameters and type of ultrasonic reactor[J]. Ultrasonics Sonochemistry, 2017, 39: 111-119. |
15 | DEVOS Cedric, VAN GERVEN Tom, KUHN Simon. Nucleation kinetics for primary, secondary and ultrasound-induced paracetamol crystallization[J]. CrystEngComm, 2021, 23(30): 5164-5175. |
16 | MAO Yafei, LI Fei, WANG Ting, et al. Enhancement of lysozyme crystallization under ultrasound field[J]. Ultrasonics Sonochemistry, 2020, 63: 104975. |
17 | FERREIRA Joana, OPSTEYN Jeroen, ROCHA Fernando, et al. Ultrasonic protein crystallization: Promoting nucleation in microdroplets through pulsed sonication[J]. Chemical Engineering Research and Design, 2020, 162: 249-257. |
18 | 殷海青, 马祎明, 万旭兴, 等. 碳酸锂气液固三相反应结晶过程研究[J]. 化工学报, 2022, 73(3): 1207-1220. |
YIN Haiqing, MA Yiming, WAN Xuxing, et al. Research of lithium carbonate three-phase reactive crystallization process[J]. CIESC Journal, 2022, 73(3): 1207-1220. | |
19 | RAMIREZ MENDOZA H, JORDENS J, VALDEZ LANCINHA PEREIRA M, et al. Effects of ultrasonic irradiation on crystallization kinetics, morphological and structural properties of zeolite FAU[J]. Ultrasonics Sonochemistry, 2020, 64: 105010. |
20 | 陈亮, 田飞豹, 辛秀兰, 等. 核黄素超声结晶工艺优化[J]. 化工进展, 2021, 40(2): 1018-1024. |
CHEN Liang, TIAN Feibao, XIN Xiulan, et al. Optimization of ultrasonic crystallization process of riboflavin[J]. Chemical Industry and Engineering Progress, 2021, 40(2): 1018-1024. | |
21 | ZENG Guisheng, LI Hui, LUO Shenglian, et al. Effects of ultrasonic radiation on induction period and nucleation kinetics of sodium sulfate[J]. Korean Journal of Chemical Engineering, 2014, 31(5): 807-811. |
22 | KASHCHIEV D, VAN ROSMALEN G M. Review: Nucleation in solutions revisited[J]. Crystal Research and Technology, 2003, 38(78): 555-574. |
23 | YANG Huaiyu, Michael SVÄRD, ZEGLINSKI Jacek, et al. Influence of solvent and solid-state structure on nucleation of parabens[J]. Crystal Growth & Design, 2014, 14(8): 3890-3902. |
24 | PANTARAKS Pareena, FLOOD Adrian E. Effect of growth rate history on current crystal growth: A second look at surface effects on crystal growth rates[J]. Crystal Growth & Design, 2005, 5(1): 365-371. |
25 | 张旭. 吡喹酮结晶过程研究[D]. 天津: 天津大学, 2020. |
ZHANG Xu. Study on crystallization process of praziquantel[D]. Tianjin: Tianjin University, 2020. | |
26 | 张振亚. Cu-Ni体系相界面实验研究[D]. 东营: 中国石油大学(华东), 2006. |
ZHANG Zhenya. Experimental study on phase interface of Cu-Ni system[D]. Dongying: China University of Petroleum(East China), 2006. | |
27 | MERAMANN A. Crystallization technology handbook[M]. 2nd ed. New York: Marcel Dekker, 2001. |
28 | JAKOB A, JOH R, ROSE C, et al. Solid-liquid equilibria in binary mixtures of organic compounds[J]. Fluid Phase Equilibria, 1995, 113(1/2): 117-126. |
29 | FANG Chen, TANG Weiwei, WU Songgu, et al. Ultrasound-assisted intensified crystallization of L-glutamic acid: Crystal nucleation and polymorph transformation[J]. Ultrasonics Sonochemistry, 2020, 68: 105227. |
30 | 赵丹洋. 吡氟草胺结晶成核和生长研究[D]. 哈尔滨: 哈尔滨工业大学, 2019. |
ZHAO Danyang. Crystal nucleation and growth of diflufenican[D]. Harbin: Harbin Institute of Technology, 2019. | |
31 | 陈霞. 超声波对硫酸钠溶液结晶影响的研究[D]. 天津: 天津大学, 2008. |
CHEN Xia. Investigation on the crystallization of Na2SO4 under ultrasound[D]. Tianjin: Tianjin University, 2008. | |
32 | 王美凤. 高压和低温下氢键有机晶体的结构相变研究[D]. 秦皇岛: 燕山大学, 2019. |
WANG Meifeng. Study on structural phase transition of hydrogen-bonded organic crystals at high pressure and low temperature[D]. Qinhuangdao: Yanshan University, 2019. | |
33 | KULDIPKUMAR Anuj, KWON Glen S, ZHANG Geoff G Z. Determining the growth mechanism of tolazamide by induction time measurement[J]. Crystal Growth & Design, 2007, 7(2): 234-242. |
34 | FLINT Edward B, SUSLICK Kenneth S. The temperature of cavitation[J]. Science, 1991, 253(5026): 1397-1399. |
35 | ZEIGER Brad W, SUSLICK Kenneth S. Sonofragmentation of molecular crystals[J]. Journal of the American Chemical Society, 2011, 133(37): 14530-14533. |
36 | KASHCHIEV Dimo, BORISSOVA Antonia, HAMMOND Robert B, et al. Effect of cooling rate on the critical undercooling for crystallization[J]. Journal of Crystal Growth, 2010, 312(5): 698-704. |
[1] | 顾永正, 张永生. HBr改性飞灰对Hg0的动态吸附及动力学模型[J]. 化工进展, 2023, 42(S1): 498-509. |
[2] | 汪鹏, 张洋, 范兵强, 何登波, 申长帅, 张贺东, 郑诗礼, 邹兴. 高碳铬铁盐酸浸出过程工艺及动力学[J]. 化工进展, 2023, 42(S1): 510-517. |
[3] | 刘阳, 王云刚, 修浩然, 邹立, 白彦渊. 基于动力学分析的核桃壳最佳炭化工艺[J]. 化工进展, 2023, 42(S1): 94-103. |
[4] | 黄益平, 李婷, 郑龙云, 戚傲, 陈政霖, 史天昊, 张新宇, 郭凯, 胡猛, 倪泽雨, 刘辉, 夏苗, 主凯, 刘春江. 三级环流反应器中气液流动与传质规律[J]. 化工进展, 2023, 42(S1): 175-188. |
[5] | 王胜岩, 邓帅, 赵睿恺. 变电吸附二氧化碳捕集技术研究进展[J]. 化工进展, 2023, 42(S1): 233-245. |
[6] | 王俊杰, 潘艳秋, 牛亚宾, 俞路. 分子水平催化重整装置模型构建及应用[J]. 化工进展, 2023, 42(7): 3404-3412. |
[7] | 王达锐, 孙洪敏, 薛明伟, 王一棪, 刘威, 杨为民. 微波法高效合成全结晶ZSM-5分子筛催化剂及其催化性能[J]. 化工进展, 2023, 42(7): 3582-3588. |
[8] | 孙征楠, 李洪晶, 荆国林, 张福宁, 颜飚, 刘晓燕. EVA及其改性聚合物在原油降凝剂领域的应用[J]. 化工进展, 2023, 42(6): 2987-2998. |
[9] | 杨许召, 李庆, 袁康康, 张盈盈, 韩敬莉, 吴诗德. 含Gemini离子液体低共熔溶剂热力学性质[J]. 化工进展, 2023, 42(6): 3123-3129. |
[10] | 赵毅, 杨臻, 张新为, 王刚, 杨旋. 不同裂缝损伤和愈合温度条件下沥青自愈合行为的分子模拟[J]. 化工进展, 2023, 42(6): 3147-3156. |
[11] | 曾天续, 张永显, 严渊, 刘宏, 马娇, 党鸿钟, 吴新波, 李维维, 陈永志. 羟胺对硝化菌活性及其动力学参数的影响[J]. 化工进展, 2023, 42(6): 3272-3280. |
[12] | 李瑞东, 黄辉, 同国虎, 王跃社. 原油精馏塔中铵盐吸湿特性及其腐蚀行为[J]. 化工进展, 2023, 42(6): 2809-2818. |
[13] | 马润梅, 杨海超, 李正大, 李双喜, 赵祥, 章国庆. 表面强化镀层对高速轴承腔密封端面变形及摩擦磨损影响分析[J]. 化工进展, 2023, 42(4): 1688-1697. |
[14] | 张成松, 张静, 龚斌, 李明洋, 袁佳新, 李宏业. 自吸射流柔性搅拌桨振动特性[J]. 化工进展, 2023, 42(4): 1728-1738. |
[15] | 葛伟童, 廖亚龙, 李明原, 嵇广雄, 郗家俊. Pd-Fe/MWCNTs双金属催化剂制备及其脱氯动力学[J]. 化工进展, 2023, 42(4): 1885-1894. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |