化工进展 ›› 2023, Vol. 42 ›› Issue (7): 3695-3707.DOI: 10.16085/j.issn.1000-6613.2022-1685
关红玲(), 杨辉, 井红权, 刘玉琼, 谷守玉, 王好斌, 侯翠红()
收稿日期:
2022-09-13
修回日期:
2022-11-10
出版日期:
2023-07-15
发布日期:
2023-08-14
通讯作者:
侯翠红
作者简介:
关红玲(1988—),女,讲师,硕士生导师,研究方向为固废资源高效利用。E-mail:guanhongling@zzu.edu.cn。
基金资助:
GUAN Hongling(), YANG Hui, JING Hongquan, LIU Yuqiong, GU Shouyu, WANG Haobin, HOU Cuihong()
Received:
2022-09-13
Revised:
2022-11-10
Online:
2023-07-15
Published:
2023-08-14
Contact:
HOU Cuihong
摘要:
木质素作为储量仅次于纤维素的第二大生物质资源和重要的芳香族可再生资源,目前主要作为纤维素利用的副产物大量废弃,引发严重的资源浪费和环境污染。木质素资源开发和高值利用不仅可以减少直接燃烧造成的环境污染,而且对于实现生物质资源的全链条应用、提升生物质资源开发应用的可行性、可持续性和经济性具有重要意义。木质素结构中丰富的官能团和化学反应活性位点,及其作为生物质材料固有的可降解性和生物相容性,使其在生物医药和绿色可持续农业领域受到了广泛的关注和研究,也使其成为药物和绿色肥料提质增效和可控释放的理想载体。本文从木质素的结构特点出发,介绍了木质素及其改性材料在生物医药和绿色农业肥料中的应用基础,阐述了木质素在药物智能给送和肥料缓控释放领域的研究和应用进展,并分析了这些应用中存在的挑战以及未来值得关注的研究方向,以期为木质素资源化利用和缓控释材料的设计开发提供有益参考。
中图分类号:
关红玲, 杨辉, 井红权, 刘玉琼, 谷守玉, 王好斌, 侯翠红. 木质素基控释材料及其在药物输送和肥料控释中的应用[J]. 化工进展, 2023, 42(7): 3695-3707.
GUAN Hongling, YANG Hui, JING Hongquan, LIU Yuqiong, GU Shouyu, WANG Haobin, HOU Cuihong. Lignin-based controlled release materials and application in drug delivery and fertilizer controlled-release[J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3695-3707.
木质素原料 | 制备方法 | 产品性质 | 药物 | 控释效果 | 主要机理 | 参考文献 |
---|---|---|---|---|---|---|
有机溶剂木质素 | 相分离法制备木质素纳米粒子 | 85.9nm纳米粒子 | 姜黄素 | 8h pH=1.2,8.7% pH=7.4,35% | 中性:酚羟基电离的静电排斥引起溶胀 | [ |
碱木质素 | 羧化改性、自组装、纳米复合 | 80nm纳米粒子复合水凝胶 | 白藜芦醇 | 7h pH=6.0,10% pH=8.5,80% | 碱性:羧基电离,静电斥力,水凝胶溶胀 | [ |
碱木质素 | 羧化改性 | 6mm片状 | 扑热息痛 | 20min pH=1.2,50% pH=7.2,75% | 中性:羧基离子化、带负电荷的离子相互排斥,水凝胶溶胀 | [ |
碱木质素 | 与磺酸钠自组装制备纳米胶束 | 半径为70nm胶束 | 布洛芬 | 24h pH=1.2,24.1% pH=7.4,96.1% | 中性:羧基电离,静电斥力,胶束结构的解离 | [ |
碱木质素 | 快速真空蒸发 | 100~400nm纳米空心球 | 布洛芬 | 24h pH=1.2,18% pH=7.5,94% | 碱性:羧基电离,静电斥力,纳米空心球的孔道扩张 | [ |
硫酸盐木质素 | 咪唑改性、乙酰化、真空蒸发 | 100nm纳米球 | 姜黄素 | 120h pH=5.7,76.82% pH=7.4,12.92% | 酸性:咪唑质子化,静电斥力,纳米球膨胀,胶束结构坍塌 | [ |
表1 pH响应性木质素基智能给药体系
木质素原料 | 制备方法 | 产品性质 | 药物 | 控释效果 | 主要机理 | 参考文献 |
---|---|---|---|---|---|---|
有机溶剂木质素 | 相分离法制备木质素纳米粒子 | 85.9nm纳米粒子 | 姜黄素 | 8h pH=1.2,8.7% pH=7.4,35% | 中性:酚羟基电离的静电排斥引起溶胀 | [ |
碱木质素 | 羧化改性、自组装、纳米复合 | 80nm纳米粒子复合水凝胶 | 白藜芦醇 | 7h pH=6.0,10% pH=8.5,80% | 碱性:羧基电离,静电斥力,水凝胶溶胀 | [ |
碱木质素 | 羧化改性 | 6mm片状 | 扑热息痛 | 20min pH=1.2,50% pH=7.2,75% | 中性:羧基离子化、带负电荷的离子相互排斥,水凝胶溶胀 | [ |
碱木质素 | 与磺酸钠自组装制备纳米胶束 | 半径为70nm胶束 | 布洛芬 | 24h pH=1.2,24.1% pH=7.4,96.1% | 中性:羧基电离,静电斥力,胶束结构的解离 | [ |
碱木质素 | 快速真空蒸发 | 100~400nm纳米空心球 | 布洛芬 | 24h pH=1.2,18% pH=7.5,94% | 碱性:羧基电离,静电斥力,纳米空心球的孔道扩张 | [ |
硫酸盐木质素 | 咪唑改性、乙酰化、真空蒸发 | 100nm纳米球 | 姜黄素 | 120h pH=5.7,76.82% pH=7.4,12.92% | 酸性:咪唑质子化,静电斥力,纳米球膨胀,胶束结构坍塌 | [ |
1 | 严振宇, 陈远航, 吴珽, 等. 木质素功能材料的应用研究进展[J]. 应用化工, 2022, 51(2): 491-495, 500. |
YAN Zhenyu, CHEN Yuanhang, WU Ting, et al. Research progress in the application of lignin functional materials[J]. Applied Chemical Industry, 2022, 51(2): 491-495, 500. | |
2 | 曾茂株, 佘煜琪, 胡玉彬, 等. 木质素多孔炭的制备及应用研究进展[J]. 化工进展, 2021, 40(8): 4573-4586. |
ZENG Maozhu, SHE Yuqi, HU Yubin, et al. Progress in preparation and application of lignin porous carbon[J]. Chemical Industry and Engineering Progress, 2021, 40(8): 4573-4586. | |
3 | Sara GONZÁLEZ-GARCÍA, Beatriz GULLÓN. Editorial overview: Sustainable solutions for renewable wastes[J]. Current Opinion in Green and Sustainable Chemistry, 2021, 29: 100468. |
4 | MCKENDRY Peter. Energy production from biomass (Part 1): Overview of biomass[J]. Bioresource Technology, 2002, 83(1): 37-46. |
5 | 王欢, 杨东杰, 钱勇, 等. 木质素基功能材料的制备与应用研究进展[J]. 化工进展, 2019, 38(1): 434-448. |
WANG Huan, YANG Dongjie, QIAN Yong, et al. Recent progress in the preparation and application of lignin-based functional materials[J]. Chemical Industry and Engineering Progress, 2019, 38(1): 434-448. | |
6 | SUGIARTO Sigit, LEOW Yihao, TAN Chongli, et al. How far is Lignin from being a biomedical material?[J]. Bioactive Materials, 2022, 8: 71-94. |
7 | MAZIDI Zahra, JAVANMARDI Sanaz, NAGHIB Seyed Morteza, et al. Smart stimuli-responsive implantable drug delivery systems for programmed and on-demand cancer treatment: An overview on the emerging materials[J]. Chemical Engineering Journal, 2022, 433: 134569. |
8 | DING Haitao, TAN Ping, FU Shiqin, et al. Preparation and application of pH-responsive drug delivery systems[J]. Journal of Controlled Release, 2022, 348: 206-238. |
9 | CHEN Jing, FAN Xiaolin, ZHANG Lidan, et al. Research progress in lignin-based slow/controlled release fertilizer[J]. ChemSusChem, 2020, 13(17): 4356-4366. |
10 | 吴纯纯, 徐佳锋, 韩伟胜, 等. 木质素在制备缓控释肥中的应用[J]. 现代农业科技, 2021(6): 176-182. |
WU Chunchun, XU Jiafeng, HAN Weisheng, et al. Application of lignin in preparation of slow/controlled-release fertilizer[J]. Modern Agricultural Science and Technology, 2021(6): 176-182. | |
11 | LU Jiajun, CHENG Mingyang, ZHAO Chao, et al. Application of lignin in preparation of slow-release fertilizer: Current status and future perspectives[J]. Industrial Crops and Products, 2022, 176: 114267. |
12 | DENG Yonghong, ZHAO Huajun, QIAN Yong, et al. Hollow lignin azo colloids encapsulated avermectin with high anti-photolysis and controlled release performance[J]. Industrial Crops and Products, 2016, 87: 191-197. |
13 | ZHOU Mingsong, WANG Dongping, YANG Dongjie, et al. Avermectin loaded nanosphere prepared from acylated alkali lignin showed anti-photolysis property and controlled release performance[J]. Industrial Crops and Products, 2019, 137: 453-459. |
14 | ZHU Shiyun, XU Jun, WANG Bin, et al. Highly efficient and rapid purification of organic dye wastewater using lignin-derived hierarchical porous carbon[J]. Journal of Colloid and Interface Science, 2022, 625: 158-168. |
15 | VETTRAINO Anna Maria, ZIKELI Florian, SCARASCIA MUGNOZZA Giuseppe, et al. Lignin nanoparticles containing essential oils for controlling Phytophthora cactorum diseases[J]. Forest Pathology, 2022, 52(2): e12739. |
16 | CHEN Liheng, SHI Yunfeng, GAO Bo, et al. Lignin nanoparticles: Green synthesis in a γ-valerolactone/water binary solvent and application to enhance antimicrobial activity of essential oils[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(1): 714-722. |
17 | LIN Yongan, PANG Yuxia, LI Zhiping, et al. Thermo-responsive behavior of enzymatic hydrolysis lignin in the ethanol/water mixed solvent and its application in the controlled release of pesticides[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(46): 15634-15640. |
18 | LI Yuanyuan, QIU Xueqing, QIAN Yong, et al. pH-responsive lignin-based complex micelles: Preparation, characterization and application in oral drug delivery[J]. Chemical Engineering Journal, 2017, 327: 1176-1183. |
19 | KUMAR Raj, BUTREDDY Arun, KOMMINENI Nagavendra, et al. Lignin: Drug/gene delivery and tissue engineering applications[J]. International Journal of Nanomedicine, 2021, 16: 2419-2441. |
20 | LIZUNDIA Erlantz, SIPPONEN Mika H, GRECA Luiz G, et al. Multifunctional lignin-based nanocomposites and nanohybrids[J]. Green Chemistry, 2021, 23(18): 6698-6760. |
21 | ALQAHTANI Mohammed S, ALQAHTANI Ali, Abdullah AL-THABIT, et al. Novel lignin nanoparticles for oral drug delivery[J]. Journal of Materials Chemistry B, 2019, 7(28): 4461-4473. |
22 | WANG Miao, YANG Dongjie, XU Qinghe, et al. Highly efficient evaporation method to prepare pH-responsive lignin-hollow-nanosphere with controllable size and its application in oral drug delivery[J]. Industrial Crops and Products, 2021, 162: 113230. |
23 | YI Conghua, XU Qinghe, YANG Dongjie, et al. A novel pH-responsive charge reversal nanospheres based on acetylated histidine-modified lignin for drug delivery[J]. Industrial Crops and Products, 2022, 186: 115193. |
24 | 陈德明, 王亭杰, 雨山江, 等. 缓释和控释尿素的研究与开发综述[J]. 化工进展, 2002, 21(7): 455-461. |
CHEN Deming, WANG Tingjie, YU Shanjiang, et al. Review on the research and development of control-release urea and slow-release urea[J]. Chemical Industry and Engineering Progress, 2002, 21(7): 455-461. | |
25 | 张福锁, 申建波, 危常州, 等. 绿色智能肥料:从原理创新到产业化实现[J]. 土壤学报, 2022, 59(4): 873-887. |
ZHANG Fusuo, SHEN Jianbo, WEI Changzhou, et al. Green intelligent fertilizer: From interdisciplinary innovation to industrialization realization[J]. Acta Pedologica Sinica, 2022, 59(4): 873-887. | |
26 | 钟晓雯. 木质素基胶束制备及其高效紫外防护应用研究[D]. 广州: 华南理工大学, 2017. |
ZHONG Xiaowen. Fabrication of lignin-based micelles and investigation of their excellent UV-blocking applications[D]. Guangzhou: South China University of Technology, 2017. | |
27 | FIGUEIREDO Patrícia, LINTINEN Kalle, HIRVONEN Jouni T, et al. Properties and chemical modifications of lignin: Towards lignin-based nanomaterials for biomedical applications[J]. Progress in Materials Science, 2018, 93: 233-269. |
28 | Jędrzejczak Patryk, N.Collins Maurice, Jesionowski Teofil, et al. The role of lignin and lignin-based materials in sustainable construction—A comprehensive review[J]. International Journal of Biological Macromolecules, 2021, 187: 624-650.[PubMed] |
29 | SHU Fan, JIANG Bo, YUAN Yufeng, et al. Biological activities and emerging roles of lignin and lignin-based Products—A review[J]. Biomacromolecules, 2021, 22(12): 4905-4918. |
30 | 岳凤霞, 林敏生, 钱勇, 等. 木质素抗紫外辐射性能应用研究进展[J]. 林业工程学报, 2021, 6(2): 12-20. |
YUE Fengxia, LIN Minsheng, QIAN Yong, et al. Recent advances of anti-UV radiation of lignin[J]. Journal of Forestry Engineering, 2021, 6(2): 12-20. | |
31 | NDABA Busiswa, ROOPNARAIN Ashira, DARAMOLA Michael O, et al. Influence of extraction methods on antimicrobial activities of lignin-based materials: A review[J]. Sustainable Chemistry and Pharmacy, 2020, 18: 100342. |
32 | UGARTONDO Vanessa, MITJANS Montserrat, VINARDELL María Pilar. Comparative antioxidant and cytotoxic effects of lignins from different sources[J]. Bioresource Technology, 2008, 99(14): 6683-6687. |
33 | SUOTA Maria Juliane, KOCHEPKA Débora Merediane, GANTER MOURA Marlon Gualberto, et al. Lignin functionalization strategies and the potential applications of its derivatives—A review[J]. BioResources, 2021, 16(3): 6471-6511. |
34 | LU Fung-Jou, CHU Li-Hsueh, Rung-Jiun GAU. Free radical-scavenging properties of lignin[J]. Nutrition and Cancer, 1998, 30(1):31-38. |
35 | BARAPATRE Anand, MEENA Avtar Singh, MEKALA Sowmya, et al. In vitro evaluation of antioxidant and cytotoxic activities of lignin fractions extracted from Acacia nilotica[J]. International Journal of Biological Macromolecules, 2016, 86: 443-453. |
36 | FIGUEIREDO Patrícia, LINTINEN Kalle, KIRIAZIS Alexandros, et al. In vitro evaluation of biodegradable lignin-based nanoparticles for drug delivery and enhanced antiproliferation effect in cancer cells[J]. Biomaterials, 2017, 121: 97-108. |
37 | NADA A M A, EL-DIWANY A I, ELSHAFEI A M. Infrared and antimicrobial studies on different lignins[J]. Acta Biotechnologica, 1989, 9(3): 295-298. |
38 | YANG Weijun, FORTUNATI Elena, GAO Daqian, et al. Valorization of acid isolated high yield lignin nanoparticles as innovative antioxidant/antimicrobial organic materials[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(3): 3502-3514. |
39 | ZHANG Yiwen, YUAN Bo, ZHANG Yuqing, et al. Biomimetic lignin/poly(ionic liquids) composite hydrogel dressing with excellent mechanical strength, self-healing properties, and reusability[J]. Chemical Engineering Journal, 2020, 400: 125984. |
40 | Joana GIL-CHÁVEZ, PADHI Sidhant Satya Prakash, LEOPOLD Claudia S, et al. Application of Aquasolv Lignin in ibuprofen-loaded pharmaceutical formulations obtained via direct compression and wet granulation[J]. International Journal of Biological Macromolecules, 2021, 174: 229-239. |
41 | CIOLACU Diana, OPREA Ana Maria, ANGHEL Narcis, et al. New cellulose-lignin hydrogels and their application in controlled release of polyphenols[J]. Materials Science & Engineering C, 2012, 32(3): 452-463. |
42 | CULEBRAS Mario, BARRETT Anthony, PISHNAMAZI Mahboubeh, et al. Wood-derived hydrogels as a platform for drug-release systems[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(6): 2515-2522.[PubMed] |
43 | DAI Lin, LIU Rui, HU Liqiu, et al. Lignin nanoparticle as a novel green carrier for the efficient delivery of resveratrol[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(9): 8241-8249. |
44 | ZHANG Daxia, DU Jiang, WANG Rui, et al. Core/shell dual-responsive nanocarriers via iron-mineralized electrostatic self-assembly for precise pesticide delivery[J]. Advanced Functional Materials, 2021, 31(34): 2102027. |
45 | RIZWAN Muhammad, YAHYA Rosiyah, HASSAN Aziz, et al. pH sensitive hydrogels in drug delivery: Brief history, properties, swelling, and release mechanism, material selection and applications[J]. Neural Plasticity, 2017, 9(4): E137. |
46 | 易聪华, 徐青荷, 王淼, 等. pH敏感性生物基纳米载药粒子的研究进展[J]. 化工进展, 2021, 40(6): 3411-3420. |
YI Conghua, XU Qinghe, WANG Miao, et al. Research progress of pH-sensitive biopolymer nanocarriers[J]. Chemical Industry and Engineering Progress, 2021, 40(6): 3411-3420. | |
47 | ZHU Weiyan, LU Jinshun, DAI Lin. Multifunctional pH-responsive sprayable hydrogel based on chitosan and lignin-based nanoparticles[J]. Particle & Particle Systems Characterization, 2018, 35(12): 1800145. |
48 | PISHNAMAZI Mahboubeh, HAFIZI Hamid, SHIRAZIAN Saeed, et al. Design of controlled release system for paracetamol based on modified lignin[J]. Polymers, 2019, 11(6): E1059. |
49 | 管士强, 王好斌, 侯翠红, 等. 智能新型肥料研究进展[J]. 现代化工, 2022, 42(1): 46-50. |
GUAN Shiqiang, WANG Haobin, HOU Cuihong, et al. Research progress in new smart fertilizer[J]. Modern Chemical Industry, 2022, 42(1): 46-50. | |
50 | JIAO Gaojie, PENG Pai, SUN Shaolong, et al. Amination of biorefinery technical lignin by Mannich reaction for preparing highly efficient nitrogen fertilizer[J]. International Journal of Biological Macromolecules, 2019, 127: 544-554. |
51 | Felipe RAMÍREZ-CANO. Slow-release effect of N-functionalized kraft lignin tested with Sorghum over two growth periods[J]. Bioresource Technology, 2001, 76(1): 71-73. |
52 | LI Tao, Shaoyu LYU, WANG Zengqiang, et al. Lignin-based nanoparticles for recovery and separation of phosphate and reused as renewable magnetic fertilizers[J]. Science of the Total Environment, 2021, 765: 142745. |
53 | Carmen GARCÍA, VALLEJO Antonio, DIÉZ José A, et al. Nitrogen use efficiency with the application of controlled release fertilizers coated with Kraft pine lignin[J]. Soil Science and Plant Nutrition, 1997, 43(2): 443-449. |
54 | DOS SANTOS Antonio C S, HENRIQUE Humberto M, CARDOSO Vicelma L, et al. Slow release fertilizer prepared with lignin and poly(vinyl acetate) bioblend[J]. International Journal of Biological Macromolecules, 2021, 185: 543-550. |
55 | ZHANG Shugang, FU Xiangju, TONG Zhaohui, et al. Lignin—Clay nanohybrid biocomposite-based double-layer coating materials for controllable-release fertilizer[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(51): 18957-18965. |
56 | SIPPONEN Mika Henrikki, ROJAS Orlando J, PIHLAJANIEMI Ville, et al. Calcium chelation of lignin from pulping spent liquor for water-resistant slow-release urea fertilizer systems[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(1): 1054-1061. |
57 | PANG Wancheng, HOU Dejia, WANG Huan, et al. Preparation of microcapsules of slow-release NPK compound fertilizer and the release characteristics[J]. Journal of the Brazilian Chemical Society, 2018: 2397-2404. |
58 | LI Tao, Shaoyu LYU, YAN Jia, et al. An environment-friendly fertilizer prepared by layer-by-layer self-assembly for pH-responsive nutrient release[J]. ACS Applied Materials & Interfaces, 2019, 11(11): 10941-10950. |
59 | YOON Ho Young, PHONG Nguyen Thanh, Eun Nam JOE, et al. Crop root exudate composition-dependent disassembly of lignin-Fe-hydroxyapatite supramolecular structures: A better rhizosphere sensing platform for smart fertilizer development[J]. Advanced Sustainable Systems, 2021, 5(8): 2100113. |
[1] | 戴欢涛, 曹苓玉, 游新秀, 徐浩亮, 汪涛, 项玮, 张学杨. 木质素浸渍柚子皮生物炭吸附CO2特性[J]. 化工进展, 2023, 42(S1): 356-363. |
[2] | 王帅晴, 杨思文, 李娜, 孙占英, 安浩然. 元素掺杂生物质炭材料在电化学储能中的研究进展[J]. 化工进展, 2023, 42(8): 4296-4306. |
[3] | 吴亚, 赵丹, 方荣苗, 李婧瑶, 常娜娜, 杜春保, 王文珍, 史俊. 用于复杂原油乳液的高效破乳剂开发及应用研究进展[J]. 化工进展, 2023, 42(8): 4398-4413. |
[4] | 郑梦启, 王成业, 汪炎, 王伟, 袁守军, 胡真虎, 何春华, 王杰, 梅红. 菌藻共生技术在工业废水零排放中的应用与展望[J]. 化工进展, 2023, 42(8): 4424-4431. |
[5] | 任建鹏, 吴彩文, 刘慧君, 吴文娟. 木质素-聚苯胺复合材料的制备及对刚果红的吸附[J]. 化工进展, 2023, 42(6): 3087-3096. |
[6] | 于丁一, 李圆圆, 王晨钰, 纪永升. pH响应性木质素水凝胶的制备及药物控释[J]. 化工进展, 2023, 42(6): 3138-3146. |
[7] | 吴锋振, 刘志炜, 谢文杰, 游雅婷, 赖柔琼, 陈燕丹, 林冠烽, 卢贝丽. 生物质基铁/氮共掺杂多孔炭的制备及其活化过一硫酸盐催化降解罗丹明B[J]. 化工进展, 2023, 42(6): 3292-3301. |
[8] | 王雪, 徐期勇, 张超. 木质纤维素类生物质水热炭化机理及水热炭应用进展[J]. 化工进展, 2023, 42(5): 2536-2545. |
[9] | 王志伟, 郭帅华, 吴梦鸽, 陈颜, 赵俊廷, 李辉, 雷廷宙. 生物质与塑料催化共热解技术研究进展[J]. 化工进展, 2023, 42(5): 2655-2665. |
[10] | 杨自强, 李风海, 郭卫杰, 马名杰, 赵薇. 市政污泥热处理过程中磷迁移转化的研究进展[J]. 化工进展, 2023, 42(4): 2081-2090. |
[11] | 万茂华, 张小红, 安兴业, 龙垠荧, 刘利琴, 管敏, 程正柏, 曹海兵, 刘洪斌. MXene在生物质基储能纳米材料领域中的应用研究进展[J]. 化工进展, 2023, 42(4): 1944-1960. |
[12] | 刘静, 林琳, 张健, 赵峰. 生物质基炭材料孔径调控及电化学性能研究进展[J]. 化工进展, 2023, 42(4): 1907-1916. |
[13] | 邢献军, 罗甜, 卜玉蒸, 马培勇. H3PO4活化核桃壳制备活性炭及在Cr(Ⅵ)吸附中的应用[J]. 化工进展, 2023, 42(3): 1527-1539. |
[14] | 郑云武, 裴涛, 李冬华, 王继大, 李继容, 郑志锋. 金属氧化物活化P/HZSM-5催化生物质热解气重整制备富烃生物油[J]. 化工进展, 2023, 42(3): 1353-1364. |
[15] | 宋叶, 陈玉卓, 宋云彩, 冯杰. 有机固废合成气原位净化催化剂设计及反应器分析[J]. 化工进展, 2023, 42(3): 1383-1396. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |