化工进展 ›› 2023, Vol. 42 ›› Issue (8): 4247-4263.DOI: 10.16085/j.issn.1000-6613.2022-1785
黄玉飞(), 李子怡, 黄杨强, 金波, 罗潇(), 梁志武()
收稿日期:
2022-09-23
修回日期:
2023-01-20
出版日期:
2023-08-15
发布日期:
2023-09-19
通讯作者:
罗潇,梁志武
作者简介:
黄玉飞(1993—),男,博士研究生,研究方向为CO2的捕获与利用。E-mail: yufeih@hnu.edu.cn。
基金资助:
HUANG Yufei(), LI Ziyi, HUANG Yangqiang, JIN Bo, LUO Xiao(), LIANG Zhiwu()
Received:
2022-09-23
Revised:
2023-01-20
Online:
2023-08-15
Published:
2023-09-19
Contact:
LUO Xiao, LIANG Zhiwu
摘要:
太阳能驱动的CO2与CH4转化为合成气是一种非常有前景的生产可再生燃料的技术,然而太阳能驱动的CH4重整催化剂存在转化效率低、光生电子与空穴复合速率快及催化剂稳定性差等问题。本文简述了光催化CO2与CH4重整的可能机理,包括CO2和CH4的吸附、光生电子与空穴的迁移及产物的脱附过程。重点介绍了光催化CO2和CH4重整过程中贵金属催化剂、非贵金属催化剂及碳氮化合物等催化剂的研究进展,并总结归纳了各类催化剂的优点与不足。最后,本文探讨了光催化转化CO2与CH4制合成气研究领域未来可能的发展方向:开发设计高效的光催化剂提高反应效率;通过密度泛函理论计算及高端表征技术探究催化机理。
中图分类号:
黄玉飞, 李子怡, 黄杨强, 金波, 罗潇, 梁志武. 光催化CO2和CH4重整催化剂研究进展[J]. 化工进展, 2023, 42(8): 4247-4263.
HUANG Yufei, LI Ziyi, HUANG Yangqiang, JIN Bo, LUO Xiao, LIANG Zhiwu. Research progress on catalysts for photocatalytic CO2 and CH4 reforming[J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4247-4263.
1 | NGUYEN Tu N, DINH Cao-Thang. Gas diffusion electrode design for electrochemical carbon dioxide reduction[J]. Chemical Society Reviews, 2020, 49(21): 7488-7504. |
2 | Kristie L EBI, VANOS Jennifer, BALDWIN Jane W, et al. Extreme weather and climate change: Population health and health system implications[J]. Annual Review of Public Health, 2021, 42: 293-315. |
3 | ALTHOR Glenn, WATSON James E M, FULLER Richard A. Global mismatch between greenhouse gas emissions and the burden of climate change[J]. Scientific Reports, 2016, 6: 20281. |
4 | 黄晟, 王静宇, 郭沛, 等. 碳中和目标下能源结构优化的近期策略与远期展望[J]. 化工进展, 2022, 41(11): 5695-5708. |
HUANG Sheng, WANG Jingyu, GUO Pei, et al. Short-term strategy and long-term prospect of energy structure optimization under carbon neutrality target[J]. Chemical Industry and Engineering Progress, 2022, 41(11): 5695-5708. | |
5 | BECATTINI Viola, GABRIELLI Paolo, MAZZOTTI Marco. Role of carbon capture, storage, and utilization to enable a net-zero-CO2-emissions aviation sector[J]. Industrial & Engineering Chemistry Research, 2021, 60(18): 6848-6862. |
6 | WILBERFORCE Tabbi, OLABI A G, SAYED Enas Taha, et al. Progress in carbon capture technologies[J]. Science of the Total Environment, 2021, 761: 143203. |
7 | BOOT-HANDFORD Matthew E, ABANADES Juan C, ANTHONY Edward J, et al. Carbon capture and storage update[J]. Energy & Environmental Science, 2014, 7(1): 130-189. |
8 | WUEBBLES Donald J, HAYHOE Katharine. Atmospheric methane and global change[J]. Earth-Science Reviews, 2002, 57(3/4): 177-210. |
9 | Control methane to slow global warming-fast[J]. Nature, 2021, 596(7873): 461. |
10 | 徐凯迪, 谢涛, 王升, 等. 太阳能甲烷干重整复杂反应体系的热化学储能特性[J]. 化工进展, 2019, 38(11): 4921-4929. |
XU Kaidi, XIE Tao, WANG Sheng, et al. Thermochemical energy storage characteristics of complex reaction system for solar methane dry reforming system[J]. Chemical Industry and Engineering Progress, 2019, 38(11): 4921-4929. | |
11 | KUMAR Bhupendra, LLORENTE Mark, FROEHLICH Jesse, et al. Photochemical and photoelectrochemical reduction of CO2 [J]. Annual Review of Physical Chemistry, 2012, 63: 541-569. |
12 | LABINGER Jay A, BERCAW John E. Understanding and exploiting C-H bond activation[J]. Nature, 2002, 417(6888): 507-514. |
13 | KONG Tingting, JIANG Yawen, XIONG Yujie. Photocatalytic CO2 conversion: What can we learn from conventional CO x hydrogenation?[J]. Chemical Society Reviews, 2020, 49(18): 6579-6591. |
14 | WANG C, SU Y, TAVASOLI A, et al. Recent advances in nanostructured catalysts for photo-assisted dry reforming of methane[J]. Materials Today Nano, 2021, 14: 100113. |
15 | WHITE James L, BARUCH Maor F, PANDER James E III, et al. Light-driven heterogeneous reduction of carbon dioxide: Photocatalysts and photoelectrodes[J]. Chemical Reviews, 2015, 115(23): 12888-12935. |
16 | LI Xin, YU Jiaguo, JARONIEC Mietek, et al. Cocatalysts for selective photoreduction of CO2 into solar fuels[J]. Chemical Reviews, 2019, 119(6): 3962-4179. |
17 | HONG Jindui, ZHANG Wei, REN Jia, et al. Photocatalytic reduction of CO2: A brief review on product analysis and systematic methods[J]. Analytical Methods, 2013, 5(5): 1086-1097. |
18 | LIANG Mengfang, BORJIGIN Timur, ZHANG Yuhao, et al. Controlled assemble of hollow heterostructured g-C3N4@CeO2 with rich oxygen vacancies for enhanced photocatalytic CO2 reduction[J]. Applied Catalysis B: Environmental, 2019, 243: 566-575. |
19 | MAIMAITI Halidan, AWATI Abuduheiremu, YISILAMU Gunisakezi, et al. Synthesis and visible-light photocatalytic CO2/H2O reduction to methyl formate of TiO2 nanoparticles coated by aminated cellulose[J]. Applied Surface Science, 2019, 466: 535-544. |
20 | BAFAQEER Abdullah, TAHIR Muhammad, AMIN Nor Aishah Saidina. Well-designed ZnV2O6/g-C3N4 2D/2D nanosheets heterojunction with faster charges separation via pCN as mediator towards enhanced photocatalytic reduction of CO2 to fuels[J]. Applied Catalysis B: Environmental, 2019, 242: 312-326. |
21 | LI Dalin, NAKAGAWA Yoshinao, TOMISHIGE Keiichi. Methane reforming to synthesis gas over Ni catalysts modified with noble metals[J]. Applied Catalysis A: General, 2011, 408(1/2): 1-24. |
22 | FOPPA Lucas, SILAGHI Marius-Christian, LARMIER Kim, et al. Intrinsic reactivity of Ni, Pd and Pt surfaces in dry reforming and competitive reactions: Insights from first principles calculations and microkinetic modeling simulations[J]. Journal of Catalysis, 2016, 343: 196-207. |
23 | AKRI Mohcin, ZHAO Shu, LI Xiaoyu, et al. Atomically dispersed nickel as coke-resistant active sites for methane dry reforming[J]. Nature Communications, 2019, 10: 5181. |
24 | HU Yun hang, Ruckenstein Eli. Comment on “Dry reforming of methane by stable Ni-Mo nanocatalysts on single-crystalline MgO”[J]. Science, 2020, 368(6492): eabb5459. |
25 | SONG Youngdong, OZDEMIR Ercan, RAMESH Sreerangappa, et al. Response to Comment on “Dry reforming of methane by stable Ni-Mo nanocatalysts on single-crystalline MgO”[J]. Science, 2020, 368(6492): eabb5680. |
26 | BEHESHTI ASKARI Abbas, SAMARAI Mustafa AL, HIRAOKA Nozomu, et al. In situ X-ray emission and high-resolution X-ray absorption spectroscopy applied to Ni-based bimetallic dry methane reforming catalysts[J]. Nanoscale, 2020, 12(28): 15185-15192. |
27 | BEHESHTI ASKARI Abbas, SAMARAI Mustafa AL, MORANA Bruno, et al. In situ X-ray microscopy reveals particle dynamics in a NiCo dry methane reforming catalyst under operating conditions[J]. ACS Catalysis, 2020, 10(11): 6223-6230. |
28 | KIM Sung Min, ABDALA Paula Macarena, MARGOSSIAN Tigran, et al. Cooperativity and dynamics increase the performance of NiFe dry reforming catalysts[J]. Journal of the American Chemical Society, 2017, 139(5): 1937-1949. |
29 | TANG Yu, WEI Yuechang, WANG Ziyun, et al. Synergy of single-atom Ni1 and Ru1 sites on CeO2 for dry reforming of CH4 [J]. Journal of the American Chemical Society, 2019, 141(18): 7283-7293. |
30 | KAWI Sibudjing, KATHIRASER Yasotha, NI Jun, et al. Progress in synthesis of highly active and stable nickel-based catalysts for carbon dioxide reforming of methane[J]. ChemSusChem, 2015, 8(21): 3556-3575. |
31 | YOSHIUMI Kohno, TSUNEHIRO Tanaka, TAKUZO Funabiki, et al. Reaction mechanism in the photoreduction of CO2 with CH4 over ZrO2 [J]. Physical Chemistry Chemical Physics, 2000, 2(22): 5302-5307. |
32 | TERAMURA Kentaro, TANAKA Tsunehiro, ISHIKAWA Haruka, et al. Photocatalytic reduction of CO2 to CO in the presence of H2 or CH4 as a reductant over MgO[J]. The Journal of Physical Chemistry B, 2004, 108(1): 346-354. |
33 | YULIATI Leny, ITOH Hideaki, YOSHIDA Hisao. Photocatalytic conversion of methane and carbon dioxide over gallium oxide[J]. Chemical Physics Letters, 2008, 452(1/2/3): 178-182. |
34 | 许冰清, 张晓晴, 尚书勇. 光辐照驱动CH4/CO2催化重整制合成气[J]. 河南化工, 2013, 30(5): 32-36. |
XU Bingqing, ZHANG Xiaoqing, SHANG Shuyong. Syngas prepared from CO2 reforming of CH4 with light irradiation heating[J]. Henan Chemical Industry, 2013, 30(5): 32-36. | |
35 | 龙华丽, 胡诗婧, 徐艳, 等. 光辐照驱动CH4-CO2重整中Ni/MgO-Al2O3催化活性吸收体的活性[J]. 催化学报, 2011, 32(8): 1393-1399. |
LONG Huali, HU Shijing, XU Yan, et al. Catalytic activity of Ni/MgO-Al2O3 catalytically activated absorber for CO2 reforming with CH4 driven by direct light irradiation[J]. Chinese Journal of Catalysis, 2011, 32(8): 1393-1399. | |
36 | THOMAS J M. Principles and practice of heterogeneous catalysis[M]. L’Actualite Chimique, 2016: 54-55. |
37 | LIU Lichen, CORMA Avelino. Metal catalysts for heterogeneous catalysis: From single atoms to nanoclusters and nanoparticles[J]. Chemical Reviews, 2018, 118(10): 4981-5079. |
38 | JACOBSEN Claus J H, Søren DAHL, HANSEN Poul L, et al. Structure sensitivity of supported ruthenium catalysts for ammonia synthesis[J]. Journal of Molecular Catalysis A: Chemical, 2000, 163(1/2): 19-26. |
39 | MIYAZAKI Akane, BALINT Ioan, AIKA Ken-ichi, et al. Preparation of Ru nanoparticles supported on γ-Al2O3 and its novel catalytic activity for ammonia synthesis[J]. Journal of Catalysis, 2001, 204(2): 364-371. |
40 | HONKALA K, HELLMAN A, REMEDIAKIS I N, et al. Ammonia synthesis from first-principles calculations[J]. Science, 2005, 307(5709): 555-558. |
41 | LIN S D, VANNICE M A. Hydrogenation of aromatic hydrocarbons over supported Pt Catalysts.Ⅰ. benzene hydrogenation[J]. Journal of Catalysis, 1993, 143(2): 539-553. |
42 | BARIÅS Odd A, HOLMEN Anders, BLEKKAN Edd A. Propane dehydrogenation over supported Pt and Pt-Sn catalysts: Catalyst preparation, characterization, and activity measurements[J]. Journal of Catalysis, 1996, 158(1): 1-12. |
43 | CAMPBELL Charles T, PAFFETT Mark T. Model studies of ethylene epoxidation catalyzed by the Ag(110) surface[J]. Surface Science, 1984, 139(2/3): 396-416. |
44 | PU Tiancheng, TIAN Huijie, FORD Michael E, et al. Overview of selective oxidation of ethylene to ethylene oxide by Ag catalysts[J]. ACS Catalysis, 2019, 9(12): 10727-10750. |
45 | WU Nae-Lih, LEE Min-Shuei. Enhanced TiO2 photocatalysis by Cu in hydrogen production from aqueous methanol solution[J]. International Journal of Hydrogen Energy, 2004, 29(15): 1601-1605. |
46 | SAKTHIVEL S, SHANKAR M V, PALANICHAMY M, et al. Enhancement of photocatalytic activity by metal deposition: Characterisation and photonic efficiency of Pt, Au and Pd deposited on TiO2 catalyst[J]. Water Research, 2004, 38(13): 3001-3008. |
47 | ZHU Zhen, Cheng-Tse KAO, TANG Binghong, et al. Efficient hydrogen production by photocatalytic water-splitting using Pt-doped TiO2 hollow spheres under visible light[J]. Ceramics International, 2016, 42(6): 6749-6754. |
48 | AL-AZRI Zakiya H N, CHEN Wanting, CHAN Andrew, et al. The roles of metal co-catalysts and reaction media in photocatalytic hydrogen production: Performance evaluation of M/TiO2 photocatalysts (M=Pd, Pt, Au) in different alcohol-water mixtures[J]. Journal of Catalysis, 2015, 329: 355-367. |
49 | CHEN Wanting, CHAN Andrew, Dongxiao SUN-WATERHOUSE, et al. Performance comparison of Ni/TiO2 and Au/TiO2 photocatalysts for H2 production in different alcohol-water mixtures[J]. Journal of Catalysis, 2018, 367: 27-42. |
50 | 郭淼鑫, 杜君臣, 李红, 等. 甲烷燃烧贵金属催化剂研究新进展[J]. 稀有金属, 2021, 45(9): 1133-1147. |
GUO Miaoxin, DU Junchen, LI Hong, et al. New research progress on precious metal catalysts for methane combustion[J]. Chinese Journal of Rare Metals, 2021, 45(9): 1133-1147. | |
51 | 赵一龙. Pt(Au)/TiO2@(类)石墨烯核壳结构催化剂的制备及其光催化CO2还原性能[D]. 北京: 中国石油大学(北京), 2018. |
ZHAO Yilong. Synthesis of core-shell structured Pt(Au)/TiO2@Graphene material catalysts and their performances for the photocatalytic reduction of CO2 [D]. Beijing: China University of Petroleum (Beijing), 2018. | |
52 | LÁSZLÓ B, KISS J. Photoreactions in CO2-CH4 system on metal modified titanate nanotubes[M]. Germany: LAP Lambert Academic Publishing, 2016. |
53 | TAHIR Beenish, TAHIR Muhammad, AMIN Nor Aishah Saidina. Tailoring performance of La-modified TiO2 nanocatalyst for continuous photocatalytic CO2 reforming of CH4 to fuels in the presence of H2O[J]. Energy Conversion and Management, 2018, 159: 284-298. |
54 | TAHIR Beenish, TAHIR Muhammad, AMIN Nor Aishah Saidina. Ag-La loaded protonated carbon nitrides nanotubes (pCNNT) with improved charge separation in a monolithic honeycomb photoreactor for enhanced bireforming of methane (BRM) to fuels[J]. Applied Catalysis B: Environmental, 2019, 248: 167-183. |
55 | HAN Bing, WEI Wei, CHANG Liang, et al. Efficient visible light photocatalytic CO2 reforming of CH4 [J]. ACS Catalysis, 2016, 6(2): 494-497. |
56 | LI Naixu, JIANG Rumeng, LI Yao, et al. Plasma-assisted photocatalysis of CH4 and CO2 into ethylene[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(13): 11455-11463. |
57 | TAHIR Beenish, TAHIR Muhammad, AMIN Nor Aishah Saidina. Silver loaded protonated graphitic carbon nitride (Ag/pg-C3N4) nanosheets for stimulating CO2 reduction to fuels via photocatalytic bi-reforming of methane[J]. Applied Surface Science, 2019, 493: 18-31. |
58 | LIU Huimin, MENG Xianguang, Thang Duy DAO, et al. Conversion of carbon dioxide by methane reforming under visible-light irradiation: Surface-plasmon-mediated nonpolar molecule activation[J]. Angewandte Chemie, 2015, 127(39): 11707-11711. |
59 | YANG Yuying, CHAI Zhigang, QIN Xuetao, et al. Light-induced redox looping of a rhodium/Ce x WO3 photocatalyst for highly active and robust dry reforming of methane[J]. Angewandte Chemie International Edition, 2022, 61(21): e202200567. |
60 | KOSINOV Nikolay, HENSEN Emiel J M. Reactivity, selectivity, and stability of zeolite-based catalysts for methane dehydroaromatization[J]. Advanced Materials, 2020, 32(44): 2002565. |
61 | ZHANG Feng, GUTIÉRREZ Ramón A, LUSTEMBERG Pablo G, et al. Metal-support interactions and C1 chemistry: Transforming Pt-CeO2 into a highly active and stable catalyst for the conversion of carbon dioxide and methane[J]. ACS Catalysis, 2021, 11(3): 1613-1623. |
62 | YUAN Kai, WANG Yuhao, LI Kongzhai, et al. LaFe0.8Co0.15Cu0.05O3 reforming of CH4 coupled with CO2 reduction[J]. ACS Applied Materials & Interfaces, 2022, 14(34): 39004-39013. |
63 | SUN Zhenkun, LU Dennis Y, SYMONDS Robert T, et al. Chemical looping reforming of CH4 in the presence of CO2 using ilmenite ore and NiO-modified ilmenite ore oxygen carriers[J]. Chemical Engineering Journal, 2020, 401: 123481. |
64 | 张铁锐, 王双印. 非贵金属电催化[J]. 物理化学学报, 2021, 37(7): 13-15. |
ZHANG Tierui, WANG Shuangyin. Noble-metal-free electrocatalysis[J]. Acta Physico-Chimica Sinica, 2021, 37(7): 13-15. | |
65 | FENG Manman, WU Xuemei, CHENG Huiyuan, et al. Well-defined Fe-Cu diatomic sites for efficient catalysis of CO2 electroreduction[J]. Journal of Materials Chemistry A, 2021, 9(42): 23817-23827. |
66 | ZHENG Tingting, JIANG Kun, Na TA, et al. Large-scale and highly selective CO2 electrocatalytic reduction on nickel single-atom catalyst[J]. Joule, 2019, 3(1): 265-278. |
67 | JU Wen, BAGGER Alexander, HAO Guangping, et al. Understanding activity and selectivity of metal-nitrogen-doped carbon catalysts for electrochemical reduction of CO2 [J]. Nature Communications, 2017, 8: 944. |
68 | Fenglei LYU, WANG Qingfa, CHOI Sung Mook, et al. Noble-metal-free electrocatalysts for oxygen evolution[J]. Small, 2019, 15(1): 1804201. |
69 | FENG Shuaijun, ZHAO Jie, BAI Yujie, et al. Facile synthesis of Mo-doped TiO2 for selective photocatalytic CO2 reduction to methane: Promoted H2O dissociation by Mo doping[J]. Journal of CO2 Utilization, 2020, 38: 1-9. |
70 | 金晓丽, 徐怡雪, 葛藤, 等. Fe单原子负载Bi4 O5I2: 显著提升光催化还原CO2活性[C]//河南省化学会2020年学术年会论文摘要集. 许昌, 2020: 385. |
71 | GUO Chunmei, GUO Biao, GAO Xiaosu, et al. Ni0.85Co0.15WO4 for photocatalytic reduction of CO2 under mild conditions with high activity and selectivity[J]. Catalysis Letters, 2020, 150(11): 3071-3078. |
72 | HUANG W, XIE K-C, WANG J-P, et al. Possibility of direct conversion of CH4 and CO2 to high-value products[J]. Journal of Catalysis, 2001, 201(1): 100-104. |
73 | YARAHMADI Akram, SHARIFNIA Shahram. Dye photosensitization of ZnO with metallophthalocyanines (Co, Ni and Cu) in photocatalytic conversion of greenhouse gases[J]. Dyes and Pigments, 2014, 107: 140-145. |
74 | LIU Huimin, Thang Duy DAO, LIU Lequan, et al. Light assisted CO2 reduction with methane over group Ⅷ metals: Universality of metal localized surface plasmon resonance in reactant activation[J]. Applied Catalysis B: Environmental, 2017, 209: 183-189. |
75 | LIU Xiang, WANG Zhiqiang, WU Yongzheng, et al. Integrating the Z-scheme heterojunction into a novel Ag2O@rGO@reduced TiO2 photocatalyst: Broadened light absorption and accelerated charge separation co-mediated highly efficient UV/visible/NIR light photocatalysis[J]. Journal of Colloid and Interface Science, 2019, 538: 689-698. |
76 | ZHANG Wanli, HUO Siying, YANG Siyuan, et al. Ternary monolithic ZnS/CdS/rGO photomembrane with desirable charge separation/transfer routes for effective photocatalytic and photoelectrochemical hydrogen generation[J]. Chemistry: an Asian Journal, 2019, 14(19): 3431-3441. |
77 | CHEN Wenqian, ZHANG Shaomei, WANG Ganyu, et al. Rationally designed CdS-based ternary heterojunctions: A case of 1T-MoS2 in CdS/TiO2 photocatalyst[J]. Nanomaterials, 2020, 11(1): 38. |
78 | LI Teng, JIN Zhiliang. Unique ternary Ni-MOF-74/Ni2P/MoS x composite for efficient photocatalytic hydrogen production: Role of Ni2P for accelerating separation of photogenerated carriers[J]. Journal of Colloid and Interface Science, 2022, 605: 385-397. |
79 | LUO Yue, LI Bo, LIU Xiangmei, et al. Simultaneously enhancing the photocatalytic and photothermal effect of NH2-MIL-125-GO-Pt ternary heterojunction for rapid therapy of bacteria-infected wounds[J]. Bioactive Materials, 2022, 18: 421-432. |
80 | SHI Daxin, FENG Yaqing, ZHONG Shunhe. Photocatalytic conversion of CH4 and CO2 to oxygenated compounds over Cu/CdS-TiO2/SiO2 catalyst[J]. Catalysis Today, 2004, 98(4): 505-509. |
81 | PAN Fuping, XIANG Xianmei, DENG Wei, et al. A novel photo-thermochemical approach for enhanced carbon dioxide reforming of methane[J]. ChemCatChem, 2018, 10(5): 940-945. |
82 | TAHIR Muhammad, TAHIR Beenish, ZAKARIA Zaki Yamani, et al. Enhanced photocatalytic carbon dioxide reforming of methane to fuels over nickel and montmorillonite supported TiO2 nanocomposite under UV-light using monolith photoreactor[J]. Journal of Cleaner Production, 2019, 213: 451-461. |
83 | ZHOU Linan, MARTIREZ John Mark P, FINZEL Jordan, et al. Light-driven methane dry reforming with single atomic site antenna-reactor plasmonic photocatalysts[J]. Nature Energy, 2020, 5(1): 61-70. |
84 | LIU Jinlong, ZHANG Yaqian, ZHANG Lei, et al. Graphitic carbon nitride (g-C3N4)-derived N-rich graphene with tuneable interlayer distance as a high-rate anode for sodium-ion batteries[J]. Advanced Materials, 2019, 31(24): 1901261. |
85 | YOON Yeoheung, LEE Minhe, KIM Seong Ku, et al. A strategy for synthesis of carbon nitride induced chemically doped 2D MXene for high-performance supercapacitor electrodes[J]. Advanced Energy Materials, 2018, 8(15): 1703173. |
86 | RAHMAN Mohammad Z, Buddie MULLINS C. Understanding charge transport in carbon nitride for enhanced photocatalytic solar fuel production[J]. Accounts of Chemical Research, 2019, 52(1): 248-257. |
87 | XIA Pengfei, ANTONIETTI Markus, ZHU Bicheng, et al. Designing defective crystalline carbon nitride to enable selective CO2 photoreduction in the gas phase[J]. Advanced Functional Materials, 2019, 29(15): 1900093. |
88 | LIU Bing, YE Liqun, WANG Ran, et al. Phosphorus-doped graphitic carbon nitride nanotubes with amino-rich surface for efficient CO2 capture, enhanced photocatalytic activity, and product selectivity[J]. ACS Applied Materials & Interfaces, 2018, 10(4): 4001-4009. |
89 | WANG Ke, LI Qin, LIU Baoshun, et al. Sulfur-doped g-C3N4 with enhanced photocatalytic CO2-reduction performance[J]. Applied Catalysis B: Environmental, 2015, 176/177: 44-52. |
90 | WANG Yang, LIU Xueqin, ZHENG Cunchuan, et al. Tailoring TiO2 nanotube-interlaced graphite carbon nitride nanosheets for improving visible-light-driven photocatalytic performance[J]. Advanced Science, 2018, 5(6): 1700844. |
91 | LIU Yanan, MA Liubo, SHEN Congcong, et al. Highly enhanced visible-light photocatalytic hydrogen evolution on g-C3N4 decorated with vopc through π-π interaction[J]. Chinese Journal of Catalysis, 2019, 40(2): 168-176. |
92 | CAI Jingsheng, HUANG Jianying, WANG Shanchi, et al. Environmental remediation: Crafting mussel-inspired metal nanoparticle-decorated ultrathin graphitic carbon nitride for the degradation of chemical pollutants and production of chemical resources[J]. Advanced Materials, 2019, 31(15): 1970110. |
93 | MALIK Ritu, TOMER Vijay K, CHAUDHARY Vandna, et al. A low temperature, highly sensitive and fast response toluene gas sensor based on In(Ⅲ)-SnO2 loaded cubic mesoporous graphitic carbon nitride[J]. Sensors and Actuators B: Chemical, 2018, 255: 3564-3575. |
94 | JIA Lichao, MANE Gurudas P, Anand Chokkalingam, et al. A facile photo-induced synthesis of COOH functionalized meso-macroporous carbon films and their excellent sensing capability for aromatic amines[J]. Chemical Communications, 2012, 48(72): 9029-9031. |
95 | TALAPANENI Siddulu Naidu, SINGH Gurwinder, KIM In Young, et al. Nanostructured carbon nitrides for CO2 capture and conversion[J]. Advanced Materials, 2020, 32(18): 1904635. |
96 | LI Yang, LI Baihai, ZHANG Dainan, et al. Crystalline carbon nitride supported copper single atoms for photocatalytic CO2 reduction with nearly 100% CO selectivity[J]. ACS Nano, 2020, 14(8): 10552-10561. |
97 | TAHIR Beenish, TAHIR Muhammad, AMIN Nor Aishah Saidina. Photo-induced CO2 reduction by CH4/H2O to fuels over Cu-modified g-C3N4 nanorods under simulated solar energy[J]. Applied Surface Science, 2017, 419: 875-885. |
98 | CHEN Ming, WU Jiachen, LU Chongchong, et al. Photoreduction of CO2 in the presence of CH4 over g-C3N4 modified with TiO2 nanoparticles at room temperature[J]. Green Energy & Environment, 2021, 6(6): 938-951. |
99 | LI Ziyi, MAO Yu, HUANG Yufei, et al. Theoretical and experimental studies of highly efficient all-solid Z-scheme TiO2–TiC/g-C3N4 for photocatalytic CO2 reduction via dry reforming of methane[J]. Catalysis Science & Technology, 2022, 12(9): 2804-2818. |
100 | KHAN Azmat ALI, TAHIR Muhammad. Well-designed 2D/2D Ti3C2TA/R MXene coupled g-C3N4 heterojunction with in situ growth of anatase/rutile TiO2 nucleates to boost photocatalytic dry-reforming of methane (DRM) for syngas production under visible light[J]. Applied Catalysis B: Environmental, 2021, 285: 119777. |
101 | MADI Mohamed, TAHIR Muhammad. FabricatingV2 AlC/g-C3N4 nanocomposite with MAX as electron moderator for promoting photocatalytic CO2-CH4 reforming to CO/H2 [J]. International Journal of Energy Research, 2022, 46(6): 7666-7685. |
102 | IKREEDEEGH Riyadh Ramadhan, TAHIR Muhammad. Facile fabrication of well-designed 2D/2D porous g-C3N4-GO nanocomposite for photocatalytic methane reforming (DRM) with CO2 towards enhanced syngas production under visible light[J]. Fuel, 2021, 305: 121558. |
103 | MAHMODI G, SHARIFNIA S, RAHIMPOUR F, et al. Photocatalytic conversion of CO2 and CH4 using ZnO coated mesh: Effect of operational parameters and optimization[J]. Solar Energy Materials and Solar Cells, 2013, 111: 31-40. |
104 | Torabi MERAJIN M, SHARIFNIA S, HOSSEINI S N, et al. Photocatalytic conversion of greenhouse gases (CO2 and CH4) to high value products using TiO2 nanoparticles supported on stainless steel webnet[J]. Journal of the Taiwan Institute of Chemical Engineers, 2013, 44(2): 239-246. |
105 | YAZDANPOUR Neda, SHARIFNIA Shahram. Photocatalytic conversion of greenhouse gases (CO2 and CH4) using copper phthalocyanine modified TiO2 [J]. Solar Energy Materials and Solar Cells, 2013, 118: 1-8. |
106 | DELAVARI Saeed, AMIN Nor Aishah Saidina. Photocatalytic conversion of CO2 and CH4 over immobilized titania nanoparticles coated on mesh: Optimization and kinetic study[J]. Applied Energy, 2016, 162: 1171-1185. |
107 | TAHIR Muhammad. Enhanced photocatalytic CO2 reduction to fuels through bireforming of methane over structured 3D MAX Ti3AlC2/TiO2 heterojunction in a monolith photoreactor[J]. Journal of CO2 Utilization, 2020, 38: 99-112. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[3] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[4] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[5] | 郑谦, 官修帅, 靳山彪, 张长明, 张小超. 铈锆固溶体Ce0.25Zr0.75O2光热协同催化CO2与甲醇合成DMC[J]. 化工进展, 2023, 42(S1): 319-327. |
[6] | 戴欢涛, 曹苓玉, 游新秀, 徐浩亮, 汪涛, 项玮, 张学杨. 木质素浸渍柚子皮生物炭吸附CO2特性[J]. 化工进展, 2023, 42(S1): 356-363. |
[7] | 王乐乐, 杨万荣, 姚燕, 刘涛, 何川, 刘逍, 苏胜, 孔凡海, 朱仓海, 向军. SCR脱硝催化剂掺废特性及性能影响[J]. 化工进展, 2023, 42(S1): 489-497. |
[8] | 邓丽萍, 时好雨, 刘霄龙, 陈瑶姬, 严晶颖. 非贵金属改性钒钛基催化剂NH3-SCR脱硝协同控制VOCs[J]. 化工进展, 2023, 42(S1): 542-548. |
[9] | 孙玉玉, 蔡鑫磊, 汤吉海, 黄晶晶, 黄益平, 刘杰. 反应精馏合成甲基丙烯酸甲酯工艺优化及节能[J]. 化工进展, 2023, 42(S1): 56-63. |
[10] | 杨寒月, 孔令真, 陈家庆, 孙欢, 宋家恺, 王思诚, 孔标. 微气泡型下向流管式气液接触器脱碳性能[J]. 化工进展, 2023, 42(S1): 197-204. |
[11] | 王胜岩, 邓帅, 赵睿恺. 变电吸附二氧化碳捕集技术研究进展[J]. 化工进展, 2023, 42(S1): 233-245. |
[12] | 程涛, 崔瑞利, 宋俊男, 张天琪, 张耘赫, 梁世杰, 朴实. 渣油加氢装置杂质沉积规律与压降升高机理分析[J]. 化工进展, 2023, 42(9): 4616-4627. |
[13] | 王鹏, 史会兵, 赵德明, 冯保林, 陈倩, 杨妲. 过渡金属催化氯代物的羰基化反应研究进展[J]. 化工进展, 2023, 42(9): 4649-4666. |
[14] | 张启, 赵红, 荣峻峰. 质子交换膜燃料电池中氧还原反应抗毒性电催化剂研究进展[J]. 化工进展, 2023, 42(9): 4677-4691. |
[15] | 王伟涛, 鲍婷玉, 姜旭禄, 何珍红, 王宽, 杨阳, 刘昭铁. 醛酮树脂基非金属催化剂催化氧气氧化苯制备苯酚[J]. 化工进展, 2023, 42(9): 4706-4715. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |