化工进展 ›› 2023, Vol. 42 ›› Issue (8): 4221-4229.DOI: 10.16085/j.issn.1000-6613.2022-1764
郭晋1,2(), 张耕2,3(), 陈国华3, 朱鸣4, 谭粤2, 李蔚2, 夏莉2, 胡昆2
收稿日期:
2022-09-21
修回日期:
2023-05-06
出版日期:
2023-08-15
发布日期:
2023-09-19
通讯作者:
张耕
作者简介:
郭晋(1976—),男,博士研究生,研究方向为氢安全。E-mail:13318804328@189.cn。
基金资助:
GUO Jin1,2(), ZHANG Geng2,3(), CHEN Guohua3, ZHU Ming4, TAN Yue2, LI Wei2, XIA Li2, HU Kun2
Received:
2022-09-21
Revised:
2023-05-06
Online:
2023-08-15
Published:
2023-09-19
Contact:
ZHANG Geng
摘要:
在化石能源消耗和环境污染的双重压力下,新能源发电及氢能备受关注。氢能燃料电池车辆作为目前最为广泛的氢能终端应用场景,对氢燃料储用系统的重量、存储能力、安全性能提出了更高的要求。车载液氢气瓶以其高密度、轻量化被广泛认为是下一阶段燃料电池车辆燃料箱的重要型式,车载液氢气瓶的安全性、绝热性是目前的关键难题。鉴于氢燃料电池汽车使用环境复杂、事故危害大,车辆的本质安全和高效节能十分重要,但车载液氢气瓶的设计方法并不完善,存在材料脆断、疲劳失效、真空丧失等失效风险。本文针对车载储氢气瓶关键设计环节,从选材、选型、设计和测试环节出发,从液氢气瓶材料韧脆转变性、车载液氢气瓶静动力学分析、车载液氢气瓶疲劳寿命、车载液氢气瓶使用过程及真空丧失后的绝热性能、车载液氢气瓶增压设计和增压传热方面综述了研究的历史发展情况、相关研究进展情况,分析了目前国内外研究的情况,预测了与车载液氢气瓶相关的研究趋势,最后对车载液氢气瓶的设计关键技术做了总结与展望。
中图分类号:
郭晋, 张耕, 陈国华, 朱鸣, 谭粤, 李蔚, 夏莉, 胡昆. 车载液氢气瓶设计技术的研究进展[J]. 化工进展, 2023, 42(8): 4221-4229.
GUO Jin, ZHANG Geng, CHEN Guohua, ZHU Ming, TAN Yue, LI Wei, XIA Li, HU Kun. Research progress on vehicle liquid hydrogen cylinder design[J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4221-4229.
低温材料 | 特点 |
---|---|
铝合金[ | 已应用于航空航天领域的液氢储罐,在轻量化、成形性、焊接性、耐腐蚀性等方面具有明显优势 |
钛合金[ | 具有良好的低温力学性能,重量轻,具有高的比强度,但其在成型和焊接性能方面的优势不明显,且成本相对较高,应用相对较少 |
奥氏体不锈钢[ | 应用最广泛的液氢储运容器用低温材料,良好的低温效果,但液氢低温下氢介质的存在引起塑性和韧性的下降 |
表1 不同的液氢气瓶常用低温材料的特点
低温材料 | 特点 |
---|---|
铝合金[ | 已应用于航空航天领域的液氢储罐,在轻量化、成形性、焊接性、耐腐蚀性等方面具有明显优势 |
钛合金[ | 具有良好的低温力学性能,重量轻,具有高的比强度,但其在成型和焊接性能方面的优势不明显,且成本相对较高,应用相对较少 |
奥氏体不锈钢[ | 应用最广泛的液氢储运容器用低温材料,良好的低温效果,但液氢低温下氢介质的存在引起塑性和韧性的下降 |
1 | 陈晓露, 刘小敏, 王娟, 等. 液氢储运技术及标准化[J]. 化工进展, 2021, 40(9): 4806-4814. |
CHEN Xiaolu, LIU Xiaomin, WANG Juan, et al. Technology and standardization of liquid hydrogen storage and transportation[J]. Chemical Industry and Engineering Progress, 2021, 40(9): 4806-4814. | |
2 | ACEVES Salvador M, Francisco ESPINOSA-LOZA, Elias LEDESMA-OROZCO, et al. High-density automotive hydrogen storage with cryogenic capable pressure vessels[J]. International Journal of Hydrogen Energy, 2010, 35(3): 1219-1226. |
3 | KNORR H. The man hydrogen propulsion system for city buses[J]. International Journal of Hydrogen Energy, 1998, 23(3): 201-208. |
4 | AMASEDER Franz, KRAINZ Guenter. Liquid hydrogen storage systems developed and manufactured for the first time for customer cars[C]//SAE Technical Paper Series. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2006. |
5 | AZIZ Muhammad. Liquid hydrogen: A review on liquefaction, storage, transportation, and safety[J]. Energies, 2021, 14(18): 5917. |
6 | MORRIS A S O, BACQUART T, ALLEN N D C, et al. Challenges in hydrogen fuel sampling due to contaminant behaviour in different gas cylinders[J]. International Journal of Hydrogen Energy, 2021, 46(35): 18167-18178. |
7 | 余王伟. 超低温储氢容器用奥氏体不锈钢焊接接头韧性研究[D]. 杭州: 浙江工业大学, 2017. |
YU Wangwei. Research on toughness of austenitic stainless steel welded joints for ultra-low temperature hydrogen storage vessel[D]. Hangzhou: Zhejiang University of Technology, 2017. | |
8 | VOGT J B, FOCT J, REGNARD C, et al. Low-temperature fatigue of 316L and 316LN austenitic stainless steels[J]. Metallurgical Transactions A, 1991, 22(10): 2385-2392. |
9 | SHIBATA K, KISHIMOTO Y, NAMURA N, et al. Cyclic softening and hardening of austenitic steels at low temperatures[M] . Fatigue at Low Temperatures: ASTM International, 1985. |
10 | QIU Yinan, YANG Huan, TONG Lige, et al. Research progress of cryogenic materials for storage and transportation of liquid hydrogen[J]. Metals, 2021, 11(7): 1101. |
11 | GAUDER Patrick, Michael SEIDENFUß. Experimental and numerical investigations of tensile specimens containing multiple flaws in the ductile-to-brittle transition region[J]. Engineering Fracture Mechanics, 2021, 248: 107714. |
12 | 党霆, 陈成澍, 陶佑卿. 常温及低温下奥氏体不锈钢低循环变形行为的研究[J]. 西南交通大学学报, 1991, 26(3): 109-116. |
DANG Ting, CHEN Chengshu, TAO Youqing. Low cyclic deformation behavior of austenitic stainless steel at room and low temperatures[J]. Journal of Southwest Jiaotong University, 1991, 26(3): 109-116. | |
13 | 李广, 曹睿, 陈剑虹. 韧脆转变低温区断裂韧度分析[J]. 机械强度, 2010, 32(3): 442-445. |
LI Guang, CAO Rui, CHEN Jianhong. Analysis on fracture toughness at lower temperature region of the ductile-brittle transition[J]. Journal of Mechanical Strength, 2010, 32(3): 442-445. | |
14 | 褚峰, 张靖, 陆春洁, 等. 船用低温钢的冲击断裂行为及韧脆转变温度曲线分析[J]. 中国测试, 2018, 44(9): 136-140. |
CHU Feng, ZHANG Jing, LU Chunjie, et al. Analysis of impact fracture behavior and ductile-brittle transition temperature curve of the low temperature ship steel[J]. China Measurement & Test, 2018, 44(9): 136-140. | |
15 | 赵翠钗. 深冷容器奥氏体不锈钢封头的铁素体含量控制——LNG低温储罐内容器S30408封头的铁素体含量控制[J]. 中国化工装备, 2018, 20(5): 17-19. |
ZHAO Cuichai. The control of ferrite content in the head of austenitic stainless steel for cryogenic vessels—The control of ferrite content in the head of S30408 for LNG storage tank[J]. China Chemical Industry Equipment, 2018, 20(5): 17-19. | |
16 | 屈莎莎, 谭粤, 李蔚, 等. 液氢储运容器用低温材料的研究进展[J]. 山东化工, 2022, 51(20): 106-109, 113. |
QU Shasha, TAN Yue, LI Wei, et al. Research progress of cryogenic materials for liquid hydrogen storage and transportation vessels[J]. Shandong Chemical Industry, 2022, 51(20): 106-109, 113. | |
17 | 谢秀娟. 国内液氢技术装备与产业应用[J]. 科学新闻, 2022, 24(2): 20-22. |
XIE Xiujuan. Domestic liquid hydrogen technology and equipment and industrial application[J]. Science News, 2022, 24(2): 20-22. | |
18 | NAYAN Niraj, NARAYANA MURTY S V S, Abhay K JHA, et al. Mechanical properties of aluminium-copper-lithium alloy AA2195 at cryogenic temperatures[J]. Materials & Design, 2014, 58: 445-450. |
19 | YURI Tetsumi, OGATA Toshio, SAITO Masahiro, et al. Effect of welding structure on high-cycle and low-cycle fatigue properties for MIG welded A5083 aluminum alloys at cryogenic temperatures[J]. Cryogenics, 2001, 41(7): 475-483. |
20 | ANTONY PRABHU T, MURUGESAN N, THOMAS THARIAN K, et al. Studies on mechanical properties of Ti-6Al-4V ELI at liquid hydrogen temperature[J]. Materials Science Forum, 2015, 830/831: 207-210. |
21 | LU Zichuan, ZHANG Xuhu, JI Wei, et al. Investigation on the deformation mechanism of Ti-5Al-2.5Sn ELI titanium alloy at cryogenic and room temperatures[J]. Materials Science and Engineering: A, 2021, 818: 141380. |
22 | FUJII H, OHMIYA S, SHIBATA K, et al. Effect of specimen diameter on tensile properties of austenitic stainless steels in liquid hydrogen and gaseous helium at 20K[J]. AIP Conference Proceedings. American Institute of Physics, 2006, 824(1):145-152. |
23 | ZHENG Chengsi, YU Wangwei. Effect of low-temperature on mechanical behavior for an AISI 304 austenitic stainless steel[J]. Materials Science and Engineering: A, 2018, 710: 359-365. |
24 | ISLAM M R, FARUQUE M, ZOGHI B, et al. Engineering Statics[M]. Boca Raton: CRC Press, 2020. |
25 | 妙丛, 张翼, 黄磊. 车载液氢容器关键技术[J]. 低温与超导, 2022, 50(4): 71-74. |
MIAO Cong, ZHANG Yi, HUANG Lei. Key technologies of liquid hydrogen container on vehicle[J]. Cryogenics & Superconductivity, 2022, 50(4): 71-74. | |
26 | 鲁丽, 杨翊仁. 充液壳体运输过程中的随机振动和瞬态分析[J]. 西南交通大学学报, 2002, 37(S1): 62-64. |
LU Li, YANG Yiren. Random vibration and transient analysis of oil-filled shells during transportation[J]. Journal of Southwest Jiaotong University, 2002, 37(S1): 62-64. | |
27 | CHUNG Soh-Myung, JEON Gyu-Mok, PARK Jong-Chun. Numerical approach to analyze fluid flow in a type C tank for liquefied hydrogen carrier (part 1: Sloshing flow)[J]. International Journal of Hydrogen Energy, 2022, 47(8): 5609-5626. |
28 | 杜明广. 车载LNG气瓶的设计与分析[D]. 合肥: 合肥工业大学, 2016. |
DU Mingguang. Design and analysis of LNG vehicle cylinder[D]. Hefei: Hefei University of Technology, 2016. | |
29 | 刘蕊, 陈祖志, 黄强华, 等. 充装量及筒体长度对车载LNG气瓶共振频率影响的数值模拟分析[J]. 化工学报, 2019, 70(11): 4486-4496. |
LIU Rui, CHEN Zuzhi, HUANG Qianghua, et al. Numerical simulation analysis of influence of filling amount and length of cylinder on resonance frequency of vehicle LNG cylinder[J]. CIESC Journal, 2019, 70(11): 4486-4496. | |
30 | 周天送. 车载低温绝热气瓶抗振性能研究[D]. 大连: 大连理工大学, 2016. |
ZHOU Tiansong. Study on anti-vibration performance of vehicle cryogenic insulated cylinder[D]. Dalian: Dalian University of Technology, 2016. | |
31 | 刘培启, 许海洋, 段武, 等. 扁长型车载LNG气瓶振动特性分析[J]. 压力容器, 2019, 36(6): 27-33. |
LIU Peiqi, XU Haiyang, DUAN Wu, et al. Vibration characteristics analysis of flat long vehicle mounted LNG cylinder[J]. Pressure Vessel Technology, 2019, 36(6): 27-33. | |
32 | 李佳. 基于结构动力特性的随机疲劳寿命研究[D]. 天津: 天津大学, 2018. |
LI Jia. Random fatigue life study based on structural dynamic characteristics[D]. Tianjin: Tianjin University, 2018. | |
33 | 刘德玉. LNG车载气瓶动力特性分析[D]. 兰州: 兰州理工大学, 2016. |
LIU Deyu. Dynamic characteristics analysis of LNG vehicle cylinder[D]. Lanzhou: Lanzhou University of Technology, 2016. | |
34 | 古海波, 刘岩, 宋薛思, 等. 车用LNG气瓶振动试验典型失效模式[J]. 低温与特气, 2018, 36(5): 51-54. |
GU Haibo, LIU Yan, SONG Xuesi, et al. Typical failure modes in vibration test of LNG cylinders for vehicles[J]. Low Temperature and Specialty Gases, 2018, 36(5): 51-54. | |
35 | BHUYAN G S, AKHTAR A, WEBSTER C T L. Effect of hydrostatic retest on the fatigue behavior of a steel gas cylinder[J]. Journal of Pressure Vessel Technology, 1991, 113(4): 556-559. |
36 | 杨树斌, 马志鹏, 李蔚, 等. 车载LNG气瓶在振动和冲击载荷作用下的失效研究及风险应对措施[J]. 山东化工, 2019, 48(6): 157-158, 162. |
YANG Shubin, MA Zhipeng, LI Wei, et al. Failure research and risk counter-measure of LNG vehicle cylinder under vibration and impact loading[J]. Shandong Chemical Industry, 2019, 48(6): 157-158, 162. | |
37 | ZHANG Jianqiang, ZHU Jiacai, GUO Wei, et al. A machine learning-based approach to predict the fatigue life of three-dimensional cracked specimens[J]. International Journal of Fatigue, 2022, 159: 106808. |
38 | 杨兴. 有限元法对车载钢制天然气瓶疲劳分析[J]. 科技资讯, 2020, 18(4): 43-49. |
YANG Xing. Fatigue analysis of vehicle-mounted steel natural gas bottle by finite element method[J]. Science & Technology Information, 2020, 18(4): 43-49. | |
39 | 李伟. 两种车载低温绝热气瓶抗振性能研究[D]. 大连: 大连理工大学, 2018. |
LI Wei. Study on anti-vibration performance of two types of vehicle cryogenic gas cylinder[D]. Dalian: Dalian University of Technology, 2018. | |
40 | JIANG Yaobin, YU Yusong, WANG Zheng, et al. CFD simulation of heat transfer and phase change characteristics of the cryogenic liquid hydrogen tank under microgravity conditions[J]. International Journal of Hydrogen Energy, 2023, 48(19): 7026-7037. |
41 | JIANG Wenbing, SUN Peijie, LI Peng, et al. Transient thermal behavior of multi-layer insulation coupled with vapor cooled shield used for liquid hydrogen storage tank[J]. Energy, 2021, 231: 120859. |
42 | KWON Hyun-Wook, HWANG In-Cheol. Design and optimization of vibration-resistant and heat-insulating support structure of fuel cylinder for LNG vehicles[J]. Journal of the Korean Institute of Gas, 2014, 18(5): 6-11. |
43 | 李阳. 低温绝热气瓶结构优化与进一步提高绝热性能的研究[D]. 上海: 上海交通大学, 2012. |
LI Yang. Study on structural optimization for further improvement in thermal insulation property of cryogenic insulated cylinder[D]. Shanghai: Shanghai Jiao Tong University, 2012. | |
44 | 徐伟强, 李倩倩, 李万青. 无人机机载低温液氢储罐结构设计与强度分析[J]. 真空科学与技术学报, 2015, 35(8): 1017-1022. |
XU Weiqiang, LI Qianqian, LI Wanqing. Simulation of mechanical strength of novel cryogenic liquid hydrogen tank for unmanned aerial vehicle[J]. Chinese Journal of Vacuum Science and Technology, 2015, 35(8): 1017-1022. | |
45 | XU Weiqiang, LI Qianqian, HUANG Minjie. Design and analysis of liquid hydrogen storage tank for high-altitude long-endurance remotely-operated aircraft[J]. International Journal of Hydrogen Energy, 2015, 40(46): 16578-16586. |
46 | TAPEINOS Ilias G, KOUSSIOS Sotiris, GROVES Roger M. Design and analysis of a multi-cell subscale tank for liquid hydrogen storage[J]. International Journal of Hydrogen Energy, 2016, 41(5): 3676-3688. |
47 | CHOI Younseok, KIM Jungwoog, PARK Seungyup, et al. Design and analysis of liquid hydrogen fuel tank for heavy duty truck[J]. International Journal of Hydrogen Energy, 2022, 47(32): 14687-14702. |
48 | YAO Shouguang, YANG Xiaoxu. Research progress of lossless and safe storage technology for cryogenic liquid tanks[J]. International Journal of Green Energy, 2022, 19(11): 1230-1251. |
49 | 高云飞, 王博, 王浩任, 等. 液氢温区真空多层绝热材料研究进展[J]. 低温工程, 2021(6): 12-21. |
GAO Yunfei, WANG Bo, WANG Haoren, et al. Progress of vacuum multilayer insulation materials at liquid hydrogen temperatures[J]. Cryogenics, 2021(6): 12-21. | |
50 | 罗若尹, 王博, 甘智华, 等. 真空完全丧失下LNG罐式集装箱的储存规律研究[J]. 工程热物理学报, 2021, 42(8): 1930-1935. |
LUO Ruoyin, WANG Bo, GAN Zhihua, et al. Study on performance of LNG tank containers after insulating vacuum loss[J]. Journal of Engineering Thermophysics, 2021, 42(8): 1930-1935. | |
51 | 杨帆, 陈保东, 姜文全, 等. LNG低温储罐夹层真空丧失过程内壳裂纹扩展研究[J]. 中国石油大学学报(自然科学版), 2014, 38(1): 132-136. |
YANG Fan, CHEN Baodong, JIANG Wenquan, et al. Study on inner shell crack propagation of LNG cryogenic storage tank during vacuum loss[J]. Journal of China University of Petroleum (Edition of Natural Science), 2014, 38(1): 132-136. | |
52 | 谢高峰. 高真空多层绝热低温容器完全真空丧失实验及传热机理研究[D]. 上海: 上海交通大学, 2011. |
XIE Gaofeng. The research of the experiment and the heat transfer mechanism on the high-vacuum-multilayer-insulation (hvmli) cryogenic tank after catastrophic loss of insulating vacuum[D]. Shanghai: Shanghai Jiao Tong University, 2011. | |
53 | Bent SØRENSEN, SPAZZAFUMO Giuseppe. Hydrogen and fuel cells: emerging technologies and applications[M]. 3rd ed. Amsterdam: Academic Press, 2018. |
54 | EWALD R. Requirements for advanced mobile storage systems[J]. International Journal of Hydrogen Energy, 1998, 23(9): 803-814. |
55 | MICHEL F, FIESELER H, MEYER G, et al. On-board equipment for liquid hydrogen vehicles[J]. International Journal of Hydrogen Energy, 1998, 23(3): 191-199. |
56 | WANG Ying, DAI Xingtao, YOU Hongxin, et al. Research on the design of hydrogen supply system of 70 MPa hydrogen storage cylinder for vehicles[J]. International Journal of Hydrogen Energy, 2018, 43(41): 19189-19195. |
57 | 齐超, 孙培杰, 耑锐, 等. 长期在轨运行低温液氧贮箱内汽化过程的模拟[J]. 化工学报, 2016, 67(S2): 58-63. |
QI Chao, SUN Peijie, ZHUAN Rui, et al. Simulation of vaporization process inside cryogenic liquid oxygen tank for long-term storage in orbit[J]. CIESC Journal, 2016, 67(S2): 58-63. | |
58 | 金树峰, 陈叔平, 姚淑婷, 等. 车载LNG气瓶稳定供气及自增压气化量分析[J]. 低温与超导, 2013, 41(12): 59-62. |
JIN Shufeng, CHEN Shuping, YAO Shuting, et al. Analysis of the stable gas supply and gasification quantity of self-pressurization for LNG vehicle cylinder[J]. Cryogenics & Superconductivity, 2013, 41(12): 59-62. | |
59 | 赵康. 车载液氢汽化器换热研究[D]. 北京: 中国航天科技集团公司第一研究院, 2018. |
ZHAO Kang. Study on heat transfer of liquid hydrogen vaporizer in vehicle[D]. Beijing: The first Research Institute of China Aerospace Science and Technology Corporation, 2018. |
[1] | 徐晨阳, 都健, 张磊. 基于图神经网络的化学反应优劣评价[J]. 化工进展, 2023, 42(S1): 205-212. |
[2] | 杨建平. 降低HPPO装置反应系统原料消耗的PSE[J]. 化工进展, 2023, 42(S1): 21-32. |
[3] | 陈匡胤, 李蕊兰, 童杨, 沈建华. 质子交换膜燃料电池气体扩散层结构与设计研究进展[J]. 化工进展, 2023, 42(S1): 246-259. |
[4] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[5] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[6] | 孙玉玉, 蔡鑫磊, 汤吉海, 黄晶晶, 黄益平, 刘杰. 反应精馏合成甲基丙烯酸甲酯工艺优化及节能[J]. 化工进展, 2023, 42(S1): 56-63. |
[7] | 刘炫麟, 王驿凯, 戴苏洲, 殷勇高. 热泵中氨基甲酸铵分解反应特性及反应器结构优化[J]. 化工进展, 2023, 42(9): 4522-4530. |
[8] | 程涛, 崔瑞利, 宋俊男, 张天琪, 张耘赫, 梁世杰, 朴实. 渣油加氢装置杂质沉积规律与压降升高机理分析[J]. 化工进展, 2023, 42(9): 4616-4627. |
[9] | 葛全倩, 徐迈, 梁铣, 王凤武. MOFs材料在光电催化领域应用的研究进展[J]. 化工进展, 2023, 42(9): 4692-4705. |
[10] | 史柯柯, 刘木子, 赵强, 李晋平, 刘光. 镁基储氢材料的性能及研究进展[J]. 化工进展, 2023, 42(9): 4731-4745. |
[11] | 刘木子, 史柯柯, 赵强, 李晋平, 刘光. 固体储氢材料的研究进展[J]. 化工进展, 2023, 42(9): 4746-4769. |
[12] | 王晨, 白浩良, 康雪. 大功率UV-LED散热与纳米TiO2光催化酸性红26耦合系统性能[J]. 化工进展, 2023, 42(9): 4905-4916. |
[13] | 吴正浩, 周天航, 蓝兴英, 徐春明. 人工智能驱动化学品创新设计的实践与展望[J]. 化工进展, 2023, 42(8): 3910-3916. |
[14] | 毛善俊, 王哲, 王勇. 基团辨识加氢:从概念到应用[J]. 化工进展, 2023, 42(8): 3917-3922. |
[15] | 杨志强, 曾纪珺, 马义丁, 尉涛, 赵波, 刘英哲, 张伟, 吕剑, 李兴文, 张博雅, 唐念, 李丽, 孙东伟. 六氟化硫替代气体的研究现状及未来发展趋势[J]. 化工进展, 2023, 42(8): 4093-4107. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |