1 |
王子宗, 高立兵, 索寒生. 未来石化智能工厂顶层设计: 现状、 对比及展望[J]. 化工进展, 2022, 41(7): 3387-3401.
|
|
WANG Zizong, GAO Libing, SUO Hansheng. Designing petrochemical smart plant of the future: State of the art, comparison and prospects[J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3387-3401.
|
2 |
WALID Nabgan, MEHDI Rashidzadeh, BAHADOR Nabgan. The catalytic naphtha reforming process: Hydrodesulfurization, catalysts and zeoforming[J]. Environmental Chemistry Letters, 2018, 16(2): 507-522.
|
3 |
徐承恩. 催化重整工艺与工程[M]. 2版. 北京: 中国石化出版社, 2014.
|
|
XU Cheng’en. Catalytic reforming process and engineering[M]. 2nd ed. Beijing: China Petrochemical Press, 2014.
|
4 |
郑丹. 炼油, 向分子水平进军——专访中国石化石油化工科学研究院原院长龙军[J]. 中国石油石化, 2018(21): 38-41.
|
|
ZHENG Dan. Refining oil, marching to molecular level—Interview with Long Jun, former president of China petrochemical research institute[J]. China Petrochem, 2018(21): 38-41.
|
5 |
KUO J C W, WEI James. Lumping analysis in monomolecular reaction systems. Analysis of approximately lumpable system[J]. Industrial & Engineering Chemistry Fundamentals, 1969, 8(1): 124-133.
|
6 |
ZHOU Xiang, HOU Zhen, WANG Jieguang, et al. Molecular-level kinetic model for C12 continuous catalytic reforming[J]. Energy & Fuels, 2018, 32(6): 7078-7085.
|
7 |
吴青. 石油分子工程[M]. 北京: 化学工业出版社, 2020.
|
|
WU Qing. Petroleum molecular engineering[M]. Beijing: Chemical Industry Press, 2020.
|
8 |
VAN GEEM Kevin M, HUDEBINE Damien, REYNIERS Marie Françoise, et al. Molecular reconstruction of naphtha steam cracking feedstocks based on commercial indices[J]. Computers & Chemical Engineering, 2007, 31(9): 1020-1034.
|
9 |
WANG Kun, LI Shiyu. Modified molecular matrix model for predicting molecular composition of naphtha[J]. Chinese Journal of Chemical Engineering, 2017, 25(12): 1856-1862.
|
10 |
周齐宏, 胡山鹰, 李有润, 等. 催化重整过程的分子模拟与优化[J]. 计算机与应用化学, 2004, 21(3): 447-452.
|
|
ZHOU Qihong, HU Shanying, LI Yourun, et al. Molecular modelling and optimisation for catalytic reforming[J]. Computers and Applied Chemistry, 2004, 21(3): 447-452.
|
11 |
Rogelio SOTELO-BOYÁS, FROMENT Gilbert F. Fundamental kinetic modeling of catalytic reforming[J]. Industrial & Engineering Chemistry Research, 2009, 48(3): 1107-1119.
|
12 |
王睿通, 刘纪昌, 仲从伟, 等. 基于结构导向集总的催化重整分子水平反应动力学模型[J]. 石油学报(石油加工), 2020, 36(1): 95-105.
|
|
WANG Ruitong, LIU Jichang, ZHONG Congwei, et al. Reaction kinetic model for catalytic reforming based on structure oriented lumping[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2020, 36(1): 95-105.
|
13 |
徐春明, 杨朝合. 石油炼制工程[M]. 4版. 北京: 石油工业出版社, 2009.
|
|
XU Chunming, YANG Chaohe. Petroleum refining engineering[M]. 4th ed. Beijing: Petroleum Industry Press, 2009.
|
14 |
王连山, 张泉灵, 梁超. 催化重整反应38集总动力学模型及其在连续催化重整中的应用[J]. 化工学报, 2012, 63(4): 1076-1082.
|
|
WANG Lianshan, ZHANG Quanling, LIANG Chao. A 38-lumped kinetic model for reforming reaction and its application in continuous catalytic reforming[J]. CIESC Journal, 2012, 63(4): 1076-1082.
|
15 |
MI SAINE AYE Mi, ZHANG Nan. A novel methodology in transforming bulk properties of refining streams into molecular information[J]. Chemical Engineering Science, 2005, 60(23): 6702-6717.
|
16 |
RIAZI M R. Characterization and properties of petroleum fractions[M]. West Conshohocken, PA: ASTM International, 2005
|
17 |
REN Yu, LIAO Zuwei, SUN Jingyuan, et al. Molecular reconstruction of naphtha via limited bulk properties: Methods and comparisons[J]. Industrial & Engineering Chemistry Research, 2019, 58(40): 18742-18755.
|
18 |
周红军, 石铭亮, 翁惠新, 等. 芳烃型催化重整集总反应动力学模型[J]. 石油学报(石油加工), 2009, 25(4): 545-550.
|
|
ZHOU Hongjun, SHI Mingliang, WENG Huixin, et al. Lumped kinetic model of aromatic type catalytic naphtha reforming[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2009, 25(4): 545-550.
|
19 |
VERNUCCIO Sergio, BROADBELT Linda J. Discerning complex reaction networks using automated generators[J]. AIChE Journal, 2019, 65(8): e16663.
|
20 |
RANGARAJAN Srinivas, KAMINSKI Ted, Eric VAN WYK, et al. Language-oriented rule-based reaction network generation and analysis: Algorithms of RING[J]. Computers & Chemical Engineering, 2014, 64: 124-137.
|
21 |
RANGARAJAN Srinivas, BHAN Aditya, DAOUTIDIS Prodromos. Language-oriented rule-based reaction network generation and analysis: Applications of RING[J]. Computers & Chemical Engineering, 2012, 46: 141-152.
|
22 |
RANGARAJAN Srinivas, BHAN Aditya, DAOUTIDIS Prodromos. Language-oriented rule-based reaction network generation and analysis: Description of RING[J]. Computers & Chemical Engineering, 2012, 45: 114-123.
|
23 |
RAMAGE Michael P, GRAZIANI Kenneth R, KRAMBECK F J. 6 Development of mobil’s kinetic reforming model[J]. Chemical Engineering Science, 1980, 35(1/2): 41-48.
|
24 |
翁惠新, 江洪波, 陈志. 催化重整集总动力学模型(Ⅱ)——实验设计和动力学参数估计[J]. 化工学报, 1994, 45(5): 531-537.
|
|
WENG Huixin, JIANG Hongbo, CHEN Zhi. Lumped model for catalytic reforming ( Ⅱ ) experiment design and kinetic parameter estimation[J]. Journal of Chemical Industry and Engineering (China), 1994, 45(5): 531-537.
|
25 |
YI Xiaoyang, ZHANG Peng, HU Changlu. Detailed description of the mathematical modeling of the catalytic naphtha reforming process dynamics[J]. IOP Conference Series: Materials Science and Engineering, 2020, 729(1): 012095.
|
26 |
李鹏飞. 连续重整装置的数据驱动建模和重点单元优化[D]. 大连: 大连理工大学, 2022.
|
|
LI Pengfei. Data-driven modeling and key unit optimization of continuous reforming unit[D]. Dalian: Dalian University of Technology, 2022.
|