化工进展 ›› 2023, Vol. 42 ›› Issue (7): 3684-3694.DOI: 10.16085/j.issn.1000-6613.2022-1595
徐沛瑶1,2(), 陈标奇1,2, KANKALA Ranjith Kumar1,2, 王士斌1,2, 陈爱政1,2()
收稿日期:
2022-08-29
修回日期:
2022-09-08
出版日期:
2023-07-15
发布日期:
2023-08-14
通讯作者:
陈爱政
作者简介:
徐沛瑶(1995—),女,博士,讲师,研究方向为纳米医学。E-mail:xupeiyao@hqu.edu.cn。
基金资助:
XU Peiyao1,2(), CHEN Biaoqi1,2, KANKALA Ranjith Kumar1,2, WANG Shibin1,2, CHEN Aizheng1,2()
Received:
2022-08-29
Revised:
2022-09-08
Online:
2023-07-15
Published:
2023-08-14
Contact:
CHEN Aizheng
摘要:
铁死亡作为一种新发现的调节性细胞死亡形式已成为新型的肿瘤治疗策略,然而复杂的肿瘤微环境及肿瘤部位特殊的病理微环境严重限制了铁死亡的治疗效果。将铁死亡与传统的抗肿瘤治疗方式结合,能提高治疗效率并减少毒副作用。为实现药物在肿瘤部位富集效果并发挥协同治疗效果,基于纳米材料的药物递送体系在抗肿瘤领域显示出广阔的临床应用前景和发展价值。本文首先介绍了不同种类纳米材料(铁基纳米材料及非铁基纳米材料)用于铁死亡协同肿瘤治疗的相关进展,归纳了铁死亡与多种治疗方法(包括化学治疗、光热治疗、光/声动力治疗、其他治疗方式等)协同治疗的相关研究;最后阐明了铁死亡协同肿瘤治疗的挑战,并指出确认铁死亡的具体抗癌机制、开发多功能纳米材料并探索高效协同治疗手段将是未来的研究方向。
中图分类号:
徐沛瑶, 陈标奇, KANKALA Ranjith Kumar, 王士斌, 陈爱政. 纳米材料用于铁死亡联合治疗的研究进展[J]. 化工进展, 2023, 42(7): 3684-3694.
XU Peiyao, CHEN Biaoqi, KANKALA Ranjith Kumar, WANG Shibin, CHEN Aizheng. Research progress of nanomaterials for synergistic ferroptosis anticancer therapy[J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3684-3694.
纳米载体名称 | 协同药物 | 肿瘤细胞类型 | 联合治疗 方式 | 参考 文献 |
---|---|---|---|---|
锰掺杂四氧化三铁纳米颗粒负载阿霉素 | 阿霉素 | 肝癌细胞HepG2 | 化学治疗 | [ |
聚多巴胺-四氧化三铁纳米颗粒负载10-羟基喜树碱 | 10-羟基喜树碱 | 食管癌细胞EC1及EC109 | 化学治疗 | [ |
四氧化三铁/氧化钆纳米颗粒负载顺铂 | 顺铂 | 前列腺癌细胞PC-3 | 化学治疗 | [ |
聚多肽包裹的四氧化三铁纳米颗粒及顺铂 | 顺铂 | 脑胶质瘤细胞U87 MG | 化学治疗 | [ |
铁基MOF修饰的四氧化三铁纳米颗粒负载IR780 | IR780 | 乳腺癌细胞4T1 | 光热治疗 | [ |
多孔聚多巴胺负载超顺磁性氧化铁纳米颗粒及索拉非尼 | 索拉非尼 | 结肠癌细胞HCT116 | 光热治疗 | [ |
硒化铋纳米片负载四氧化三铁纳米颗粒及金纳米颗粒 | 金纳米颗粒 | 乳腺癌细胞4T1 | 光热治疗 | [ |
卟啉接枝脂质体包裹四氧化三铁纳米颗粒 | 卟啉 | 结肠癌细胞HT-29 | 光动力治疗 | [ |
聚乳酸-羟基乙酸包裹四氧化三铁纳米颗粒及Ce6 | Ce6 | 乳腺癌细胞4T1 | 光动力治疗 | [ |
细胞膜包裹四氧化三铁纳米颗粒及Ce6 | Ce6 | 神经胶质瘤细胞C6 | 声动力治疗 | [ |
细胞膜包裹四氧化三铁纳米颗粒及siPD-L1 | siPD-L1 | 耐替莫唑胺小胶质瘤细胞GL261/TR | 免疫治疗 | [ |
红细胞膜包裹的四氧化三铁纳米颗粒及柳氮磺胺吡啶 | 柳氮磺胺吡啶 | 乳腺癌细胞4T1 | 免疫治疗 | [ |
铁离子多酚网络包覆的四氧化三铁纳米颗粒负载葡萄糖氧化酶及阿霉素前药 | 葡萄糖氧化酶、阿霉素前药 | 耐阿霉素乳腺癌细胞MCF-7/Adr | 化学治疗、饥饿治疗 | [ |
明胶包裹四氧化三铁纳米颗粒及阿霉素 | 阿霉素 | 肝癌细胞LM3 | 化学治疗、微波热疗 | [ |
表1 基于氧化铁纳米材料用于实现铁死亡协同肿瘤治疗的应用实例
纳米载体名称 | 协同药物 | 肿瘤细胞类型 | 联合治疗 方式 | 参考 文献 |
---|---|---|---|---|
锰掺杂四氧化三铁纳米颗粒负载阿霉素 | 阿霉素 | 肝癌细胞HepG2 | 化学治疗 | [ |
聚多巴胺-四氧化三铁纳米颗粒负载10-羟基喜树碱 | 10-羟基喜树碱 | 食管癌细胞EC1及EC109 | 化学治疗 | [ |
四氧化三铁/氧化钆纳米颗粒负载顺铂 | 顺铂 | 前列腺癌细胞PC-3 | 化学治疗 | [ |
聚多肽包裹的四氧化三铁纳米颗粒及顺铂 | 顺铂 | 脑胶质瘤细胞U87 MG | 化学治疗 | [ |
铁基MOF修饰的四氧化三铁纳米颗粒负载IR780 | IR780 | 乳腺癌细胞4T1 | 光热治疗 | [ |
多孔聚多巴胺负载超顺磁性氧化铁纳米颗粒及索拉非尼 | 索拉非尼 | 结肠癌细胞HCT116 | 光热治疗 | [ |
硒化铋纳米片负载四氧化三铁纳米颗粒及金纳米颗粒 | 金纳米颗粒 | 乳腺癌细胞4T1 | 光热治疗 | [ |
卟啉接枝脂质体包裹四氧化三铁纳米颗粒 | 卟啉 | 结肠癌细胞HT-29 | 光动力治疗 | [ |
聚乳酸-羟基乙酸包裹四氧化三铁纳米颗粒及Ce6 | Ce6 | 乳腺癌细胞4T1 | 光动力治疗 | [ |
细胞膜包裹四氧化三铁纳米颗粒及Ce6 | Ce6 | 神经胶质瘤细胞C6 | 声动力治疗 | [ |
细胞膜包裹四氧化三铁纳米颗粒及siPD-L1 | siPD-L1 | 耐替莫唑胺小胶质瘤细胞GL261/TR | 免疫治疗 | [ |
红细胞膜包裹的四氧化三铁纳米颗粒及柳氮磺胺吡啶 | 柳氮磺胺吡啶 | 乳腺癌细胞4T1 | 免疫治疗 | [ |
铁离子多酚网络包覆的四氧化三铁纳米颗粒负载葡萄糖氧化酶及阿霉素前药 | 葡萄糖氧化酶、阿霉素前药 | 耐阿霉素乳腺癌细胞MCF-7/Adr | 化学治疗、饥饿治疗 | [ |
明胶包裹四氧化三铁纳米颗粒及阿霉素 | 阿霉素 | 肝癌细胞LM3 | 化学治疗、微波热疗 | [ |
治疗方式 | 优势 | 缺点 | 治疗方式联合铁死亡治疗的特点 |
---|---|---|---|
化学治疗 | 普适性高、可操作性强、临床数据完善 | 全身毒副作用强,易引发耐药 | 通过降低化疗药物药量以减轻毒副作用;铁死亡可逆转多药耐药性以提高化学治疗的敏感性 |
光热治疗 | 低创、治疗时间短、毒副作用小 | 难以清除深层肿瘤,低温治疗效果不佳,高温治疗导致正常组织损伤 | 光热治疗可促进芬顿反应的速率进而促进铁死亡;铁死亡可抑制HSP蛋白的表达,实现低温光热治疗 |
光动力/声动力治疗 | 低创、高效、毒副作用小 | 难以清除深层肿瘤,肿瘤乏氧微环境导致疗效不佳 | 铁死亡可通过芬顿反应产生氧气,减轻肿瘤乏氧,提高光动力/声动力治疗效果 |
表2 不同治疗方式与铁死亡协同治疗策略的特点
治疗方式 | 优势 | 缺点 | 治疗方式联合铁死亡治疗的特点 |
---|---|---|---|
化学治疗 | 普适性高、可操作性强、临床数据完善 | 全身毒副作用强,易引发耐药 | 通过降低化疗药物药量以减轻毒副作用;铁死亡可逆转多药耐药性以提高化学治疗的敏感性 |
光热治疗 | 低创、治疗时间短、毒副作用小 | 难以清除深层肿瘤,低温治疗效果不佳,高温治疗导致正常组织损伤 | 光热治疗可促进芬顿反应的速率进而促进铁死亡;铁死亡可抑制HSP蛋白的表达,实现低温光热治疗 |
光动力/声动力治疗 | 低创、高效、毒副作用小 | 难以清除深层肿瘤,肿瘤乏氧微环境导致疗效不佳 | 铁死亡可通过芬顿反应产生氧气,减轻肿瘤乏氧,提高光动力/声动力治疗效果 |
1 | STOCKWELL Brent R, FRIEDMANN ANGELI Jose Pedro Friedmann, BAYIR Hulya, et al. Ferroptosis: A regulated cell death nexus linking metabolism, redox biology, and disease[J]. Cell, 2017, 171(2): 273-285. |
2 | Katharina D'HERDE, KRYSKO Dmitri V. Oxidized PEs trigger death[J]. Nature Chemical Biology, 2017, 13(1): 4-5. |
3 | LIANG Yu, ZHANG Li, PENG Chao, et al. Tumor microenvironments self-activated nanoscale metal-organic frameworks for ferroptosis based cancer chemodynamic/photothermal/chemo therapy[J]. Acta Pharmaceutica Sinica B, 2021, 11(10): 3231-3243. |
4 | LI Yingze, WEI Xueyan, TAO Feng, et al. The potential application of nanomaterials for ferroptosis-based cancer therapy[J]. Biomedical Materials, 2021, 16(4): 042013. |
5 | CHEN Xin, KANG Rui, KROEMER Guido, et al. Broadening horizons: The role of ferroptosis in cancer[J]. Nature Reviews Clinical Oncology, 2021, 18(5): 280-296. |
6 | SIMÃO M, CANCELA M L. Musculoskeletal complications associated with pathological iron toxicity and its molecular mechanisms[J]. Biochemical Society Transactions, 2021, 49(2): 747-759. |
7 | STOCKWELL Brent R. Ferroptosis turns 10: Emerging mechanisms, physiological functions, and therapeutic applications[J]. Cell, 2022, 185(14): 2401-2421. |
8 | SEIBT Tobias M, PRONETH Bettina, CONRAD Marcus. Role of GPX4 in ferroptosis and its pharmacological implication[J]. Free Radical Biology and Medicine, 2019, 133: 144-152. |
9 | 吕奕洁, 罗明芳, 杨彩霞, 等. 铁死亡纳米探针在肿瘤治疗中应用的研究进展[J]. 现代肿瘤医学, 2022, 30(14): 2624-2628. |
Yijie LYU, LUO Mingfang, YANG Caixia, et al. Research progress of iron death nano-probe in tumor treatment[J]. Journal of Modern Oncology, 2022, 30(14): 2624-2628. | |
10 | 季鹏, 张雅洁, 潘浩, 等. 铁死亡纳米制剂在肿瘤治疗应用中的研究进展[J]. 药学进展, 2022, 46(4): 303-309. |
JI Peng, ZHANG Yajie, PAN Hao, et al. Advances of nano-preparations for the treatment of ferroptosis in tumors[J]. Progress in Pharmaceutical Sciences, 2022, 46(4): 303-309. | |
11 | SHAN Xinzhu, LI Shumeng, SUN Bingjun, et al. Ferroptosis-driven nanotherapeutics for cancer treatment[J]. Journal of Controlled Release, 2020, 319: 322-332. |
12 | LIANG Chen, ZHANG Xinglin, YANG Mengsu, et al. Recent progress in ferroptosis inducers for cancer therapy[J]. Advanced Materials, 2019, 31(51): 1904197. |
13 | ZHENG Huizhen, JIANG Jun, XU Shujuan, et al. Nanoparticle-induced ferroptosis: Detection methods, mechanisms and applications[J]. Nanoscale, 2021, 13(4): 2266-2285. |
14 | 陈默冉, 周雪冰, 陈丹, 等. 铁死亡在肿瘤中的研究进展[J]. 生命科学, 2022, 34(9): 1108-1115. |
CHEN Moran, ZHOU Xuebing, CHEN Dan, et al. Research progress of ferroptosis in tumors[J]. Chinese Bulletin of Life Sciences, 2022, 34(9): 1108-1115. | |
15 | 秦苗, 徐梦洁, 黄棣, 等. 氧化铁纳米颗粒在磁共振成像中的应用[J]. 化学进展, 2020, 32(9): 1264-1273. |
QIN Miao, XU Mengjie, HUANG Di, et al. Iron oxide nanoparticles in the application of magnetic resonance imaging[J]. Progress in Chemistry, 2020, 32(9): 1264-1273. | |
16 | XU Jianxiang, ZHANG Hanyuan, ZHANG Yifei, et al. Controllable synthesis of variable-sized magnetic nanocrystals self-assembled into porous nanostructures for enhanced cancer chemo-ferroptosis therapy and MR imaging[J]. Nanoscale Advances, 2022, 4(3): 782-791. |
17 | Ju-E CUN, PAN Yang, ZHANG Zhuangzhuang, et al. Photo-enhanced upcycling H2O2 into hydroxyl radicals by IR780-embedded Fe3O4@MIL-100 for intense nanocatalytic tumor therapy[J]. Biomaterials, 2022, 287: 121687. |
18 | ZHANG Guilong, ZHANG Li, SI Yuanchun, et al. Oxygen-enriched Fe3O4/Gd2O3 nanopeanuts for tumor-targeting MRI and ROS-triggered dual-modal cancer therapy through platinum (IV) prodrugs delivery[J]. Chemical Engineering Journal, 2020, 388: 124269. |
19 | LIANG Xiaolong, CHEN Min, BHATTARAI Pravin, et al. Complementing cancer photodynamic therapy with ferroptosis through iron oxide loaded porphyrin-grafted lipid nanoparticles[J]. ACS Nano, 2021, 15(12): 20164-20180. |
20 | ZHANG Yulin, FU Xiao, JIA Junsheng, et al. Glioblastoma therapy using codelivery of cisplatin and glutathione peroxidase targeting siRNA from iron oxide nanoparticles[J]. ACS Applied Materials & Interfaces, 2020, 12(39): 43408-43421. |
21 | LIU Bao, JI Qifeng, CHENG Ying, et al. Biomimetic GBM-targeted drug delivery system boosting ferroptosis for immunotherapy of orthotopic drug-resistant GBM[J]. Journal of Nanobiotechnology, 2022, 20(1): 161. |
22 | CHEN Yukun, SU Mingliang, JIA Lijun, et al. Synergistic chemo-photothermal and ferroptosis therapy of polydopamine nanoparticles for esophageal cancer[J]. Nanomedicine, 2022, 17: 1115-1130. |
23 | GAO Zhiliang, HE Ting, ZHANG Peiyu, et al. Polypeptide-based theranostics with tumor-microenvironment-activatable cascade reaction for chemo-ferroptosis combination therapy[J]. ACS Applied Materials & Interfaces, 2020, 12(18): 20271-20280. |
24 | GUAN Qingqing, GUO Ruomi, HUANG Shihui, et al. Mesoporous polydopamine carrying sorafenib and SPIO nanoparticles for MRI-guided ferroptosis cancer therapy[J]. Journal of Controlled Release, 2020, 320: 392-403. |
25 | WU Fengxia, CHEN Haoran, LIU Ruiqi, et al. An active-passive strategy for enhanced synergistic photothermal-ferroptosis therapy in the NIR-Ⅰ/Ⅱ biowindows[J]. Biomaterials Science, 2022, 10(4): 1104-1112. |
26 | CHEN Qifang, MA Xianbin, XIE Li, et al. Iron-based nanoparticles for MR imaging-guided ferroptosis in combination with photodynamic therapy to enhance cancer treatment[J]. Nanoscale, 2021, 13(9): 4855-4870. |
27 | ZHU Mingting, WU Pengying, LI Yan, et al. Synergistic therapy for orthotopic gliomas via biomimetic nanosonosensitizer-mediated sonodynamic therapy and ferroptosis[J]. Biomaterials Science, 2022, 10(14): 3911-3923. |
28 | JIANG Qin, WANG Kuang, ZHANG Xingyu, et al. Platelet membrane-camouflaged magnetic nanoparticles for ferroptosis-enhanced cancer immunotherapy[J]. Small, 2020, 16(22): 2001704. |
29 | CHEN Xiaolu, MA Rongying, FU Zhaoming, et al. Metal-phenolic networks-encapsulated cascade amplification delivery nanoparticles overcoming cancer drug resistance via combined starvation/chemodynamic/chemo therapy[J]. Chemical Engineering Journal, 2022, 442: 136221. |
30 | CHEN Minjiang, LI Jie, SHU Gaofeng, et al. Homogenous multifunctional microspheres induce ferroptosis to promote the anti-hepatocarcinoma effect of chemoembolization[J]. Journal of Nanobiotechnology, 2022, 20(1): 179. |
31 | ZHANG Caiyun, LENG Zhiguo, WANG Yinfeng, et al. PDGFB targeting biodegradable FePt alloy assembly for MRI guided starvation-enhancing chemodynamic therapy of cancer[J]. Journal of Nanobiotechnology, 2022, 20(1): 264. |
32 | YANG Baochan, DAI Zhichao, ZHANG Gaorui, et al. Ultrasmall ternary FePtMn nanocrystals with acidity-triggered dual-ions release and hypoxia relief for multimodal synergistic chemodynamic/photodynamic/photothermal cancer therapy[J]. Advanced Healthcare Materials, 2020, 9(21): 1901634. |
33 | JIAO Long, SEOW Joanne Yen Ru, SKINNER William Scott, et al. Metal-organic frameworks: Structures and functional applications[J]. Materials Today, 2019, 27: 43-68. |
34 | 郭弘, 李霞, 瞿鼎, 等. Fe基金属-有机框架在抗肿瘤药物递送方面的研究进展[J]. 药学学报, 2022, 57(5): 1252-1262. |
GUO Hong, LI Xia, QU Ding, et al. Research progress on Fe-based metal-organic frameworks in antitumor drug delivery[J]. Acta Pharmaceutica Sinica, 2022, 57(5): 1252-1262. | |
35 | XU Rui, YANG Jie, QIAN Yun, et al. Ferroptosis/pyroptosis dual-inductive combinational anti-cancer therapy achieved by transferrin decorated nanoMOF[J]. Nanoscale Horizons, 2021, 6(4): 348-356. |
36 | YANG Jie, MA Siyu, XU Rui, et al. Smart biomimetic metal organic frameworks based on ROS-ferroptosis-glycolysis regulation for enhanced tumor chemo-immunotherapy[J]. Journal of Controlled Release, 2021, 334: 21-33. |
37 | MU Min, WANG Yuelong, ZHAO Shasha, et al. Engineering a pH/glutathione-responsive tea polyphenol nanodevice as an apoptosis/ferroptosis-inducing agent[J]. ACS Applied Bio Materials, 2020, 3(7): 4128-4138. |
38 | LIU Tao, LIU Wenlong, ZHANG Mingkang, et al. Ferrous-supply-regeneration nanoengineering for cancer-cell-specific ferroptosis in combination with imaging-guided photodynamic therapy[J]. ACS Nano, 2018, 12(12): 12181-12192. |
39 | 王小妮, 魏娟娟, 欧阳津, 等. 功能化二氧化硅纳米材料在肿瘤治疗领域的应用[J]. 科学通报, 2022, 67(20): 2333-2351. |
WANG Xiaoni, WEI Juanjuan, OUYANG Jin, et al. Biofunctionalized mesoporous silica nanocarriers and the applications in tumor therapy[J]. Chinese Science Bulletin, 2022,67(20): 2333-2351. | |
40 | LI Danqi, REN Jingli, LI Jun, et al. Ferroptosis-apoptosis combined anti-melanoma immunotherapy with a NIR-responsive upconverting mSiO2 photodynamic platform[J]. Chemical Engineering Journal, 2021, 419: 129557. |
41 | LIU Xin, SUI Baiyan, CAMARGO Pedro H C, et al. Tuning band gap of MnO2 nanoflowers by alkali metal doping for enhanced ferroptosis/phototherapy synergism in cancer[J]. Applied Materials Today, 2021, 23: 101027. |
42 | WEI Yawen, WANG Zhihua, YANG Jie, et al. Reactive oxygen species/photothermal therapy dual-triggered biomimetic gold nanocages nanoplatform for combination cancer therapy via ferroptosis and tumor-associated macrophage repolarization mechanism[J]. Journal of Colloid and Interface Science, 2022, 606: 1950-1965. |
43 | VALLE Andrea C, YEH Chih Kuang, HUANG Yufen. Near infrared-activatable platinum-decorated gold nanostars for synergistic photothermal/ferroptotic therapy in combating cancer drug resistance[J]. Advanced Healthcare Materials, 2020, 9(20): e2000864. |
44 | WANG Xiaoyan, WU Ming, ZHANG Xiaolong, et al. Hypoxia-responsive nanoreactors based on self-enhanced photodynamic sensitization and triggered ferroptosis for cancer synergistic therapy[J]. Journal of Nanobiotechnology, 2021, 19(1): 204. |
45 | XU Tian, MA Yuying, YUAN Qinling, et al. Enhanced ferroptosis by oxygen-boosted phototherapy based on a 2-in-1 nanoplatform of ferrous hemoglobin for tumor synergistic therapy[J]. ACS Nano, 2020, 14(3): 3414-3425. |
46 | Changjin OU, NA Weidan, GE Wei, et al. Biodegradable charge-transfer complexes for glutathione depletion induced ferroptosis and NIR-Ⅱ photoacoustic imaging guided cancer photothermal therapy[J]. Angewandte Chemie International Edition, 2021, 60(15): 8157-8163. |
47 | JIANG Wei, LUO Xingyu, WEI Lulu, et al. The sustainability of energy conversion inhibition for tumor ferroptosis therapy and chemotherapy[J]. Small, 2021, 17(38): 2102695. |
48 | MENG Xuan, DENG Jian, LIU Fang, et al. Triggered all-active metal organic framework: ferroptosis machinery contributes to the apoptotic photodynamic antitumor therapy[J]. Nano Letters, 2019, 19(11): 7866-7876. |
49 | XU Qingbo, ZHAN Guiting, ZHANG Zelong, et al. Manganese porphyrin-based metal-organic framework for synergistic sonodynamic therapy and ferroptosis in hypoxic tumors[J]. Theranostics, 2021, 11(4): 1937-1952. |
50 | GUSTAVSSON Bengt, Göran CARLSSON, MACHOVER David, et al. A review of the evolution of systemic chemotherapy in the management of colorectal cancer[J]. Clinical Colorectal Cancer, 2015, 14(1): 1-10. |
51 | WANG Hui, ZHANG Li, MIAO Zhaohua, et al. PSMA-targeted arsenic nanosheets: a platform for prostate cancer therapy via ferroptosis and ATM deficiency-triggered chemosensitization[J]. Materials Horizons, 2021, 8(8): 2216-2229. |
52 | CHENG Hsien-Jen, WU Haw-Te, CHIEN Chih-Te, et al. Corrosion-activated chemotherapeutic function of nanoparticulate platinum as a cisplatin resistance-overcoming prodrug with limited autophagy induction[J]. Small, 2016, 12(44): 6124-6133. |
53 | PAN Weilun, TAN Yong, MENG Wei, et al. Microenvironment-driven sequential ferroptosis, photodynamic therapy, and chemotherapy for targeted breast cancer therapy by a cancer-cell-membrane-coated nanoscale metal-organic framework[J]. Biomaterials, 2022, 283: 121449. |
54 | LONGLEY D B, JOHNSTON P G. Molecular mechanisms of drug resistance[J]. The Journal of Pathology, 2005, 205(2): 275-292. |
55 | PENG Haibao, ZHANG Xingcai, YANG Peng, et al. Defect self-assembly of metal-organic framework triggers ferroptosis to overcome resistance[J]. Bioactive Materials, 2023, 19: 1-11. |
56 | 黄星星, 刘颖, 张若男, 等. 温和光热疗法在肿瘤治疗中的研究进展[J]. 科学通报, 2020, 65(32): 3538-3550. |
HUANG Xingxing, LIU Ying, ZHANG Ruonan, et al. Research progress of mild photothermal therapy in cancer treatment[J]. Chinese Science Bulletin, 2020, 65(32): 3538-3550. | |
57 | CHANG Mengyu, HOU Zhiyao, WANG Man, et al. Single-atom Pd nanozyme for ferroptosis-boosted mild-temperature photothermal therapy[J]. Angewandte Chemie International Edition, 2021, 60(23): 12971-12979. |
58 | CUI Xiao, LU Guihong, FANG Fang, et al. Iron self-boosting polymer nanoenzyme for low-temperature photothermal-enhanced ferrotherapy[J]. ACS Applied Materials & Interfaces, 2021, 13(26): 30274-30283. |
59 | ALZEIBAK Razan, MISHCHENKO Tatiana A, SHILYAGINA Natalia Y, et al. Targeting immunogenic cancer cell death by photodynamic therapy: past, present and future[J]. Journal for Immunotherapy of Cancer, 2021, 9(1): e001926. |
60 | Subin SON, KIM Ji Hyeon, WANG Xianwen, et al. Multifunctional sonosensitizers in sonodynamic cancer therapy[J]. Chemical Society Reviews, 2020, 49(11): 3244-3261. |
61 | MISHCHENKO Tatiana A, BALALAEVA Irina V, VEDUNOVA Maria V, et al. Ferroptosis and photodynamic therapy synergism: Enhancing anticancer treatment[J]. Trends in Cancer, 2021, 7(6): 484-487. |
62 | ZHU Ting, SHI Leilei, YU Chunyang, et al. Ferroptosis promotes photodynamic therapy: supramolecular photosensitizer-inducer nanodrug for enhanced cancer treatment[J]. Theranostics, 2019, 9(11): 3293-3307. |
63 | ZHOU Liqiang, DONG Caihong, DING Li, et al. Targeting ferroptosis synergistically sensitizes apoptotic sonodynamic anti-tumor nanotherapy[J]. Nano Today, 2021, 39: 101212. |
64 | WAN Xiuyan, SONG Liqun, PAN Wei, et al. Tumor-targeted cascade nanoreactor based on metal-organic frameworks for synergistic ferroptosis-starvation anticancer therapy[J]. ACS Nano, 2020, 14(9): 11017-11028. |
65 | ZHANG Xiangkai, YANG Shengbing, WANG Qing, et al. Tailored theranostic nanoparticles cause efficient ferroptosis in head and neck squamous cell carcinoma through a reactive oxygen species “butterfly effect”[J]. Chemical Engineering Journal, 2021, 423: 130083. |
66 | LIU Peng, SHI Xinyi, PENG Ying, et al. Anti-PD-L1 DNAzyme loaded photothermal Mn2+/Fe3+ hybrid metal-phenolic networks for cyclically amplified tumor ferroptosis-immunotherapy[J]. Advanced Healthcare Materials, 2022, 11(8): 2102315. |
[1] | 白志华, 张军. 二乙烯三胺五亚甲基膦酸/Fenton体系氧化脱除NO[J]. 化工进展, 2023, 42(9): 4967-4973. |
[2] | 杨莹, 侯豪杰, 黄瑞, 崔煜, 王兵, 刘健, 鲍卫仁, 常丽萍, 王建成, 韩丽娜. 利用煤焦油中酚类物质Stöber法制备碳纳米球用于CO2吸附[J]. 化工进展, 2023, 42(9): 5011-5018. |
[3] | 吴亚, 赵丹, 方荣苗, 李婧瑶, 常娜娜, 杜春保, 王文珍, 史俊. 用于复杂原油乳液的高效破乳剂开发及应用研究进展[J]. 化工进展, 2023, 42(8): 4398-4413. |
[4] | 尹新宇, 皮丕辉, 文秀芳, 钱宇. 特殊浸润性材料在防治油气管道中水合物成核与聚集的应用[J]. 化工进展, 2023, 42(8): 4076-4092. |
[5] | 俞俊楠, 俞建峰, 程洋, 齐一搏, 化春键, 蒋毅. 基于深度学习的变宽度浓度梯度芯片性能预测[J]. 化工进展, 2023, 42(7): 3383-3393. |
[6] | 关红玲, 杨辉, 井红权, 刘玉琼, 谷守玉, 王好斌, 侯翠红. 木质素基控释材料及其在药物输送和肥料控释中的应用[J]. 化工进展, 2023, 42(7): 3695-3707. |
[7] | 许春树, 姚庆达, 梁永贤, 周华龙. 氧化石墨烯/碳纳米管对几种典型高分子材料的性能影响[J]. 化工进展, 2023, 42(6): 3012-3028. |
[8] | 于丁一, 李圆圆, 王晨钰, 纪永升. pH响应性木质素水凝胶的制备及药物控释[J]. 化工进展, 2023, 42(6): 3138-3146. |
[9] | 张晨宇, 王宁, 徐洪涛, 罗祝清. 纳米颗粒强化传热的多级潜热储热器性能评价[J]. 化工进展, 2023, 42(5): 2332-2342. |
[10] | 陈少华, 王义华, 胡强飞, 胡坤, 陈立爱, 李洁. 电化学修饰电极在检测Cr(Ⅵ)中的研究进展[J]. 化工进展, 2023, 42(5): 2429-2438. |
[11] | 殷铭, 郭晋, 庞纪峰, 吴鹏飞, 郑明远. 铜催化剂在涉氢反应中的失活机制和稳定策略[J]. 化工进展, 2023, 42(4): 1860-1868. |
[12] | 葛伟童, 廖亚龙, 李明原, 嵇广雄, 郗家俊. Pd-Fe/MWCNTs双金属催化剂制备及其脱氯动力学[J]. 化工进展, 2023, 42(4): 1885-1894. |
[13] | 万茂华, 张小红, 安兴业, 龙垠荧, 刘利琴, 管敏, 程正柏, 曹海兵, 刘洪斌. MXene在生物质基储能纳米材料领域中的应用研究进展[J]. 化工进展, 2023, 42(4): 1944-1960. |
[14] | 司银芳, 胡语婕, 张凡, 董浩, 佘跃惠. 生物合成氧化锌纳米颗粒材料及其抗菌应用[J]. 化工进展, 2023, 42(4): 2013-2023. |
[15] | 郭帅帅, 陈锦路, 金梁程龙, 陶醉, 陈小丽, 彭国文. 基于海水提铀的多孔芳香框架材料研究进展[J]. 化工进展, 2023, 42(3): 1426-1436. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |