化工进展 ›› 2023, Vol. 42 ›› Issue (8): 4108-4122.DOI: 10.16085/j.issn.1000-6613.2023-0749
吕程远1(), 张函1, 杨明旺1, 杜健军1, 樊江莉1,2()
收稿日期:
2023-05-08
修回日期:
2023-06-26
出版日期:
2023-08-15
发布日期:
2023-09-19
通讯作者:
樊江莉
作者简介:
吕程远(1997—),男,博士研究生,研究方向为生物成像用化学发光与余辉发光探针。E-mail:lvcy@mail.dlut.edu.cn。
基金资助:
LYU Chengyuan1(), ZHANG Han1, YANG Mingwang1, DU Jianjun1, FAN Jiangli1,2()
Received:
2023-05-08
Revised:
2023-06-26
Online:
2023-08-15
Published:
2023-09-19
Contact:
FAN Jiangli
摘要:
余辉发光成像方式规避了样本中自体荧光的干扰,极大地降低了背景信号,显著提高了成像信噪比。近年来,基于光氧化反应的二氧杂环丁烷余辉发光体系受到研究者的关注。此类余辉发光体系具有良好的生物相容性与水氧耐受性,易于制备并进行结构修饰,能够实现多功能成像的要求,在疾病诊疗过程中有着广泛的应用前景。本文简述了二氧杂环丁烷余辉发光体系所涉及到的发光机理,并在此基础上总结了体系的构建方式。之后列举出近年来二氧杂环丁烷余辉发光体系应用在肿瘤示踪与手术导航、生物活性分子成像和医学诊疗等方面中的突破性工作。最后,对目前的研究进展进行总结概括,并分析了该体系在临床应用上面临的挑战和对未来的发展进行了展望。
中图分类号:
吕程远, 张函, 杨明旺, 杜健军, 樊江莉. 生物成像用二氧杂环丁烷余辉发光体系的研究进展[J]. 化工进展, 2023, 42(8): 4108-4122.
LYU Chengyuan, ZHANG Han, YANG Mingwang, DU Jianjun, FAN Jiangli. Recent advances of dioxetane-based afterglow system for bio-imaging[J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4108-4122.
1 | PAN Ting, LU Dengyun, XIN Hongbao, et al. Biophotonic probes for bio-detection and imaging[J]. Light: Science & Applications, 2021, 10: 124. |
2 | SIGNORE A, MATHER S J, PIAGGIO G, et al. Molecular imaging of inflammation/infection: Nuclear medicine and optical imaging agents and methods[J]. Chemical Reviews, 2010, 110(5): 3112-3145. |
3 | JAMES Michelle L, GAMBHIR Sanjiv S. A molecular imaging primer: Modalities, imaging agents, and applications[J]. Physiological Reviews, 2012, 92(2): 897-965. |
4 | KENNETH Yin Zhang, YU Qi, WEI Huanjie, et al. Long-lived emissive probes for time-resolved photoluminescence bioimaging and biosensing[J]. Chemical Reviews, 2018, 118(4): 1770-1839. |
5 | JIANG Yuyan, PU Kanyi. Molecular probes for autofluorescence-free optical imaging[J]. Chemical Reviews, 2021, 121(21): 13086-13131. |
6 | MALDINEY Thomas, Aurélie BESSIÈRE, SEGUIN Johanne, et al. The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells[J]. Nature Materials, 2014, 13(4): 418-426. |
7 | LI Yang, MINDAUGAS Gecevicius, QIU Jianrong. Long persistent phosphors—from fundamentals to applications[J]. Chemical Society Reviews, 2016, 45(8): 2090-2136. |
8 | DANG Qianxi, JIANG Yuyan, WANG Jinfeng, et al. Room-temperature phosphorescence resonance energy transfer for construction of near-infrared afterglow imaging agents[J]. Advanced Materials, 2020, 32(52): 2006752. |
9 | NI Fan, LI Nengquan, ZHAN Lisi, et al. Organic thermally activated delayed fluorescence materials for time-resolved luminescence imaging and sensing[J]. Advanced Optical Materials, 2020, 8(14): 1902187. |
10 | HUBBS Ann F, SARGENT Linda M, PORTER Dale W, et al. Nanotechnology: Toxicologic pathology[J]. Toxicologic Pathology, 2013, 41(2): 395-409. |
11 | ZHANG Wansu, CHEN Shangyu, YE Shuai, et al. Enhancing NIR-Ⅱ phosphorescence through phosphorescence resonance energy transfer for tumor-hypoxia imaging[J]. ACS Materials Letters, 2023, 5(1): 116-124. |
12 | JIANG Yuyan, HUANG Jiaguo, ZHEN Xu, et al. A generic approach towards afterglow luminescent nanoparticles for ultrasensitive in vivo imaging[J]. Nature Communications, 2019, 10: 2064. |
13 | YANG Mingwang, ZENG Ziling, LAM Jacky W Y, et al. State-of-the-art self-luminescence: A win-win situation[J]. Chemical Society Reviews, 2022, 51(21): 8815-8831. |
14 | LIANG Ling, CHEN Na, JIA Yiyi, et al. Recent progress in engineering near-infrared persistent luminescence nanoprobes for time-resolved biosensing/bioimaging[J]. Nano Research, 2019, 12(6): 1279-1292. |
15 | PENG Qian, MA Huili, SHUAI Zhigang. Theory of long-lived room-temperature phosphorescence in organic aggregates[J]. Accounts of Chemical Research, 2021, 54(4): 940-949. |
16 | ZHAO Weijun, HE Zikai, TANG Ben zhong. Room-temperature phosphorescence from organic aggregates[J]. Nature Reviews Materials, 2020, 5(12): 869-885. |
17 | WU Yingnan, ZHAO Yanliang, HOU Haoran, et al. Oxygen-insensitive delayed fluorescence based on singlet manifold[J]. Advanced Optical Materials, 2023, 11(5): e2202413. |
18 | WALDEMAR Adam, KAZAKOV Dmitri V, KAZAKOV Valeri P. Singlet-oxygen chemiluminescence in peroxide reactions[J]. Chemical Reviews, 2005, 105(9): 3371-3387. |
19 | MORGANE Vacher, IGNACIO Fdez Galván, DING Bowen, et al. Chemi- and bioluminescence of cyclic peroxides[J]. Chemical Reviews, 2018, 118(15): 6927-6974. |
20 | MATSUMOTO Masakatsu. Advanced chemistry of dioxetane-based chemiluminescent substrates originating from bioluminescence[J]. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2004, 5(1): 27-53. |
21 | LOU Jinhui, TANG Xiaofang, ZHANG Haoke, et al. Chemiluminescence resonance energy transfer efficiency and donor-acceptor distance: From qualitative to quantitative[J]. Angewandte Chemie International Edition, 2021, 60(23): 13029-13034. |
22 | YANG Yanling, WANG Shangfeng, LU Lingfei, et al. NIR-Ⅱ chemiluminescence molecular sensor for in vivo high-contrast inflammation imaging[J]. Angewandte Chemie International Edition, 2020, 59(42): 18380-18385. |
23 | LU Lingfei, LI Benhao, DING Suwan, et al. NIR-Ⅱ bioluminescence for in vivo high contrast imaging and in situ ATP-mediated metastases tracing[J]. Nature Communications, 2020, 11: 4192. |
24 | LIU Yongchao, TENG Lili, Yifan LYU, et al. Ratiometric afterglow luminescent nanoplatform enables reliable quantification and molecular imaging[J]. Nature Communications, 2022, 13: 2216. |
25 | PAN Qingze, XIA Zhuoran, ZHEN Lingfeng, et al. Frontier progress and challenges based on excited-state porphyrins and their derivatives[J]. Scientia Sinica Chimica, 2022, 52(9): 1547-1556. |
26 | LU Xulin, ZHANG Xianfu. Phosphorous tetrabenzocorrolazine from its metal-free phthalocyanine precursor: Its facile synthesis, high fluorescence emission, efficient singlet oxygen formation, and promising hole transporting material[J]. Dyes and Pigments, 2020, 179: 108421. |
27 | Mehmet PIŞKIN. The novel 2,6-dimethoxyphenoxy substituted phthalocyanine dyes having high singlet oxygen quantum yields[J]. Polyhedron, 2016, 104: 17-24. |
28 | HONG Yuning, LAM Jacky W Y, TANG Ben zhong. Aggregation-induced emission: Phenomenon, mechanism and applications[J]. Chemical Communications, 2009(29): 4332-4353. |
29 | YAN Dingyuan, WU Qian, WANG Dong, et al. Innovative synthetic procedures for luminogens showing aggregation-induced emission[J]. Angewandte Chemie International Edition, 2021, 60(29): 15724-15742. |
30 | FENG Guangxue, ZHANG Guoqiang, DING Dan. Design of superior phototheranostic agents guided by Jablonski diagrams[J]. Chemical Society Reviews, 2020, 49(22): 8179-8234. |
31 | CHEN Yuncong, LAM Jacky W Y, KWOK Ryan T K, et al. Aggregation-induced emission: Fundamental understanding and future developments[J]. Materials Horizons, 2019, 6(3): 428-433. |
32 | MIAO Qingqing, PU Kanyi. Organic semiconducting agents for deep-tissue molecular imaging: Second near-infrared fluorescence, self-luminescence, and photoacoustics[J]. Advanced Materials, 2018, 30(49): 1801778. |
33 | LI Xiaozhen, YIN Chao, LIEW Si Si, et al. Organic semiconducting luminophores for near-infrared afterglow, chemiluminescence, and bioluminescence imaging[J]. Advanced Functional Materials, 2021, 31(46): 2106154. |
34 | PALNER Mikael, PU Kanyi, SHAO Shirley, et al. Semiconducting polymer nanoparticles with persistent near-infrared luminescence for in vivo optical imaging[J]. Angewandte Chemie International Edition, 2015, 54(39): 11477-11480. |
35 | ZHEN Xu, XIE Chen, PU Kanyi. Temperature-correlated afterglow of a semiconducting polymer nanococktail for imaging-guided photothermal therapy[J]. Angewandte Chemie International Edition, 2018, 57(15): 3938-3942. |
36 | LU Chang, ZHANG Cheng, WANG Peng, et al. Light-free generation of singlet oxygen through manganese-thiophene nanosystems for pH-responsive chemiluminescence imaging and tumor therapy[J]. Chem, 2020, 6(9): 2314-2334. |
37 | MIAO Qingqing, XIE Chen, ZHEN Xu, et al. Molecular afterglow imaging with bright, biodegradable polymer nanoparticles[J]. Nature Biotechnology, 2017, 35(11): 1102-1110. |
38 | SAMER Gnaim, Green ORI, DORON Shabat. The emergence of aqueous chemiluminescence: New promising class of phenoxy 1,2-dioxetane luminophores[J]. Chemical Communications, 2018, 54(17): 2073-2085. |
39 | UROOB Haris, KAGALWALA Husain N, YUJIN Lisa Kim, et al. Seeking illumination: The path to chemiluminescent 1,2-dioxetanes for quantitative measurements and in vivo imaging[J]. Accounts of Chemical Research, 2021, 54(13): 2844-2857. |
40 | HANANYA Nir, ELDAR BOOCK Anat, BAUER Christoph R, et al. Remarkable enhancement of chemiluminescent signal by dioxetane-fluorophore conjugates: Turn-on chemiluminescence probes with color modulation for sensing and imaging[J]. Journal of the American Chemical Society, 2016, 138(40): 13438-13446. |
41 | GREEN Ori, EILON Tal, HANANYA Nir, et al. Opening a gateway for chemiluminescence cell imaging: Distinctive methodology for design of bright chemiluminescent dioxetane probes[J]. ACS Central Science, 2017, 3(4): 349-358. |
42 | GREEN Ori, GNAIM Samer, BLAU Rachel, et al. Near-infrared dioxetane luminophores with direct chemiluminescence emission mode[J]. Journal of the American Chemical Society, 2017, 139(37): 13243-13248. |
43 | HANANYA Nir, SHABAT Doron. Recent advances and challenges in luminescent imaging: Bright outlook for chemiluminescence of dioxetanes in water[J]. ACS Central Science, 2019, 5(6): 949-959. |
44 | HAO Liangwen, YANG Weitao, XU Yan, et al. Engineering light-initiated afterglow lateral flow immunoassay for infectious disease diagnostics[J]. Biosensors and Bioelectronics, 2022, 212: 114411. |
45 | WANG Xiu, YUAN Wei, XU Ming, et al. Visualization of acute inflammation through a macrophage-camouflaged afterglow nano complex[J]. ACS Applied Materials & Interfaces, 2022, 14(1): 259-267. |
46 | KONG Xiaoyan, SU Xianlong, FENG Wei, et al. Afterglow nanoparticles with 2, 5, 8, 11-tetra-tert-butylperylene as blue emitter for background-free lateral flow immunoassay[J]. Sensors and Actuators B: Chemical, 2023, 382: 133460. |
47 | WEN Yue, ZHANG Sidi, YUAN Wei, et al. Afterglow/fluorescence dual-emissive ratiometric oxygen probe for tumor hypoxia imaging[J]. Analytical Chemistry, 2023, 95(4): 2478-2486. |
48 | SU Xianlong, KONG Xiaoyan, SUN Kuangshi, et al. Enhanced blue afterglow through molecular fusion for bio-applications[J]. Angewandte Chemie International Edition, 2022, 61(27): e202201630. |
49 | LIU Yawei, LI Yanzhong, WEN Yue, et al. Significantly enhanced afterglow brightness via intramolecular energy transfer[J]. ACS Materials Letters, 2021, 3(6): 713-720. |
50 | CHEN Lei, SUN Kuangshi, HU Donghao, et al. Ultra-long near-infrared repeatable photochemical afterglow mediated by reversible storage of singlet oxygen for information encryption[J]. Angewandte Chemie International Edition, 2023, 62(13): e202218670. |
51 | ZHENG Xiaokun, WU Wenbo, ZHENG Yue, et al. Organic nanoparticles with persistent luminescence for in vivo afterglow imaging-guided photodynamic therapy[J]. Chemistry-A European Journal, 2021, 27(23): 6911-6916. |
52 | WANG Youjuan, SONG Guosheng, LIAO Shiyi, et al. Cyclic amplification of the afterglow luminescent nanoreporter enables the prediction of anti-cancer efficiency[J]. Angewandte Chemie International Edition, 2021, 60(36): 19779-19789. |
53 | ZHANG Yutao, YAN Chenxu, WANG Chao, et al. A sequential dual-lock strategy for photoactivatable chemiluminescent probes enabling bright duplex optical imaging[J]. Angewandte Chemie International Edition, 2020, 59(23): 9059-9066. |
54 | DUAN Xingchen, ZHANG Guoqiang, JI Shenglu, et al. Activatable persistent luminescence from porphyrin derivatives and supramolecular probes with imaging-modality transformable characteristics for improved biological applications[J]. Angewandte Chemie International Edition, 2022, 61(24): e202116174. |
55 | CHEN Wan, ZHANG Yuan, LI Qing, et al. Near-infrared afterglow luminescence of chlorin nanoparticles for ultrasensitive in vivo imaging[J]. Journal of the American Chemical Society, 2022, 144(15): 6719-6726. |
56 | LIU Yongchao, TENG Lili, LOU Xiaofeng, et al. “four-in-one” design of a hemicyanine-based modular scaffold for high-contrast activatable molecular afterglow imaging[J]. Journal of the American Chemical Society, 2023, 145(9): 5134-5144. |
57 | FANG Fang, LI Min, ZHANG Jinfeng, et al. Different strategies for organic nanoparticle preparation in biomedicine[J]. ACS Materials Letters, 2020, 2(5): 531-549. |
58 | LI Qiang, SEEGER Stefan. Autofluorescence detection in analytical chemistry and biochemistry[J]. Applied Spectroscopy Reviews, 2010, 45(1): 12-43. |
59 | YUAN Lin, LIN Weiying, ZHENG Kaibo, et al. Far-red to near infrared analyte-responsive fluorescent probes based on organic fluorophore platforms for fluorescence imaging[J]. Chemical Society Reviews, 2013, 42(2): 622-661. |
60 | MATSUMURA Y, MAEDA H. A new concept for macromolecular therapeutics in cancer chemotherapy: Mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs[J]. Cancer Research, 1986, 46(12 Pt 1): 6387-6392. |
61 | ALTıNOǦLU Erhan I˙, RUSSIN Timothy J, KAISER James M, et al. Near-infrared emitting fluorophore-doped calcium phosphate nanoparticles for in vivo imaging of human breast cancer[J]. ACS Nano, 2008, 2(10): 2075-2084. |
62 | SAMER Tohme, SIMMONS Richard L, ALLAN Tsung. Surgery for cancer: A trigger for metastases[J]. Cancer Research, 2017, 77(7): 1548-1552. |
63 | CASTANEDA Maria, DEN HOLLANDER Petra, KUBURICH Nick A, et al. Mechanisms of cancer metastasis[J]. Seminars in Cancer Biology, 2022, 87: 17-31. |
64 | XIE Chen, ZHEN Xu, MIAO Qingqing, et al. Self-assembled semiconducting polymer nanoparticles for ultrasensitive near-infrared afterglow imaging of metastatic tumors[J]. Advanced Materials, 2018, 30(21): 1801331. |
65 | XU Yan, YANG Weitao, YAO Defan, et al. An aggregation-induced emission dye-powered afterglow luminogen for tumor imaging[J]. Chemical Science, 2020, 11(2): 419-428. |
66 | NI Xiang, ZHANG Xiaoyan, DUAN Xingchen, et al. Near-infrared afterglow luminescent aggregation-induced emission dots with ultrahigh tumor-to-liver signal ratio for promoted image-guided cancer surgery[J]. Nano Letters, 2019, 19(1): 318-330. |
67 | LI Jisen, ZHANG Guoqiang, ZHANG Yufan, et al. Building highly light-harvesting near-infrared AIEgens using triazole-based luminescent core for improved intravital afterglow imaging[J]. Advanced Functional Materials, 2023, 33(19): 2212380. |
68 | NIU Peixin, ZHU Jing, WEI Liuhe, et al. Application of fluorescent probes in reactive oxygen species disease model[J]. Critical Reviews in Analytical Chemistry, 2022. DOI:10.1080/10408347.2022.2080495 . |
69 | JIAO Xiaoyun, LI Yong, NIU Jinye, et al. Small-molecule fluorescent probes for imaging and detection of reactive oxygen, nitrogen, and sulfur species in biological systems[J]. Analytical Chemistry, 2018, 90(1): 533-555. |
70 | CHEN Chao, GAO Heqi, Hanlin OU, et al. Amplification of activated near-infrared afterglow luminescence by introducing twisted molecular geometry for understanding neutrophil-involved diseases[J]. Journal of the American Chemical Society, 2022, 144(8): 3429-3441. |
71 | ZENG Wenhui, WU Luyan, ISHIGAKI Yusuke, et al. An activatable afterglow/MRI bimodal nanoprobe with fast response to H2S for in vivo imaging of acute hepatitis[J]. Angewandte Chemie International Edition, 2022, 61(4): e202111759. |
72 | WU Luyan, ISHIGAKI Yusuke, HU Yuxuan, et al. H2S-activatable near-infrared afterglow luminescent probes for sensitive molecular imaging in vivo [J]. Nature Communications, 2020, 11: 446. |
73 | PALMIERI Erika M, CHRISTOPHER McGinity, WINK David A, et al. Nitric oxide in macrophage immunometabolism: Hiding in plain sight[J]. Metabolites, 2020, 10(11): 429. |
74 | LI Jingchao, PU Kanyi. Semiconducting polymer nanomaterials as near-infrared photoactivatable protherapeutics for cancer[J]. Accounts of Chemical Research, 2020, 53(4): 752-762. |
75 | SUN Shaokai, WANG Hefang, YAN Xiuping. Engineering persistent luminescence nanoparticles for biological applications: From biosensing/bioimaging to theranostics[J]. Accounts of Chemical Research, 2018, 51(5): 1131-1143. |
76 | HE Shasha, XIE Chen, JIANG Yuyan, et al. An organic afterglow protheranostic nanoassembly[J]. Advanced Materials, 2019, 31(32): 1902672. |
77 | GAO Zhiyuan, JIA Shaorui, Hanlin OU, et al. An activatable near-infrared afterglow theranostic prodrug with self-sustainable magnification effect of immunogenic cell death[J]. Angewandte Chemie International Edtion, 2022, 61(40): e202209793. |
78 | WAN Hao, DU Haotian, WANG Feifei, et al. Molecular imaging in the second near-infrared window[J]. Advanced Functional Materials, 2019, 29(25): 1900566. |
79 | SHI Tingyu, HUANG Chenchen, LI Yang, et al. NIR-Ⅱ phototherapy agents with aggregation-induced emission characteristics for tumor imaging and therapy[J]. Biomaterials, 2022, 285: 121535. |
80 | PEI Pang, CHEN Ying, SUN Caixia, et al. X-ray-activated persistent luminescence nanomaterials for NIR-Ⅱ imaging[J]. Nature Nanotechnology, 2021, 16(9): 1011-1018. |
81 | XU Cheng, HUANG Jingsheng, JIANG Yuyan, et al. Nanoparticles with ultrasound-induced afterglow luminescence for tumour-specific the ranostics[J]. Nature Biomedical Engineering, 2023, 7(3): 298-312. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[3] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[4] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[5] | 郑谦, 官修帅, 靳山彪, 张长明, 张小超. 铈锆固溶体Ce0.25Zr0.75O2光热协同催化CO2与甲醇合成DMC[J]. 化工进展, 2023, 42(S1): 319-327. |
[6] | 戴欢涛, 曹苓玉, 游新秀, 徐浩亮, 汪涛, 项玮, 张学杨. 木质素浸渍柚子皮生物炭吸附CO2特性[J]. 化工进展, 2023, 42(S1): 356-363. |
[7] | 高雨飞, 鲁金凤. 非均相催化臭氧氧化作用机理研究进展[J]. 化工进展, 2023, 42(S1): 430-438. |
[8] | 顾永正, 张永生. HBr改性飞灰对Hg0的动态吸附及动力学模型[J]. 化工进展, 2023, 42(S1): 498-509. |
[9] | 孙玉玉, 蔡鑫磊, 汤吉海, 黄晶晶, 黄益平, 刘杰. 反应精馏合成甲基丙烯酸甲酯工艺优化及节能[J]. 化工进展, 2023, 42(S1): 56-63. |
[10] | 杨寒月, 孔令真, 陈家庆, 孙欢, 宋家恺, 王思诚, 孔标. 微气泡型下向流管式气液接触器脱碳性能[J]. 化工进展, 2023, 42(S1): 197-204. |
[11] | 徐晨阳, 都健, 张磊. 基于图神经网络的化学反应优劣评价[J]. 化工进展, 2023, 42(S1): 205-212. |
[12] | 杨建平. 降低HPPO装置反应系统原料消耗的PSE[J]. 化工进展, 2023, 42(S1): 21-32. |
[13] | 王福安. 300kt/a环氧丙烷工艺反应器降耗减排分析[J]. 化工进展, 2023, 42(S1): 213-218. |
[14] | 王胜岩, 邓帅, 赵睿恺. 变电吸附二氧化碳捕集技术研究进展[J]. 化工进展, 2023, 42(S1): 233-245. |
[15] | 赖诗妮, 江丽霞, 李军, 黄宏宇, 小林敬幸. 含碳掺氨燃料的研究进展[J]. 化工进展, 2023, 42(9): 4603-4615. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |