化工进展 ›› 2023, Vol. 42 ›› Issue (7): 3394-3403.DOI: 10.16085/j.issn.1000-6613.2022-1945
收稿日期:
2022-10-19
修回日期:
2023-01-30
出版日期:
2023-07-15
发布日期:
2023-08-14
通讯作者:
王彧斐
作者简介:
林海(1999—),男,硕士研究生,研究方向为分布式风电。E-mail:2022210607@student.cup.edu.cn。
Received:
2022-10-19
Revised:
2023-01-30
Online:
2023-07-15
Published:
2023-08-14
Contact:
WANG Yufei
摘要:
分布式风电是一种新型风电,其优势在于充分利用用户周围的风能,降低输电成本同时提高供电可靠性。然而,由于靠近用户,分布式风场存在严重的噪声污染。以往的研究对噪声问题常采用降噪设备或者降低发电功率的方法处理,少有学者从优化风机布局的角度研究。对于分布式风场而言,布局优化十分关键且较复杂。因为分布式风场的经济性取决于布局设计,而布局设计又受风力波动、风机尾流损失以及电缆布线等复杂因素影响。因此,本研究结合噪声、风速分布、尾流损失、风机功率曲线以及缆线连接模型,以最大风场年经济效益为目标函数,采用遗传算法和斯坦纳树算法对风机位置分布和电缆布线进行优化,以期提高风场经济性的同时降低噪声影响。
中图分类号:
林海, 王彧斐. 考虑噪声约束的分布式风场布局优化[J]. 化工进展, 2023, 42(7): 3394-3403.
LIN Hai, WANG Yufei. Distributed wind farm layout optimization considering noise constraint[J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3394-3403.
序号 | 角度/(°) | k | c | 概率 |
---|---|---|---|---|
0 | 0~22.5 | 6.7 | 8.6 | 0.2110 |
1 | 22.5~45 | 5.7 | 7.6 | 0.2310 |
2 | 45~67.5 | 6.3 | 10.9 | 0.0746 |
3 | 67.5~90 | 7.3 | 11.9 | 0.0447 |
4 | 90~112.5 | 4.1 | 12.6 | 0.0145 |
5 | 112.5~135 | 3.1 | 11.6 | 0.0058 |
6 | 135~157.5 | 4.3 | 9.7 | 0.0353 |
7 | 157.5~180 | 5.3 | 10.7 | 0.0417 |
8 | 180~202.5 | 4.3 | 7.6 | 0.0510 |
9 | 202.5~225 | 3.3 | 6.6 | 0.0412 |
10 | 225~247.5 | 4.7 | 10.6 | 0.0106 |
11 | 247.5~270 | 5.7 | 11.6 | 0.0157 |
12 | 270~292.5 | 4.5 | 10.7 | 0.0450 |
13 | 292.5~315 | 3.5 | 9.7 | 0.0114 |
14 | 315~337.5 | 6.7 | 8.6 | 0.0605 |
15 | 337.5~360 | 7.7 | 9.6 | 0.1060 |
表1 风数据拟合汇总
序号 | 角度/(°) | k | c | 概率 |
---|---|---|---|---|
0 | 0~22.5 | 6.7 | 8.6 | 0.2110 |
1 | 22.5~45 | 5.7 | 7.6 | 0.2310 |
2 | 45~67.5 | 6.3 | 10.9 | 0.0746 |
3 | 67.5~90 | 7.3 | 11.9 | 0.0447 |
4 | 90~112.5 | 4.1 | 12.6 | 0.0145 |
5 | 112.5~135 | 3.1 | 11.6 | 0.0058 |
6 | 135~157.5 | 4.3 | 9.7 | 0.0353 |
7 | 157.5~180 | 5.3 | 10.7 | 0.0417 |
8 | 180~202.5 | 4.3 | 7.6 | 0.0510 |
9 | 202.5~225 | 3.3 | 6.6 | 0.0412 |
10 | 225~247.5 | 4.7 | 10.6 | 0.0106 |
11 | 247.5~270 | 5.7 | 11.6 | 0.0157 |
12 | 270~292.5 | 4.5 | 10.7 | 0.0450 |
13 | 292.5~315 | 3.5 | 9.7 | 0.0114 |
14 | 315~337.5 | 6.7 | 8.6 | 0.0605 |
15 | 337.5~360 | 7.7 | 9.6 | 0.1060 |
噪声约束 | 情景1 | 情景2 | 情景3 | 情景4 |
---|---|---|---|---|
不含约束 | 含约束 | 不含约束 | 含约束 | |
AEB/106CNY | 6.90 | 7.90 | -11.1 | -12.7 |
APB/106CNY | 12.3 | 13.7 | 15.7 | 15.6 |
Cnoise/106CNY | (115.0) | 0.01 | (91.1) | 1.60 |
Cenergy/106CNY | 0.53 | 0.53 | 0.53 | 0.53 |
Ccable/106CNY | 1.33 | 1.42 | 3.26 | 3.26 |
Cland/106CNY | 3.53 | 3.82 | 22.9 | 22.9 |
TAC/106CNY | 5.40 | 5.79 | 26.7 | 28.3 |
表2 噪声经济补偿策略结果
噪声约束 | 情景1 | 情景2 | 情景3 | 情景4 |
---|---|---|---|---|
不含约束 | 含约束 | 不含约束 | 含约束 | |
AEB/106CNY | 6.90 | 7.90 | -11.1 | -12.7 |
APB/106CNY | 12.3 | 13.7 | 15.7 | 15.6 |
Cnoise/106CNY | (115.0) | 0.01 | (91.1) | 1.60 |
Cenergy/106CNY | 0.53 | 0.53 | 0.53 | 0.53 |
Ccable/106CNY | 1.33 | 1.42 | 3.26 | 3.26 |
Cland/106CNY | 3.53 | 3.82 | 22.9 | 22.9 |
TAC/106CNY | 5.40 | 5.79 | 26.7 | 28.3 |
尾流及损失 | 情景1 | 情景2 | 情景3 | 情景4 |
---|---|---|---|---|
Preal/107kW·h | 1.64 | 1.83 | 2.09 | 2.08 |
Pideal/107kW·h | 2.13 | 2.13 | 2.13 | 2.13 |
Loss/107kW·h | 0.49 | 0.30 | 0.04 | 0.05 |
表3 4种情景的尾流损失
尾流及损失 | 情景1 | 情景2 | 情景3 | 情景4 |
---|---|---|---|---|
Preal/107kW·h | 1.64 | 1.83 | 2.09 | 2.08 |
Pideal/107kW·h | 2.13 | 2.13 | 2.13 | 2.13 |
Loss/107kW·h | 0.49 | 0.30 | 0.04 | 0.05 |
1 | International Renewable Energy Agency. Renewable Capacity Statistics 2022[EB/OL]. . |
2 | ŽARKOVIĆ S D, SHAYESTEH E, HILBER P. Onshore wind farm—Reliability centered cable routing[J]. Electric Power Systems Research, 2021, 196: 107201. |
3 | FISCHETTI M, PISINGER D. Mathematical optimization and algorithms for offshore wind farm design: An overview[J]. Business & Information Systems Engineering, 2019, 61(4): 469-485. |
4 | WINTER P, ZACHARIASEN M. Euclidean steiner minimum trees: An improved exact algorithm[J]. Networks, 1997, 30(3): 149-166. |
5 | OLAOFE Z O. Review of energy systems deployment and development of offshore wind energy resource map at the coastal regions of Africa[J]. Energy, 2018, 161: 1096-1114. |
6 | ASGHAR A B, LIU Xiaodong. Estimation of wind speed probability distribution and wind energy potential using adaptive neuro-fuzzy methodology[J]. Neurocomputing, 2018, 287: 58-67. |
7 | JÄGER T, MCKENNA R, FICHTNER W. The feasible onshore wind energy potential in Baden-Württemberg: A bottom-up methodology considering socio-economic constraints[J]. Renewable Energy, 2016, 96: 662-675. |
8 | SHAKOOR R, HASSAN M Y, RAHEEM A, et al. Wake effect modeling: A review of wind farm layout optimization using Jensen׳s model[J]. Renewable and Sustainable Energy Reviews, 2016, 58: 1048-1059. |
9 | GAO Xiaoxia, YANG Hongxing, LU Lin. Optimization of wind turbine layout position in a wind farm using a newly-developed two-dimensional wake model[J]. Applied Energy, 2016, 174: 192-200. |
10 | SUN Haiying, YANG Hongxing. Comparative study on a newly-developed three-dimensional wind turbine wake model[J]. Energy Procedia, 2019, 158: 148-153. |
11 | SUN Haiying, YANG Hongxing, GAO Xiaoxia. Investigation into spacing restriction and layout optimization of wind farm with multiple types of wind turbines[J]. Energy, 2019, 168: 637-650. |
12 | WANG Longyan, TAN A C C, CHOLETTE M, et al. Comparison of the effectiveness of analytical wake models for wind farm with constant and variable hub heights[J]. Energy Conversion and Management, 2016, 124: 189-202. |
13 | TAO Siyu, XU Qingshan, FEIJÓO A, et al. Wind farm layout optimization with a three-dimensional Gaussian wake model[J]. Renewable Energy, 2020, 159: 553-569. |
14 | RODRIGUES S, BAUER P, BOSMAN P A N. Multi-objective optimization of wind farm layouts - Complexity, constraint handling and scalability[J]. Renewable and Sustainable Energy Reviews, 2016, 65: 587-609. |
15 | AMARAL L, CASTRO R. Offshore wind farm layout optimization regarding wake effects and electrical losses[J]. Engineering Applications of Artificial Intelligence, 2017, 60: 26-34. |
16 | GONZALEZ-RODRIGUEZ A G, BURGOS-PAYAN M, RIQUELME-SANTOS J, et al. Reducing computational effort in the calculation of annual energy produced in wind farms[J]. Renewable and Sustainable Energy Reviews, 2015, 43: 656-665. |
17 | BEŞKIRLI M, KOÇ İ, HAKLI H, et al. A new optimization algorithm for solving wind turbine placement problem: Binary artificial algae algorithm[J]. Renewable Energy, 2018, 121: 301-308. |
18 | DHUNNY A Z, ALLAM Z, LOBINE D, et al. Sustainable renewable energy planning and wind farming optimization from a biodiversity perspective[J]. Energy, 2019, 185: 1282-1297. |
19 | WANG Longyan, CHOLETTE M E, TAN A C C, et al. A computationally-efficient layout optimization method for real wind farms considering altitude variations[J]. Energy, 2017, 132: 147-159. |
20 | PAUL S, RATHER Z H. A novel approach for optimal cabling and determination of suitable topology of MTDC connected offshore wind farm cluster[J]. Electric Power Systems Research, 2022, 208: 107877. |
21 | WU Yan, XIA Tianqi, WANG Yufei, et al. A synchronization methodology for 3D offshore wind farm layout optimization with multi-type wind turbines and obstacle-avoiding cable network[J]. Renewable Energy, 2022, 185: 302-320. |
22 | ZHU Weijun, HEILSKOV N, SHEN Wenzhong, et al. Modeling of aerodynamically generated noise from wind turbines[J]. Journal of Solar Energy Engineering, 2005, 127(4): 517-528. |
23 | SHEN Wenzhong, ZHU Weijun, BARLAS E, et al. Advanced flow and noise simulation method for wind farm assessment in complex terrain[J]. Renewable Energy, 2019, 143: 1812-1825. |
24 | ZHU Weijun, SHEN Wenzhong, BARLAS E, et al. Wind turbine noise generation and propagation modeling at DTU Wind Energy: A review[J]. Renewable and Sustainable Energy Reviews, 2018, 88: 133-150. |
25 | SHALTOUT M L, YAN Zeyu, PALEJIYA D, et al. Tradeoff analysis of energy harvesting and noise emission for distributed wind turbines[J]. Sustainable Energy Technologies and Assessments, 2015, 10: 12-21. |
26 | WU Xiawei, HU Weihao, HUANG Qi, et al. Optimal power dispatch strategy of onshore wind farms considering environmental impact[J]. International Journal of Electrical Power & Energy Systems, 2020, 116: 105548. |
27 | WU Xinghong, WU Yan, WANG Yufei, et al. A multi-periods offshore wind farm optimization method for supplying energy in a natural gas hydrates exploitation platform[J]. Journal of Cleaner Production, 2021, 316: 128238. |
28 | CHEN K, SONG M X, ZHANG X, et al. Wind turbine layout optimization with multiple hub height wind turbines using greedy algorithm[J]. Renewable Energy, 2016, 96: 676-686. |
29 | LACKNER M A, ELKINTON C N. An analytical framework for offshore wind farm layout optimization[J]. Wind Engineering, 2007, 31(1): 17-31. |
30 | 吴艳. 基于网络拓扑优化的设施布局智能设计方法[D]. 西安: 西安交通大学, 2021. |
WU Yan. Intelligent design methodology of facility layout based on network topology optimization[D]. Xi’an: Xi’an Jiaotong University, 2021. | |
31 | HUBBARD H H, SHEPHERD K P. Aeroacoustics of large wind turbines[J]. The Journal of the Acoustical Society of America, 1991, 89(6): 2495-2508. |
32 | EVANS T, COOPER J. Comparison of predicted and measured wind farm noise levels and implications for assessments of new wind farms[C]// Proceedings of ACOUSTICS 2011, 2011 |
33 | HUBBARD H H, SHEPHERD K P. Wind turbine acoustics[M]. NASA, 1991. |
34 | WU Xiawei, HU Weihao, HUANG Qi, et al. Optimizing the layout of onshore wind farms to minimize noise[J]. Applied Energy, 2020, 267: 114896. |
35 | WU Yan, CUI Ziyuan, LIN Hai, et al. An optimization method for shale gas gathering system—Consideration of reliability enhancement under earthquake-related uncertainties[J]. Petroleum Science, 2022, 19(5): 2431-2447. |
36 | WU Yan, ZHANG Shuai, WANG Ruiqi, et al. A design methodology for wind farm layout considering cable routing and economic benefit based on genetic algorithm and GeoSteiner[J]. Renewable Energy, 2020, 146: 687-698. |
37 | National Centers for Environmental Information. Hourly/Sub-Hourly Observational Data Map of National Centers for Environmental Information[EB/OL]. . |
[1] | 李梦圆, 郭凡, 李群生. 聚乙烯醇生产中回收工段第三、第四精馏塔的模拟与优化[J]. 化工进展, 2023, 42(S1): 113-123. |
[2] | 张瑞杰, 刘志林, 王俊文, 张玮, 韩德求, 李婷, 邹雄. 水冷式复叠制冷系统的在线动态模拟与优化[J]. 化工进展, 2023, 42(S1): 124-132. |
[3] | 王福安. 300kt/a环氧丙烷工艺反应器降耗减排分析[J]. 化工进展, 2023, 42(S1): 213-218. |
[4] | 陈匡胤, 李蕊兰, 童杨, 沈建华. 质子交换膜燃料电池气体扩散层结构与设计研究进展[J]. 化工进展, 2023, 42(S1): 246-259. |
[5] | 王正坤, 黎四芳. 双子表面活性剂癸炔二醇的绿色合成[J]. 化工进展, 2023, 42(S1): 400-410. |
[6] | 孙玉玉, 蔡鑫磊, 汤吉海, 黄晶晶, 黄益平, 刘杰. 反应精馏合成甲基丙烯酸甲酯工艺优化及节能[J]. 化工进展, 2023, 42(S1): 56-63. |
[7] | 李春利, 韩晓光, 刘加朋, 王亚涛, 王晨希, 王洪海, 彭胜. 填料塔液体分布器的研究进展[J]. 化工进展, 2023, 42(9): 4479-4495. |
[8] | 刘炫麟, 王驿凯, 戴苏洲, 殷勇高. 热泵中氨基甲酸铵分解反应特性及反应器结构优化[J]. 化工进展, 2023, 42(9): 4522-4530. |
[9] | 王晨, 白浩良, 康雪. 大功率UV-LED散热与纳米TiO2光催化酸性红26耦合系统性能[J]. 化工进展, 2023, 42(9): 4905-4916. |
[10] | 李海东, 杨远坤, 郭姝姝, 汪本金, 岳婷婷, 傅开彬, 王哲, 何守琴, 姚俊, 谌书. 炭化与焙烧温度对植物基铁碳微电解材料去除As(Ⅲ)性能的影响[J]. 化工进展, 2023, 42(7): 3652-3663. |
[11] | 李蓝宇, 黄新烨, 王笑楠, 邱彤. 化工科研范式智能化转型的思考与展望[J]. 化工进展, 2023, 42(7): 3325-3330. |
[12] | 王俊杰, 潘艳秋, 牛亚宾, 俞路. 分子水平催化重整装置模型构建及应用[J]. 化工进展, 2023, 42(7): 3404-3412. |
[13] | 周龙大, 赵立新, 徐保蕊, 张爽, 刘琳. 电场-旋流耦合强化多相介质分离研究进展[J]. 化工进展, 2023, 42(7): 3443-3456. |
[14] | 薛凯, 王帅, 马金鹏, 胡晓阳, 种道彤, 王进仕, 严俊杰. 工业园区分布式综合能源系统的规划与调度[J]. 化工进展, 2023, 42(7): 3510-3519. |
[15] | 侯殿保, 贺茂勇, 陈育刚, 杨海云, 李海民. 资源优化配置与循环经济在钾资源开发利用中的应用[J]. 化工进展, 2023, 42(6): 3197-3208. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |