化工进展 ›› 2023, Vol. 42 ›› Issue (8): 4283-4295.DOI: 10.16085/j.issn.1000-6613.2022-2071
王晓晗1(), 周亚松1(), 于志庆1, 魏强1, 孙劲晓1, 姜鹏2
收稿日期:
2022-11-07
修回日期:
2023-01-11
出版日期:
2023-08-15
发布日期:
2023-09-19
通讯作者:
周亚松
作者简介:
王晓晗(1992—),女,博士研究生,研究方向为石油与天然气加工。E-mail:wangxiaohan1906@163.com。
基金资助:
WANG Xiaohan1(), ZHOU Yasong1(), YU Zhiqing1, WEI Qiang1, SUN Jinxiao1, JIANG Peng2
Received:
2022-11-07
Revised:
2023-01-11
Online:
2023-08-15
Published:
2023-09-19
Contact:
ZHOU Yasong
摘要:
采用晶种导向剂法制备高硅Y分子筛,并通过调变晶种导向剂的陈化温度制得了不同晶粒尺寸(515mn、317nm、220nm)的Y分子筛。将制备的不同晶粒尺寸的Y分子筛和无定型硅铝混合作为载体,采用等体积共浸渍法制备了负载型NiW/(Y+ASA)加氢裂化催化剂。采用扫描电子显微镜(SEM)、X射线衍射(XRD)、N2吸附脱附、氨气程序升温脱附(NH3-TPD)、氢气程序升温还原(H2-TPR)、透射电子显微镜(TEM)和X射线光电子能谱(XPS)等表征手段分析了不同晶粒尺寸的Y分子筛及相应催化剂的理化性质。结果表明,随着Y分子筛晶粒尺寸的减小,外比表面积和孔径增大。同时,Y分子筛的n(SiO2)/n(Al2O3)增大,弱酸和中强酸酸性减弱,酸量减少。催化剂对正十六烷的加氢裂化反应结果表明,Y分子筛晶粒尺寸的减小有利于提高中间馏分产物(C8~C12)的收率及选择性,即缩短反应物分子在Y分子筛孔道中的停留时间、提高与催化剂表面活性相的可接近性,可避免过度裂化,提高中间馏分产物的收率。因此晶粒尺寸为220nm的Y分子筛催化剂NiW/(Y3+ASA)的C8~C12产物收率最高。
中图分类号:
王晓晗, 周亚松, 于志庆, 魏强, 孙劲晓, 姜鹏. 不同晶粒尺寸Y分子筛的合成及其加氢裂化反应性能[J]. 化工进展, 2023, 42(8): 4283-4295.
WANG Xiaohan, ZHOU Yasong, YU Zhiqing, WEI Qiang, SUN Jinxiao, JIANG Peng. Synthesis and hydrocracking performance of Y molecular sieves with different crystal sizes[J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4283-4295.
样品 | 硅铝比① | 相对结晶度②/% | 晶粒尺寸/nm | 比表面积/m2·g-1 | 孔体积/cm3·g-1 | 平均孔径/nm | 酸量③/μmol·g-1 |
---|---|---|---|---|---|---|---|
Yr | 4.7 | 100 | 2208 | 444 | 0.25 | 2.1 | 741 |
Y1 | 4.9 | 80 | 515 | 506 | 0.34 | 2.8 | 643 |
Y2 | 5.0 | 91 | 317 | 548 | 0.38 | 3.3 | 617 |
Y3 | 5.2 | 97 | 220 | 575 | 0.42 | 4.4 | 580 |
表1 不同晶粒尺寸的Y分子筛的理化性质
样品 | 硅铝比① | 相对结晶度②/% | 晶粒尺寸/nm | 比表面积/m2·g-1 | 孔体积/cm3·g-1 | 平均孔径/nm | 酸量③/μmol·g-1 |
---|---|---|---|---|---|---|---|
Yr | 4.7 | 100 | 2208 | 444 | 0.25 | 2.1 | 741 |
Y1 | 4.9 | 80 | 515 | 506 | 0.34 | 2.8 | 643 |
Y2 | 5.0 | 91 | 317 | 548 | 0.38 | 3.3 | 617 |
Y3 | 5.2 | 97 | 220 | 575 | 0.42 | 4.4 | 580 |
催化剂 | 平均WS2长度/nm | 平均WS2堆积数 | fw |
---|---|---|---|
NiW/(Yr+ASA) | 5.64 | 1.86 | 0.15 |
NiW/(Y1+ASA) | 5.01 | 2.15 | 0.17 |
NiW/(Y2+ASA) | 4.64 | 2.48 | 0.20 |
NiW/(Y3+ASA) | 4.48 | 2.57 | 0.21 |
表2 不同晶粒尺寸硫化催化剂WS2平均长度、堆积数和fw值
催化剂 | 平均WS2长度/nm | 平均WS2堆积数 | fw |
---|---|---|---|
NiW/(Yr+ASA) | 5.64 | 1.86 | 0.15 |
NiW/(Y1+ASA) | 5.01 | 2.15 | 0.17 |
NiW/(Y2+ASA) | 4.64 | 2.48 | 0.20 |
NiW/(Y3+ASA) | 4.48 | 2.57 | 0.21 |
催化剂 | WS2/% | WO x S y /% | WO3/% | Ni硫化程度/% | NiWS/% | Ni x S y /% | NiO/% |
---|---|---|---|---|---|---|---|
NiW/(Yr+ASA) | 30.9 | 2.7 | 46.4 | 42.8 | 31.5 | 11.3 | 57.2 |
NiW/(Y1+ASA) | 38.1 | 20.2 | 41.7 | 46.2 | 33.3 | 12.9 | 53.8 |
NiW/(Y2+ASA) | 41.8 | 19.2 | 38.9 | 49.0 | 35.0 | 14.0 | 50.5 |
NiW/(Y3+ASA) | 46.1 | 16.1 | 37.8 | 52.1 | 36.2 | 15.9 | 47.9 |
表3 不同晶粒尺寸的硫化NiW催化剂的XPS分峰解析结果
催化剂 | WS2/% | WO x S y /% | WO3/% | Ni硫化程度/% | NiWS/% | Ni x S y /% | NiO/% |
---|---|---|---|---|---|---|---|
NiW/(Yr+ASA) | 30.9 | 2.7 | 46.4 | 42.8 | 31.5 | 11.3 | 57.2 |
NiW/(Y1+ASA) | 38.1 | 20.2 | 41.7 | 46.2 | 33.3 | 12.9 | 53.8 |
NiW/(Y2+ASA) | 41.8 | 19.2 | 38.9 | 49.0 | 35.0 | 14.0 | 50.5 |
NiW/(Y3+ASA) | 46.1 | 16.1 | 37.8 | 52.1 | 36.2 | 15.9 | 47.9 |
1 | FENG Weiwei, ZHENG Bin, CUI Qingyan, et al. Influence of ASA composition on its supported Mo catalyst performance for the slurry-phase hydrocracking of vacuum residue[J]. Fuel, 2022, 324: 124628. |
2 | 胡永康, 葛在贵, 丁连会, 等. 高活性中油型加氢裂化催化剂3903的性能及工业应用[J]. 炼油设计, 1995, 25(2): 1-5, 10. |
HU Yongkang, GE Zaigui, DING Lianhui, et al. Characteristics and commercial application of high activity catalyst for mid-barrel hydrocracking[J]. Petroleum Refinery Engineering, 1995, 25(2): 1-5, 10. | |
3 | BROWNING Barbara E, PITAULT Isabelle, COUENNE Francoise, et al. Effects of bifunctional catalyst geometry on vacuum gas oil hydrocracking conversion and selectivity for middle distillate[J]. Industrial & Engineering Chemistry Research, 2018, 57(49): 16579-16592. |
4 | PENG Chong, DU Yanze, FENG Xiang, et al. Research and development of hydrocracking catalysts and technologies in China[J]. Frontiers of Chemical Science and Engineering, 2018, 12(4): 867-877. |
5 | 羡策, 毛以朝, 龙湘云, 等. Y型分子筛应用于双环芳烃加氢裂化多产轻芳烃过程研究进展[J]. 化工进展, 2020, 39(S1): 133-140. |
XIAN Ce, MAO Yichao, LONG Xiangyun, et al. Advances on the application of zeolite Y in the producing light aromatic hydrocarbons from dicyclic aromatics hydrocracking[J]. Chemical Industry and Engineering Progress, 2020, 39(S1): 133-140. | |
6 | ABDULRIDHA Samer, JIAO Yilai, XU Shaojun, et al. A comparative study on mesoporous Y zeolites prepared by hard-templating and post-synthetic treatment methods[J]. Applied Catalysis A: General, 2021, 612: 117986. |
7 | ZHANG Ringxin, RAJA Duaa, ZHANG Yong, et al. Sequential microwave-assisted dealumination and hydrothermal alkaline treatments of Y zeolite for preparing hierarchical mesoporous zeolite catalysts[J]. Topics in Catalysis, 2020, 63(3): 340-350. |
8 | QIN Zhengxing, SHEN Wen, ZHOU Shuge, et al. Defect-assisted mesopore formation during Y zeolite dealumination: The types of defect matter[J]. Microporous and Mesoporous Materials, 2020, 303: 110248. |
9 | TAO Yousheng, KANOH Hirofumi, KANEKO Katsumi. Uniform mesopore-donated zeolite Y using carbon aerogel templating[J]. The Journal of Physical Chemistry B, 2003, 107(40): 10974-10976. |
10 | Javier GARCÃAMARTÃNEZ, JOHNSON Marvin, VALLA Julia, et al. Mesostructured zeolite Y—High hydrothermal stability and superior FCC catalytic performance[J]. Catalysis Science & Technology, 2012, 2(5): 987-994. |
11 | CHAL Robin, Corine GÉRARDIN, BULUT Metin, et al. Overview and industrial assessment of synthesis strategies towards zeolites with mesopores[J]. ChemCatChem, 2011, 3(1): 67-81. |
12 | WANG Jianyu, LIU Pusheng, BORONAT Mercedes, et al. Organic-free synthesis of zeolite Y with high Si/Al ratios: Combined strategy of in situ hydroxyl radical assistance and post-synthesis treatment[J]. Angewandte Chemie, 2020, 132(39): 17378-17381. |
13 | ZHOU Wenwu, LIU Meifang, ZHOU Yasong, et al. 4,6-Dimethyldibenzothiophene hydrodesulfurization on nickel-modified USY-supported NiMoS catalysts: Effects of modification method[J]. Energy & Fuels, 2017, 31(7): 7445-7455. |
14 | ZHOU Wenwu, WEI Qiang, ZHOU Yasong, et al. Hydrodesulfurization of 4,6-dimethyldibenzothiophene over NiMo sulfide catalysts supported on meso-microporous Y zeolite with different mesopore sizes[J]. Applied Catalysis B: Environmental, 2018, 238: 212-224. |
15 | TAYEB Karima Ben BEN, LAMONIER Carole, LANCELOT Christine, et al. Study of the active phase of NiW hydrocracking sulfided catalysts obtained from an innovative heteropolyanion based preparation[J]. Catalysis Today, 2010, 150(3/4): 207-212. |
16 | LI Xiang, WANG Anjie, EGOROVA Marina, et al. Kinetics of the HDS of 4,6-dimethyldibenzothiophene and its hydrogenated intermediates over sulfided Mo and NiMo on γ-Al2O3 [J]. Journal of Catalysis, 2007, 250(2): 283-293. |
17 | 姜山, 李朝昕, 蔡智军. 导向剂陈化时间及晶化温度对NaY分子筛质量的影响[J]. 工业催化, 2021, 29(1): 50-52. |
JIANG Shan, LI Zhaoxin, CAI Zhijun. Effect of aging time and crystallization temperature of directing agent on the quality of NaY Zeolite[J]. Industrial Catalysis, 2021, 29(1): 50-52. | |
18 | CUI Qingyan, WANG Shuqin, WEI Qiang, et al. Synthesis and characterization of Zr incorporated small crystal size Y zeolite supported NiW catalysts for hydrocracking of vacuum gas oil[J]. Fuel, 2019, 237: 597-605. |
19 | 李侠, 周珊, 张金山, 等. NaY分子筛导向剂的制备及其性能研究[J]. 无机盐工业, 2016, 48(8): 70-73. |
LI Xia, ZHOU Shan, ZHANG Jinshan, et al. The study on preparation and performance of NaY guide agent[J]. Inorganic Chemicals Industry, 2016, 48(8): 70-73. | |
20 | ZHAO Yuansheng, LIU Zhongqing, LI Wenle, et al. Synthesis, characterization, and catalytic performance of high-silica Y zeolites with different crystallite size[J]. Microporous and Mesoporous Materials, 2013, 167: 102-108. |
21 | 秦臻, 周亚松, 魏强, 等. 不同硅铝比的小晶粒Y分子筛的理化性质及其加氢裂化性能[J]. 石油化工, 2013, 42(10): 1080-1085. |
QIN Zhen, ZHOU Yasong, WEI Qiang, et al. Physicochemical properties and hydrocracking performance of nano-crystal Y zeolites with different silica-alumina ratio[J]. Petrochemical Technology, 2013, 42(10): 1080-1085. | |
22 | Peng LYU, YAN Lunjing, LIU Yan, et al. Catalytic conversion of coal pyrolysis vapors to light aromatics over hierarchical Y-type zeolites[J]. Journal of the Energy Institute, 2020, 93(4): 1354-1363. |
23 | YU Gan, CHEN Xinqing, XUE Wenjie, et al. Melting-assisted solvent-free synthesis of SAPO-11 for improving the hydroisomerization performance of n-dodecane[J]. Chinese Journal of Catalysis, 2020, 41(4): 622-630. |
24 | 谭涓, 王诗涵, 董小航, 等. 焙烧高岭土水热合成高硅铝比小晶NaY分子筛[J]. 硅酸盐通报, 2019, 38(12): 3927-3933. |
TAN Juan, WANG Shihan, DONG Xiaohang, et al. Hydrothermal synthesis of small size NaY zeolites with high framework SiO2/Al2O3 ratio from roasted Kaolin[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(12): 3927-3933. | |
25 | ROUSSEL Martial, NORSIC Sébastien, LEMBERTON Jean-Louis, et al. Hydrocracking of n-decane on a bifunctional sulfided NiW/silica-alumina catalyst: Effect of the operating conditions[J]. Applied Catalysis A: General, 2005, 279(1/2): 53-58. |
26 | 于政敏, 孙晓艳, 樊宏飞, 等. 氟硅酸铵对小晶粒Y分子筛加氢裂化性能的影响[J]. 石油化工, 2016, 45(4): 422-428. |
YU Zhengmin, SUN Xiaoyan, FAN Hongfei, et al. Effects of (NH4)2SiF6 treatment on performances of small crystal grain Y zeolite in hydrocracking[J]. Petrochemical Technology, 2016, 45(4): 422-428. | |
27 | ZHOU Wenwu, LIU Meifang, ZHANG Qing, et al. Synthesis of NiMo catalysts supported on gallium-containing mesoporous Y zeolites with different gallium contents and their high activities in the hydrodesulfurization of 4,6-dimethyldibenzothiophene[J]. ACS Catalysis, 2017, 7(11): 7665-7679. |
28 | GUO Fang, LI Jun, LI Wanxi, et al. Quinoline hydrodenitrogenation over NiW/Al-MCM-41 catalysts with different Al contents[J]. Russian Journal of Applied Chemistry, 2017, 90(12): 2055-2063. |
29 | DE LEÓN J N Díaz, PICQUART M, VILLARROEL M, et al. Effect of gallium as an additive in hydrodesulfurization WS2/γ-Al2O3 catalysts[J]. Journal of Molecular Catalysis A: Chemical, 2010, 323(1/2): 1-6. |
30 | ZHOU Wenwu, ZHOU Yasong, WEI Qiang, et al. Continuous synthesis of mesoporous Y zeolites from normal inorganic aluminosilicates and their high adsorption capacity for dibenzothiophene (DBT) and 4,6-dimethyldibenzothiophene (4,6-DMDBT)[J]. Chemical Engineering Journal, 2017, 330: 605-615. |
31 | BAO Wenjing, HUANG Tingting, WANG Chongze, et al. Controlled synthesis of efficient NiWS active phases derived from lacunary polyoxometalate and the application in hydrodesulfurization[J]. Journal of Catalysis, 2022, 413: 374-387. |
32 | ALSALME Ali, ALZAQRI Nabil, ALSALEH Ahmad, et al. Efficient Ni-Mo hydrodesulfurization catalyst prepared through Keggin polyoxometalate[J]. Applied Catalysis B: Environmental, 2016, 182: 102-108. |
33 | TAYEB Karima Ben, LAMONIER Carole, LANCELOT Christine, et al. Active phase genesis of NiW hydrocracking catalysts based on nickel salt heteropolytungstate: Comparison with reference catalyst[J]. Applied Catalysis B: Environmental, 2012, 126: 55-63. |
34 | 左东华, 聂红, MICHEL Vrinat, 等. 硫化态NiW/Al2O3催化剂加氢脱硫活性相的研究Ⅰ.XPS和HREM表征[J]. 催化学报, 2004, 25(4): 309-314. |
ZUO Donghua, NIE Hong, MICHEL Vrinat, et al. Study on the hydrodesulfurization active phase in sulfided NiW/Al2O3 catalyst Ⅰ. XPS and HREM characterizations[J]. Chinese Journal of Catalysis, 2004, 25(4): 309-314. | |
35 | Young Gul HUR, LEE Dae-Won, LEE Kwan-Young. Hydrocracking of vacuum residue using NiWS(x) dispersed catalysts[J]. Fuel, 2016, 185: 794-803. |
36 | CORTÉS Juan Carlos, César RODRÍGUEZ, MOLINA Rafael, et al. Hydrocracking of 1-methylnaphtalene (1MN) over modified clays-supported NiMoS and NiWS catalyst[J]. Fuel, 2021, 295: 120612. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[3] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[4] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[5] | 陈崇明, 陈秋, 宫云茜, 车凯, 郁金星, 孙楠楠. 分子筛基CO2吸附剂研究进展[J]. 化工进展, 2023, 42(S1): 411-419. |
[6] | 王乐乐, 杨万荣, 姚燕, 刘涛, 何川, 刘逍, 苏胜, 孔凡海, 朱仓海, 向军. SCR脱硝催化剂掺废特性及性能影响[J]. 化工进展, 2023, 42(S1): 489-497. |
[7] | 邓丽萍, 时好雨, 刘霄龙, 陈瑶姬, 严晶颖. 非贵金属改性钒钛基催化剂NH3-SCR脱硝协同控制VOCs[J]. 化工进展, 2023, 42(S1): 542-548. |
[8] | 程涛, 崔瑞利, 宋俊男, 张天琪, 张耘赫, 梁世杰, 朴实. 渣油加氢装置杂质沉积规律与压降升高机理分析[J]. 化工进展, 2023, 42(9): 4616-4627. |
[9] | 王鹏, 史会兵, 赵德明, 冯保林, 陈倩, 杨妲. 过渡金属催化氯代物的羰基化反应研究进展[J]. 化工进展, 2023, 42(9): 4649-4666. |
[10] | 张启, 赵红, 荣峻峰. 质子交换膜燃料电池中氧还原反应抗毒性电催化剂研究进展[J]. 化工进展, 2023, 42(9): 4677-4691. |
[11] | 王伟涛, 鲍婷玉, 姜旭禄, 何珍红, 王宽, 杨阳, 刘昭铁. 醛酮树脂基非金属催化剂催化氧气氧化苯制备苯酚[J]. 化工进展, 2023, 42(9): 4706-4715. |
[12] | 葛亚粉, 孙宇, 肖鹏, 刘琦, 刘波, 孙成蓥, 巩雁军. 分子筛去除VOCs的研究进展[J]. 化工进展, 2023, 42(9): 4716-4730. |
[13] | 毛善俊, 王哲, 王勇. 基团辨识加氢:从概念到应用[J]. 化工进展, 2023, 42(8): 3917-3922. |
[14] | 向阳, 黄寻, 魏子栋. 电催化有机合成反应的活性和选择性调控研究进展[J]. 化工进展, 2023, 42(8): 4005-4014. |
[15] | 王耀刚, 韩子姗, 高嘉辰, 王新宇, 李思琪, 杨全红, 翁哲. 铜基催化剂电还原二氧化碳选择性的调控策略[J]. 化工进展, 2023, 42(8): 4043-4057. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |