化工进展 ›› 2023, Vol. 42 ›› Issue (8): 4264-4274.DOI: 10.16085/j.issn.1000-6613.2022-1832
李润蕾1(), 王子彦2, 王志苗1(), 李芳1(), 薛伟1, 赵新强1, 王延吉1
收稿日期:
2022-09-30
修回日期:
2023-02-04
出版日期:
2023-08-15
发布日期:
2023-09-19
通讯作者:
王志苗,李芳
作者简介:
李润蕾(1999—),男,硕士研究生,研究方向为绿色催化。E-mail:L530912@163.com。
基金资助:
LI Runlei1(), WANG Ziyan2, WANG Zhimiao1(), LI Fang1(), XUE Wei1, ZHAO Xinqiang1, WANG Yanji1
Received:
2022-09-30
Revised:
2023-02-04
Online:
2023-08-15
Published:
2023-09-19
Contact:
WANG Zhimiao, LI Fang
摘要:
利用等体积浸渍法制备了CuO-CeO2/TiO2催化剂,用于低温CO氧化反应。考察了焙烧温度、Cu-Ce负载量和Ce/Cu摩尔比等对CuO-CeO2/TiO2催化性能的影响,利用XRD、N2等温吸附-脱附、XPS、H2-TPR等方法对催化剂进行了表征。结果表明,当nCe/nCu为1.6,Cu-Ce负载量为30%时,经500℃焙烧所制得催化剂具有最佳催化活性;当空速为24000mL/(g·h),在该催化剂上90℃时CO可完全氧化。表征发现,CuO-CeO2/TiO2催化剂表面较高的Ce3+、Cu+和吸附氧含量有利于催化CO氧化反应。制备条件通过影响催化剂表面的Ce3+、Cu+和吸附氧含量,影响催化剂活性。其中,焙烧温度、Cu-Ce负载量和nCe/nCu均会影响CuO-CeO2/TiO2表面Cu+和吸附氧含量,而催化剂表面Ce3+含量仅受Cu-Ce负载量的影响较大。
中图分类号:
李润蕾, 王子彦, 王志苗, 李芳, 薛伟, 赵新强, 王延吉. CuO-CeO2/TiO 2 高效催化CO低温氧化反应性能[J]. 化工进展, 2023, 42(8): 4264-4274.
LI Runlei, WANG Ziyan, WANG Zhimiao, LI Fang, XUE Wei, ZHAO Xinqiang, WANG Yanji. Efficient catalytic performance of CuO-CeO2/TiO2 for CO oxidation at low-temperature[J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4264-4274.
编号 | 催化剂参数 | 数值 | |||
---|---|---|---|---|---|
10% | 20% | 30% | 40% | ||
1 | CeO2晶粒尺寸/nm | 4.8 | 5.4 | 6.8 | 7.0 |
2 | CeO2晶格常数/nm | 0.5406 | 0.5400 | 0.5381 | 0.5389 |
3 | SBET/m2·g-1 | 52.2 | 52.5 | 55.6 | 54.1 |
4 | 平均孔容/cm3·g-1 | 0.26 | 0.21 | 0.20 | 0.18 |
5 | 平均孔径/nm | 15.5 | 14.4 | 11.0 | 10.4 |
6 | [Ce3+/(Ce3++Ce4+)]/% | 15.7 | 17.7 | 18.9 | 14.9 |
7 | (Isat/Ipp)/% | 30.4 | 29.3 | 27.6 | 29.0 |
8 | [Oads/(Oads+Olatt)]/% | 15.1 | 17.4 | 26.6 | 19.6 |
表1 不同负载量CuO-CeO2/TiO2催化剂的物化性质
编号 | 催化剂参数 | 数值 | |||
---|---|---|---|---|---|
10% | 20% | 30% | 40% | ||
1 | CeO2晶粒尺寸/nm | 4.8 | 5.4 | 6.8 | 7.0 |
2 | CeO2晶格常数/nm | 0.5406 | 0.5400 | 0.5381 | 0.5389 |
3 | SBET/m2·g-1 | 52.2 | 52.5 | 55.6 | 54.1 |
4 | 平均孔容/cm3·g-1 | 0.26 | 0.21 | 0.20 | 0.18 |
5 | 平均孔径/nm | 15.5 | 14.4 | 11.0 | 10.4 |
6 | [Ce3+/(Ce3++Ce4+)]/% | 15.7 | 17.7 | 18.9 | 14.9 |
7 | (Isat/Ipp)/% | 30.4 | 29.3 | 27.6 | 29.0 |
8 | [Oads/(Oads+Olatt)]/% | 15.1 | 17.4 | 26.6 | 19.6 |
编号 | 催化剂参数 | 数值 | |||
---|---|---|---|---|---|
300℃ | 400℃ | 500℃ | 600℃ | ||
1 | CeO2晶粒尺寸/nm | 6.7 | 7.2 | 6.8 | 9.1 |
2 | CeO2晶格常数/nm | 0.5399 | 0.5398 | 0.5381 | 0.5376 |
3 | SBET/m2·g-1 | 75.5 | 69.8 | 55.6 | 34.0 |
4 | 平均孔容/cm3·g-1 | 0.20 | 0.20 | 0.20 | 0.19 |
5 | 平均孔径/nm | 9.2 | 9.0 | 11.0 | 17.8 |
6 | [Ce3+/(Ce3++Ce4+)]/% | 19.4 | 18.7 | 18.9 | 18.6 |
7 | (Isat/Ipp)/% | 29.1 | 30.1 | 27.6 | 29.5 |
8 | [Oads/(Oads+Olatt)]/% | 21.0 | 21.9 | 26.6 | 19.8 |
表2 不同焙烧温度CuO-CeO2/TiO2催化剂的物化性质
编号 | 催化剂参数 | 数值 | |||
---|---|---|---|---|---|
300℃ | 400℃ | 500℃ | 600℃ | ||
1 | CeO2晶粒尺寸/nm | 6.7 | 7.2 | 6.8 | 9.1 |
2 | CeO2晶格常数/nm | 0.5399 | 0.5398 | 0.5381 | 0.5376 |
3 | SBET/m2·g-1 | 75.5 | 69.8 | 55.6 | 34.0 |
4 | 平均孔容/cm3·g-1 | 0.20 | 0.20 | 0.20 | 0.19 |
5 | 平均孔径/nm | 9.2 | 9.0 | 11.0 | 17.8 |
6 | [Ce3+/(Ce3++Ce4+)]/% | 19.4 | 18.7 | 18.9 | 18.6 |
7 | (Isat/Ipp)/% | 29.1 | 30.1 | 27.6 | 29.5 |
8 | [Oads/(Oads+Olatt)]/% | 21.0 | 21.9 | 26.6 | 19.8 |
编号 | 催化剂参数 | 数值 | |||
---|---|---|---|---|---|
nCe/nCu=1.2 | nCe/nCu=1.4 | nCe/nCu=1.6 | nCe/nCu=1.8 | ||
1 | CeO2晶粒尺寸/nm | 5.9 | 6.3 | 6.8 | 6.7 |
2 | CeO2晶格常数/nm | 0.5389 | 0.5387 | 0.5381 | 0.5382 |
3 | SBET/m2·g-1 | 45.4 | 55.4 | 55.6 | 54.2 |
4 | 平均孔容/cm3·g-1 | 0.17 | 0.19 | 0.20 | 0.20 |
5 | 平均孔径/nm | 13.8 | 10.9 | 11.0 | 10.8 |
6 | [Ce3+/(Ce3++Ce4+)]/% | 17.0 | 17.6 | 18.9 | 17.9 |
7 | (Isat/Ipp)/% | 30.6 | 27.9 | 27.6 | 29.5 |
8 | [Oads/(Oads+Olatt)]/% | 21.9 | 19.2 | 26.6 | 18.6 |
表3 不同nCe/nCu的CuO-CeO2/TiO2催化剂的物化性质
编号 | 催化剂参数 | 数值 | |||
---|---|---|---|---|---|
nCe/nCu=1.2 | nCe/nCu=1.4 | nCe/nCu=1.6 | nCe/nCu=1.8 | ||
1 | CeO2晶粒尺寸/nm | 5.9 | 6.3 | 6.8 | 6.7 |
2 | CeO2晶格常数/nm | 0.5389 | 0.5387 | 0.5381 | 0.5382 |
3 | SBET/m2·g-1 | 45.4 | 55.4 | 55.6 | 54.2 |
4 | 平均孔容/cm3·g-1 | 0.17 | 0.19 | 0.20 | 0.20 |
5 | 平均孔径/nm | 13.8 | 10.9 | 11.0 | 10.8 |
6 | [Ce3+/(Ce3++Ce4+)]/% | 17.0 | 17.6 | 18.9 | 17.9 |
7 | (Isat/Ipp)/% | 30.6 | 27.9 | 27.6 | 29.5 |
8 | [Oads/(Oads+Olatt)]/% | 21.9 | 19.2 | 26.6 | 18.6 |
催化剂 | 原料气组成及体积分数 | 空速/mL·g-1·h-1 | T/℃ | CO转化率/% | 参考文献 |
---|---|---|---|---|---|
CuO-CeO2/TiO2 | 1% CO, 9% O2, N2 | 24000 | 90 | 100 | 本文 |
Pt/Cr1.3Fe0.7O3 | 1% CO, 1% O2, N2 | 120000 | 80 | 78.8 | [ |
Ag/CeO2 | 0.2% CO, 1% O2, N2 | 240000 | 230 | 50 | [ |
Au-CeO2 | 0.05%~1% CO, 10%O2, He | 2650 | 25 | 100 | [ |
Mn3O4/CeO2 | 1%CO, 4% O2, He | 60000 | 194 | 90 | [ |
CuO-CeO2/UiO-66 | 1% CO, 3% O2, N2 | 24000 | 160 | 99 | [ |
Co3O4 NAs-6 | 1% CO, 20% O2, N2 | 10000h-1 | 150 | 100 | [ |
NiO/CeO2 | 0.6% CO, 1.5% O2, Ar | 60000 | 200 | 99.2 | [ |
CuO-CeO2/C | 1% CO, 21% O2, He | 45000h-1 | 150 | 100 | [ |
Au-CeO2/SiO2 | 1% CO, 干空气 | 12000 | 210 | 100 | [ |
CuaCebFec-PSF | 180mL/m3 CO, 空气 | 7643h-1 | 200 | 100 | [ |
Cu1/MnO2 | 1% CO, 15% O2, He | 34000 | 80 | 90 | [ |
CoMn-a | 2% CO, 20% O2, Ar | 60000 | 125 | 100 | [ |
NiO-CuO | 2% CO, 5% O2, Ar | 60000 | 138 | 100 | [ |
CuO/CeO2-20 | 0.4% CO, 空气 | 8000 | 110 | 100 | [ |
表4 不同催化剂催化氧化CO的性能表现
催化剂 | 原料气组成及体积分数 | 空速/mL·g-1·h-1 | T/℃ | CO转化率/% | 参考文献 |
---|---|---|---|---|---|
CuO-CeO2/TiO2 | 1% CO, 9% O2, N2 | 24000 | 90 | 100 | 本文 |
Pt/Cr1.3Fe0.7O3 | 1% CO, 1% O2, N2 | 120000 | 80 | 78.8 | [ |
Ag/CeO2 | 0.2% CO, 1% O2, N2 | 240000 | 230 | 50 | [ |
Au-CeO2 | 0.05%~1% CO, 10%O2, He | 2650 | 25 | 100 | [ |
Mn3O4/CeO2 | 1%CO, 4% O2, He | 60000 | 194 | 90 | [ |
CuO-CeO2/UiO-66 | 1% CO, 3% O2, N2 | 24000 | 160 | 99 | [ |
Co3O4 NAs-6 | 1% CO, 20% O2, N2 | 10000h-1 | 150 | 100 | [ |
NiO/CeO2 | 0.6% CO, 1.5% O2, Ar | 60000 | 200 | 99.2 | [ |
CuO-CeO2/C | 1% CO, 21% O2, He | 45000h-1 | 150 | 100 | [ |
Au-CeO2/SiO2 | 1% CO, 干空气 | 12000 | 210 | 100 | [ |
CuaCebFec-PSF | 180mL/m3 CO, 空气 | 7643h-1 | 200 | 100 | [ |
Cu1/MnO2 | 1% CO, 15% O2, He | 34000 | 80 | 90 | [ |
CoMn-a | 2% CO, 20% O2, Ar | 60000 | 125 | 100 | [ |
NiO-CuO | 2% CO, 5% O2, Ar | 60000 | 138 | 100 | [ |
CuO/CeO2-20 | 0.4% CO, 空气 | 8000 | 110 | 100 | [ |
1 | 金星, 罗永明, 梅占强, 等. CO催化氧化催化剂改性研究进展[J]. 石油化工, 2019, 48(2): 197-202. |
JIN Xing, LUO Yongming, MEI Zhanqiang, et al. Research progress on modification of catalytic oxidation catalyst for CO[J]. Petrochemical Technology, 2019, 48(2): 197-202. | |
2 | 杨德强, 周庆华. CO低温氧化催化剂研究进展[J]. 化学工程师, 2011, 25(8): 36-38. |
YANG Deqiang, ZHOU Qinghua. Research progress of low-temperature CO oxidation catalysts[J]. Chemical Engineer, 2011, 25(8): 36-38. | |
3 | 梁飞雪, 朱华青, 秦张峰, 等. 一氧化碳低温催化氧化[J]. 化学进展, 2008, 20(10): 1453-1464. |
LIANG Feixue, ZHU Huaqing, QIN Zhangfeng, et al. Low-temperature catalytic oxidation of carbon monoxide[J]. Progress in Chemistry, 2008, 20(10): 1453-1464. | |
4 | YANG N, PATTISSON S, DOUTHWAITE M, et al. Influence of stabilizers on the performance of Au/TiO2 catalysts for CO oxidation[J]. ACS Catalysis, 2021, 11(18): 11607-11615. |
5 | LU Rao, HE Lei, WANG Yang, et al. Promotion effects of nickel-doped Al2O3-nanosheet-supported Au catalysts for CO oxidation[J]. Chinese Journal of Catalysis, 2020, 41(2): 350-356. |
6 | VALECHHA D, MEGARAJAN S K, AL-FATESH A, et al. Low temperature CO oxidation over a novel nano-structured, mesoporous CeO2 supported Au catalyst[J]. Catalysis Letters, 2019, 149(1): 127-140. |
7 | 孟甜甜, 赵世超, 陈朝秋, 等. 原子层沉积制备Pt/CeO2催化剂及其低温CO氧化性能的研究[J]. 现代化工, 2020, 40(10): 184-187. |
MENG Tiantian, ZHAO Shichao, CHEN Chaoqiu, et al. Preparation of Pt/CeO2 catalyst via atomic layer deposition and its application in oxidation of CO at low temperature[J]. Modern Chemical Industry, 2020, 40(10): 184-187. | |
8 | 黄志超, 王际童, 马成, 等. 低负载Pd/Al2O3催化剂的制备及其对CO室温催化性能研究[J]. 工业催化,2021, 29(2): 33-41. |
HUANG Zhichao, WANG Jitong, MA Cheng, et al. Preparation of Pd/Al2O3 catalyst with low Pd loading amount for CO oxidation at room temperature[J]. Industrial Catalysis, 2021, 29(2): 33-41. | |
9 | DEY S, CHANDRA DHAL G. Controlling carbon monoxide emissions from automobile vehicle exhaust using copper oxide catalysts in a catalytic converter[J]. Materials Today Chemistry, 2020, 17: 100282. |
10 | ZOU Zhiqiang, MENG Ming, GUO Lihong, et al. Synthesis and characterization of CuO/Ce1- x Ti x O2 catalysts used for low-temperature CO oxidation[J]. Journal of Hazardous Materials, 2009, 163(2/3): 835-842. |
11 | GAO Zhiming, GONG Yuanyuan, ZHANG Qiang, et al. Preferential oxidation of CO in excess H2 over the CeO2/CuO catalyst: Effect of initial support[J]. Journal of Energy Chemistry, 2014, 23(4): 475-482. |
12 | WANG Cheng, CHENG Qingpeng, WANG Xinlei, et al. Enhanced catalytic performance for CO preferential oxidation over CuO catalysts supported on highly defective CeO2 nanocrystals[J]. Applied Surface Science, 2017, 422: 932-943. |
13 | MOBINI S, MESHKANI F, REZAEI M. Supported Mn catalysts and the role of different supports in the catalytic oxidation of carbon monoxide[J]. Chemical Engineering Science, 2019, 197: 37-51. |
14 | LUO Jingjie, CHU Wei, XU Huiyuan, et al. Low-temperature CO oxidation over CuO-CeO2/SiO2 catalysts: Effect of CeO2 content and carrier porosity[J]. Journal of Natural Gas Chemistry, 2010, 19(4): 355-361. |
15 | QI Lei, YU Qiang, DAI Yue, et al. Influence of cerium precursors on the structure and reducibility of mesoporous CuO-CeO2 catalysts for CO oxidation[J]. Applied Catalysis B: Environmental, 2012, 119/120: 308-320. |
16 | SEDMAK G, HOČEVAR S, LEVEC J. Kinetics of selective CO oxidation in excess of H2 over the nanostructured Cu0.1Ce0.9O2- y catalyst[J]. Journal of Catalysis, 2003, 213(2): 135-150. |
17 | MARTÍNEZ-ARIAS A, HUNGRÍA A B, MUNUERA G, et al. Preferential oxidation of CO in rich H2 over CuO/CeO2: Details of selectivity and deactivation under the reactant stream[J]. Applied Catalysis B: Environmental, 2006, 65(3/4): 207-216. |
18 | JIA Aiping, JIANG Shiyu, LU Jiqing, et al. Study of catalytic activity at the CuO-CeO2 interface for CO oxidation[J]. The Journal of Physical Chemistry C, 2010, 114(49): 21605-21610. |
19 | LIU Zhigang, ZHOU Renxian, ZHENG Xiaoming. Influence of preparation methods on CuO-CeO2 catalysts in the preferential oxidation of CO in excess hydrogen[J]. Journal of Natural Gas Chemistry, 2008, 17(2): 125-129. |
20 | 孙敬方, 张雷, 葛成艳, 等. 固相浸渍法和湿浸渍法制备CuO/CeO2催化剂及其CO氧化性能的对比研究[J]. 催化学报, 2014, 35(8): 1347-1358. |
SUN Jingfang, ZHANG Lei, GE Chengyan, et al. Comparative study on the catalytic CO oxidation properties of CuO/CeO2 catalysts prepared by solid state and wet impregnation[J]. Chinese Journal of Catalysis, 2014, 35(8): 1347-1358. | |
21 | ZHANG Fang, CHEN Chao, XIAO Weiming, et al. CuO/CeO2 catalysts with well-dispersed active sites prepared from Cu3(BTC)2 metal-organic framework precursor for preferential CO oxidation[J]. Catalysis Communications, 2012, 26: 25-29. |
22 | ZHU Chunlan, DING Tong, GAO Wanxian, et al. CuO/CeO2 catalysts synthesized from Ce-UiO-66 metal-organic framework for preferential CO oxidation[J]. International Journal of Hydrogen Energy, 2017, 42(27): 17457-17465. |
23 | ZAMARO J M, PÉREZ N C, MIRÓ E E, et al. HKUST-1 MOF: A matrix to synthesize CuO and CuO-CeO2 nanoparticle catalysts for CO oxidation[J]. Chemical Engineering Journal, 2012, 195/196: 180-187. |
24 | CHEN Chao, WANG Rui, SHEN Pan, et al. Inverse CeO2/CuO catalysts prepared from heterobimetallic metal-organic framework precursor for preferential CO oxidation in H2-rich stream[J]. International Journal of Hydrogen Energy, 2015, 40(14): 4830-4839. |
25 | GONG Xia, WANG Weiwei, FU Xinpu, et al. Metal-organic-framework derived controllable synthesis of mesoporous copper-cerium oxide composite catalysts for the preferential oxidation of carbon monoxide[J]. Fuel, 2018, 229: 217-226. |
26 | WANG Yin, YANG Yiqiang, LIU Ning, et al. Sword-like CuO/CeO2 composites derived from a Ce-BTC metal-organic framework with superior CO oxidation performance[J]. RSC Advances, 2018, 8(58): 33096-33102. |
27 | GU Chunlei, QI Ran, WEI Ying, et al. Preparation and performances of nanorod-like inverse CeO2-CuO catalysts derived from Ce-1,3,5-benzene tricarboxylic acid for CO preferential oxidation[J]. Reaction Kinetics, Mechanisms and Catalysis, 2018, 124(2): 651-667. |
28 | HUANG Jing, WANG Shurong, ZHAO Yingqiang, et al. Synthesis and characterization of CuO/TiO2 catalysts for low-temperature CO oxidation[J]. Catalysis Communications, 2006, 7(12): 1029-1034. |
29 | 梁飞雪, 朱华青, 秦张峰, 等. CeO2-TiO2复合氧化物的制备、表征及其对CO氧化的催化性能[J]. 催化学报, 2008, 29(3): 264-268. |
LIANG Feixue, ZHU Huaqing, QIN Zhangfeng, et al. Preparation and characterization of CeO2-TiO2 composite oxide and its catalytic performance for CO oxidation[J]. Chinese Journal of Catalysis, 2008, 29(3): 264-268. | |
30 | LI Hailong, WU Shaokang, LI Liqing, et al. CuO-CeO2/TiO2 catalyst for simultaneous NO reduction and Hg0 oxidation at low temperatures[J]. Catalysis Science & Technology, 2015, 5(12): 5129-5138. |
31 | ASTUDILLO J, ÁGUILA G, DÍAZ F, et al. Study of CuO-CeO2 catalysts supported on SiO2 on the low-temperature oxidation of CO[J]. Applied Catalysis A: General, 2010, 381(1/2): 169-176. |
32 | REDDY B M, KHAN A, YAMADA Y, et al. Structural characterization of CeO2-MO2 (M = Si4+, Ti4+, and Zr4+) mixed oxides by Raman spectroscopy, X-ray photoelectron spectroscopy, and other techniques[J]. The Journal of Physical Chemistry B, 2003, 107(41): 11475-11484. |
33 | DENG Changshun, LI Bin, DONG Lihui, et al. NO reduction by CO over CuO supported on CeO2-doped TiO2: The effect of the amount of a few CeO2 [J]. Physical Chemistry Chemical Physics: PCCP, 2015, 17(24): 16092-16109. |
34 | ZHOU Renxian, JIANG Xiaoyuan, MAO Jianxin, et al. Oxidation of carbon monoxide catalyzed by copper-zirconium composite oxides[J]. Applied Catalysis A: General, 1997, 162(1/2): 213-222. |
35 | AGUILA G, GUERRERO S, ARAYA P. Effect of the preparation method and calcination temperature on the oxidation activity of CO at low temperature on CuO-CeO2/SiO2 catalysts[J]. Applied Catalysis A: General, 2013, 462/463: 56-63. |
36 | XIE Yu, WU Jinfang, JING Guojuan, et al. Structural origin of high catalytic activity for preferential CO oxidation over CuO/CeO2 nanocatalysts with different shapes[J]. Applied Catalysis B: Environmental, 2018, 239: 665-676. |
37 | GUO Xiaolin, LI Jing, ZHOU Renxian. Catalytic performance of Manganese doped CuO-CeO2 catalysts for selective oxidation of CO in hydrogen-rich gas[J]. Fuel, 2016, 163: 56-64. |
38 | JAMPA S, WANGKAWEE K, TANTISRIYANURAK S, et al. High performance and stability of copper loading on mesoporous ceria catalyst for preferential oxidation of CO in presence of excess of hydrogen[J]. International Journal of Hydrogen Energy, 2017, 42(8): 5537-5548. |
39 | ALI S, CHEN L Q, YUAN F L, et al. Synergistic effect between copper and cerium on the performance of Cu x Ce0.5- x Zr0.5 (x = 0.1~0.5) oxides catalysts for selective catalytic reduction of NO with ammonia[J]. Applied Catalysis B: Environmental, 2017, 210: 223-234. |
40 | WEN Bin, HE Mingyuan. Study of the Cu-Ce synergism for NO reduction with CO in the presence of O2, H2O and SO2 in FCC operation[J]. Applied Catalysis B: Environmental, 2002, 37(1): 75-82. |
41 | ZENG Lei, SONG Wulin, LI Minghui, et al. Catalytic oxidation of formaldehyde on surface of HTiO2/HCTiO2 without light illumination at room temperature[J]. Applied Catalysis B: Environmental, 2014, 147: 490-498. |
42 | YANG Shaoxia, ZHU Wanpeng, JIANG Zhanpeng, et al. The surface properties and the activities in catalytic wet air oxidation over CeO2-TiO2 catalysts[J]. Applied Surface Science, 2006, 252(24): 8499-8505. |
43 | WANG Ting, XING Jinyuan, ZHU Li, et al. CO oxidation over supported Pt/Cr x Fe2- x O3 catalysts and their good tolerance to CO2 and H2O[J]. Applied Catalysis B: Environmental, 2019, 245: 314-324. |
44 | KIBIS L S, SVINTSITSKIY D A, KARDASH T Y, et al. Interface interactions and CO oxidation activity of Ag/CeO2 catalysts: A new approach using model catalytic systems[J]. Applied Catalysis A: General, 2019, 570: 51-61. |
45 | JAMPAIAH D, VELISOJU V K, DEVAIAH D, et al. Flower-like Mn3O4/CeO2 microspheres as an efficient catalyst for diesel soot and CO oxidation: Synergistic effects for enhanced catalytic performance[J]. Applied Surface Science, 2019, 473: 209-221. |
46 | YU Jihang, YU Jun, WEI Zhecheng, et al. Preparation and characterization of UiO-66-supported Cu-Ce bimetal catalysts for low-temperature CO oxidation[J]. Catalysis Letters, 2019, 149(2): 496-506. |
47 | MO Shengpeng, HE Hui, REN Quanming, et al. Macroporous Ni foam-supported Co3O4 nanobrush and nanomace hybrid arrays for high-efficiency CO oxidation[J]. Journal of Environmental Sciences, 2019, 75: 136-144. |
48 | 金石山, 张大山, 冯旭浩, 等. Ni含量对NiO/CeO2催化剂催化CO氧化性能的影响[J]. 燃料化学学报, 2022, 50(8): 1034-1040. |
JIN Shishan, ZHANG Dashan, FENG Xuhao, et al. Effect of Ni content on catalytic oxidation of CO over NiO/CeO2 catalyst[J]. Journal of Fuel Chemistry and Technology, 2022, 50(8): 1034-1040. | |
49 | DEREKAYA F, ARASAN N, GÜLDÜR Ç. Effects of preparation method on the characterization and CO oxidation activities of the carbon-supported CuO-CeO2 catalysts[J]. Arabian Journal for Science and Engineering, 2022, 47(5): 6033-6047. |
50 | QIAN Kun, Shanshan LYU, XIAO Xiaoyan, et al. Influences of CeO2 microstructures on the structure and activity of Au/CeO2/SiO2 catalysts in CO oxidation[J]. Journal of Molecular Catalysis A: Chemical, 2009, 306(1/2): 40-47. |
51 | CHEN Longwen, ZHANG Dong, CHEN Yanwu, et al. Porous stainless-steel fibers supported CuCeFeO x /zeolite catalysts for the enhanced CO oxidation: Experimental and kinetic studies[J]. Chemosphere, 2022, 291: 132778. |
52 | JIANG Mingzhu, CHEN Jing, GAO Yanxia, et al. Using the interaction between copper and manganese to stabilize copper single-atom for CO oxidation[J]. Chemistry, 2021, 27(35): 9060-9070. |
53 | MOBINI S, REZAEI M, MESHKANI F. One-pot hard template synthesis of mesoporous spinel nanoparticles as efficient catalysts for low temperature CO oxidation[J]. Environmental Science and Pollution Research, 2021, 28(1): 547-563. |
54 | RASTEGARPANAH A, LIU Y X, DENG J G, et al. Influence of preparation method on catalytic performance of three-dimensionally ordered macroporous NiO-CuO for CO oxidation[J]. Journal of Solid State Chemistry, 2021, 297: 122091. |
55 | CAM T S, OMAROV S O, CHEBANENKO M I, et al. One step closer to the low-temperature CO oxidation over non-noble CuO/CeO2 nanocatalyst: The effect of CuO loading[J]. Journal of Environmental Chemical Engineering, 2021, 9(4): 105373. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[3] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[4] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[5] | 郑谦, 官修帅, 靳山彪, 张长明, 张小超. 铈锆固溶体Ce0.25Zr0.75O2光热协同催化CO2与甲醇合成DMC[J]. 化工进展, 2023, 42(S1): 319-327. |
[6] | 戴欢涛, 曹苓玉, 游新秀, 徐浩亮, 汪涛, 项玮, 张学杨. 木质素浸渍柚子皮生物炭吸附CO2特性[J]. 化工进展, 2023, 42(S1): 356-363. |
[7] | 高雨飞, 鲁金凤. 非均相催化臭氧氧化作用机理研究进展[J]. 化工进展, 2023, 42(S1): 430-438. |
[8] | 王乐乐, 杨万荣, 姚燕, 刘涛, 何川, 刘逍, 苏胜, 孔凡海, 朱仓海, 向军. SCR脱硝催化剂掺废特性及性能影响[J]. 化工进展, 2023, 42(S1): 489-497. |
[9] | 顾永正, 张永生. HBr改性飞灰对Hg0的动态吸附及动力学模型[J]. 化工进展, 2023, 42(S1): 498-509. |
[10] | 邓丽萍, 时好雨, 刘霄龙, 陈瑶姬, 严晶颖. 非贵金属改性钒钛基催化剂NH3-SCR脱硝协同控制VOCs[J]. 化工进展, 2023, 42(S1): 542-548. |
[11] | 孙玉玉, 蔡鑫磊, 汤吉海, 黄晶晶, 黄益平, 刘杰. 反应精馏合成甲基丙烯酸甲酯工艺优化及节能[J]. 化工进展, 2023, 42(S1): 56-63. |
[12] | 杨寒月, 孔令真, 陈家庆, 孙欢, 宋家恺, 王思诚, 孔标. 微气泡型下向流管式气液接触器脱碳性能[J]. 化工进展, 2023, 42(S1): 197-204. |
[13] | 杨建平. 降低HPPO装置反应系统原料消耗的PSE[J]. 化工进展, 2023, 42(S1): 21-32. |
[14] | 王福安. 300kt/a环氧丙烷工艺反应器降耗减排分析[J]. 化工进展, 2023, 42(S1): 213-218. |
[15] | 王胜岩, 邓帅, 赵睿恺. 变电吸附二氧化碳捕集技术研究进展[J]. 化工进展, 2023, 42(S1): 233-245. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |