化工进展 ›› 2023, Vol. 42 ›› Issue (4): 2101-2108.DOI: 10.16085/j.issn.1000-6613.2022-1031
收稿日期:
2022-06-02
修回日期:
2022-08-27
出版日期:
2023-04-25
发布日期:
2023-05-08
通讯作者:
段璐
作者简介:
夏少波(1998—),男,硕士研究生,研究方向为燃煤烟气污染物控制。E-mail: xiashaobo0201@163.com。
基金资助:
XIA Shaobo1,2(), DUAN Lu2(), WANG Jianpeng2, JI Renshan2
Received:
2022-06-02
Revised:
2022-08-27
Online:
2023-04-25
Published:
2023-05-08
Contact:
DUAN Lu
摘要:
耦合电袋除尘器在燃煤工业锅炉领域中发展前景广阔。基于耦合电袋除尘器平台,实验研究了不同含湿量飞灰的脱除性能和除尘器运行性能。结果表明:含湿量上升,飞灰堆积密度呈现先减小后增大的趋势,含湿量为0.65%出现谷值。含湿量小于0.65%,除尘器对飞灰的穿透窗口不同,且含湿量增加,出口总尘浓度逐渐降低,整体脱除效率逐渐提高,最终压降和总能耗均逐渐降低,最终压降由含湿量0.31%时的335Pa降低到0.65%时的276Pa,减小了17.61%。除尘器对含湿量0.65%飞灰无穿透窗口,但含湿量高于0.65%,穿透窗口重新出现,且除尘器性能下降。利用质量因子对耦合电袋除尘器整体性能进行综合评价,其随含湿量增加而先增后降,峰值位于含湿量0.64%~0.65%附近。综上,一定范围内提高颗粒含湿量能优化除尘器性能。
中图分类号:
夏少波, 段璐, 王建朋, 纪任山. 飞灰含湿量对耦合电袋除尘器性能影响规律[J]. 化工进展, 2023, 42(4): 2101-2108.
XIA Shaobo, DUAN Lu, WANG Jianpeng, JI Renshan. Effect of water content of fly ash on the performance of coupling reinforced electrostatic-fabric integrated precipitator[J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2101-2108.
空气相对湿度/% | 飞灰初始含湿量/% | 除尘器进口 | 除尘器内飞灰 含湿量/% | 除尘器出口 | |||
---|---|---|---|---|---|---|---|
烟气相对湿度/% | 飞灰含湿量/% | 烟气相对湿度/% | |||||
27 | 2.42 | 29.0 | 1.10 | 0.773 | 0.69 | 23.0 | 0.761 |
27 | 2.90 | 31.3 | 1.21 | 0.806 | 0.72 | 25.8 | 0.791 |
表1 除尘器进出口湿度变化
空气相对湿度/% | 飞灰初始含湿量/% | 除尘器进口 | 除尘器内飞灰 含湿量/% | 除尘器出口 | |||
---|---|---|---|---|---|---|---|
烟气相对湿度/% | 飞灰含湿量/% | 烟气相对湿度/% | |||||
27 | 2.42 | 29.0 | 1.10 | 0.773 | 0.69 | 23.0 | 0.761 |
27 | 2.90 | 31.3 | 1.21 | 0.806 | 0.72 | 25.8 | 0.791 |
成分分析/% | 工业分析/% | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SiO2 | Al2O3 | Fe2O3 | CaO | MgO | K2O | Na2O | TiO2 | P2O5 | MnO2 | SO3 | Mad | Ad | Vd | FCad |
42.42 | 13.10 | 7.22 | 25.51 | 1.30 | 1.31 | 1.73 | 0.55 | 0.069 | 0.23 | 5.30 | 0.12 | 98.04 | 1.55 | 0.40 |
表2 飞灰成分分析和工业分析
成分分析/% | 工业分析/% | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SiO2 | Al2O3 | Fe2O3 | CaO | MgO | K2O | Na2O | TiO2 | P2O5 | MnO2 | SO3 | Mad | Ad | Vd | FCad |
42.42 | 13.10 | 7.22 | 25.51 | 1.30 | 1.31 | 1.73 | 0.55 | 0.069 | 0.23 | 5.30 | 0.12 | 98.04 | 1.55 | 0.40 |
1 | 王建朋, 段璐, 王乃继, 等. 燃煤锅炉烟气脱硫技术对颗粒物排放影响研究进展[J]. 洁净煤技术, 2020, 26(2): 34-42. |
WANG Jianpeng, DUAN Lu, WANG Naiji, et al. Research progress on the effect of flue gas desulfurization technology of coal-fired boiler on particulate matter emission[J]. Clean Coal Technology, 2020, 26(2): 34-42. | |
2 | CHEN Chi-Hsien, WU Chih-Da, CHIANG Hung-Che, et al. The effects of fine and coarse particulate matter on lung function among the elderly[J]. Scientific Reports, 2019, 9(1): 14790. |
3 | KIM Hyunyoung, KIM Won-Ho, KIM Young-Youl, et al. Air pollution and central nervous system disease: A review of the impact of fine particulate matter on neurological disorders[J]. Frontiers in Public Health, 2020, 8: 575330. |
4 | 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 火电厂大气污染物排放标准: [S]. 北京: 中国环境科学出版社, 2012. |
General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. Emission standard of air pollutants for thermal power plants: [S]. Beijing: China Environment Science Press, 2012. | |
5 | 环保部, 国家发改委, 国家能源局. 关于印发《全面实施燃煤电厂超低排放和节能改造工作方案》的通知[EB/OL]. [2022-06-02].. |
Ministry of Environmental Protection, National Development and Reform Commission, National Energy Administration. Notice on the issuance of the Work Plan for Ultra-low Emission and Energy Saving Renovation of Coal-fired Power Plants[EB/OL]. [2022-06-02].. | |
6 | 国务院关于印发打赢蓝天保卫战三年行动计划的通知[EB/OL]. [2022-06-02]. . |
Circular of The State Council on the issuance of the three-year action plan for winning the battle to protect the blue skies[EB/OL]. [2022-06-02]. . | |
7 | GAO Qi, LI Shuiqing, XU Yang, et al. A general mechanistic model of fly ash formation during pulverized coal combustion[J]. Combustion and Flame, 2019, 200: 374-386. |
8 | 胡燕. 探析我国燃煤工业锅炉大气污染物治理技术[J]. 环境与发展, 2020, 32(8): 87, 90. |
HU Yan. Discussion on air pollution control technology of coal-fired industrial boilers in China[J]. Environment and Development, 2020, 32(8): 87, 90. | |
9 | LI Wei, SHEN Shengnan, LI Hui. Study and optimization of the filtration performance of multi-fiber filter[J]. Advanced Powder Technology, 2016, 27(2): 638-645. |
10 | PATNAIK Asis, ANANDJIWALA Rajesh D. Reasons for filter bag failure and method development to improve its life span[J]. Chemical Engineering & Technology, 2016, 39(3): 529-534. |
11 | 李东梅, 田娱嘉, 郭阳, 等. 布袋除尘器滤袋使用寿命的影响因素分析[J]. 热力发电, 2013, 42(4): 104-106. |
LI Dongmei, TIAN Yujia, GUO Yang, et al. Factors affecting the service life of filter bag[J]. Thermal Power Generation, 2013, 42(4): 104-106. | |
12 | YAO Yuping, ZHAO Xiyong. Application of electrostatic fabric hybrid particulate collector[M]//YAN K. Electrostatic Precipitation. Berlin, Heidelberg: Springer, 2009: 482-484. |
13 | 段璐. 电袋除尘器颗粒物脱除理论和实验研究进展[J]. 粉煤灰综合利用, 2019, 32(4): 97-101. |
DUAN Lu. Progress of theoretical and experimental study of particle removal by hybrid electrostatic precipitators[J]. Fly Ash Comprehensive Utilization, 2019, 32(4): 97-101. | |
14 | 夏少波, 段璐, 王建朋, 等. 飞灰残碳量对除尘器性能影响规律[J]. 煤炭学报, 2022, 47(9): 3463-3471. |
XIA Shaobo, DUAN Lu, WANG Jianpeng, et al. Effect of residual carbon on precipitator performance[J]. Journal of China Coal Society, 2022, 47(9): 3463-3471. | |
15 | 熊桂龙, 李水清, 陈晟, 等. 增强PM2.5脱除的新型电除尘技术的发展[J]. 中国电机工程学报, 2015, 35(9): 2217-2223. |
XIONG Guilong, LI Shuiqing, CHEN Sheng, et al. Development of advanced electrostatic precipitation technologies for reducing PM2.5 emissions from coal-fired power plants[J]. Proceedings of the CSEE, 2015, 35(9): 2217-2223. | |
16 | 郭俊, 杨丁, 郭宝玉, 等. 低低温电除尘器实验与数值模拟研究进展[C]//第十七届中国电除尘学术会议论文集. 合肥, 2017: 84-100. |
GUO Jun, YANG Ding, GUO Baoyu, et al. Progress in experiment and numerical simulation of low temperature electrostatic precipitator[C]// Proceedings of the 17th China Academic Conference on Electrodust removal. Hefei, 2017: 84-100. | |
17 | 徐明厚, 王文煜, 温昶, 等. 燃煤电厂细微颗粒物脱除技术研究新进展[J]. 中国电机工程学报, 2019, 39(22): 6627-6640. |
XU Minghou, WANG Wenyu, WEN Chang, et al. Research development of precipitation technology to accomplish the ultra-low emission from coal-fired power plants[J]. Proceedings of the CSEE, 2019, 39(22): 6627-6640. | |
18 | GAO Wenchao, ZHANG Hao, WU Zhicheng, et al. Low-temperature electrostatic precipitator with different electrode configurations under various operation conditions[J]. Powder Technology, 2021, 394: 1178-1185. |
19 | 刘含笑, 郦建国, 姚宇平, 等. 低低温电除尘系统对SO3脱除性能研究[J]. 发电技术, 2022, 43(1): 147-154. |
LIU Hanxiao, LI Jianguo, YAO Yuping, et al. Study on SO3 removal performance of low-low temperature electrostatic precipitator system[J]. Power Generation Technology, 2022, 43(1): 147-154. | |
20 | 赵磊, 周洪光. 烟气调质技术在近零排放机组中的研究与应用[J]. 环境工程, 2016, 34(2): 83-86. |
ZHAO Lei, ZHOU Hongguang. Research and application of flue gas conditioning technology in near-zero emission of coal-fired power plant[J]. Environmental Engineering, 2016, 34(2): 83-86. | |
21 | 周家珍, 王丽萍, 王玉明, 等. SO3烟气调质对粉尘导电性能的改善机制[J]. 环境工程, 2012, 30(5): 61-63, 95. |
ZHOU Jiazhen, WANG Liping, WANG Yuming, et al. The improvement mechanism of SO3 flue gas conditioning on dust electric conduction[J]. Environmental Engineering, 2012, 30(5): 61-63, 95. | |
22 | 余海浩. 复合烟气调质技术研究[D]. 北京: 华北电力大学, 2015. |
YU Haihao. Study on dual flue gas conditioning[D]. Beijing: North China Electric Power University, 2015. | |
23 | NAVARRETE Benito, Bernabé ALONSO-FARIÑAS, Mónica LUPIÓN, et al. Effect of flue gas conditioning on the cohesive forces in fly ash layers in electrostatic precipitation[J]. Environmental Progress & Sustainable Energy, 2015, 34(5): 1379-1383. |
24 | YAWOOTTI Artit, INTRA Panich, TIPPAYAWONG Nakorn, et al. An experimental study of relative humidity and air flow effects on positive and negative corona discharges in a corona-needle charger[J]. Journal of Electrostatics, 2015, 77: 116-122. |
25 | NOURI H, ZOUZOU N, DASCALESCU L, et al. Investigation of relative humidity effect on the particles velocity and collection efficiency of laboratory scale electrostatic precipitator[J]. Process Safety and Environmental Protection, 2016, 104: 225-232. |
26 | 彭泽宏, 楼波, 孙超凡. 含湿量对电除尘器内PM2.5除尘效率的影响规律研究[J]. 电站系统工程, 2015, 31(2): 41-43. |
PENG Zehong, LOU Bo, SUN Chaofan. Study on effect of moisture content on electric dust efficiency of PM2.5 [J]. Power System Engineering, 2015, 31(2): 41-43. | |
27 | WANG Xiaohua, YOU Changfu. Effects of thermophoresis, vapor, and water film on particle removal of electrostatic precipitator[J]. Journal of Aerosol Science, 2013, 63: 1-9. |
28 | 胡斌, 周磊, 孙宗康, 等. 烟气温湿度对电除尘脱除细颗粒的影响[J]. 东南大学学报(自然科学版), 2017, 47(6): 1148-1153. |
HU Bin, ZHOU Lei, SUN Zongkang, et al. Effects of temperature and humidity on electrostatic precipitator removal of fine particles[J]. Journal of Southeast University (Natural Science Edition), 2017, 47(6): 1148-1153. | |
29 | 袁学玲, 陈晓春, 杨正羽, 等. 湿度对袋式除尘性能的强化研究[J]. 高校化学工程学报, 2019, 33(4): 965-971. |
YUAN Xueling, CHEN Xiaochun, YANG Zhengyu, et al. Effects of humidity on dust removal intensification of bag filters[J]. Journal of Chemical Engineering of Chinese Universities, 2019, 33(4): 965-971. | |
30 | 滕斌. 半干法烟气脱硫的实验及机理研究[D]. 杭州: 浙江大学, 2004. |
TENG Bin. Experimental and theoretical study on semi-dry flue gas desulfurization[D]. Hangzhou: Zhejiang University, 2004. | |
31 | 任育杰, 韩旭. 布袋除尘器在300MW机组干法脱硫中的应用[C]//第十七届二氧化硫氮氧化物、汞污染防治技术暨细颗粒物(PM2.5)控制与监测技术研讨会论文集. 杭州, 2013: 21-25. |
REN Yujie, HAN Xu. Application of bag dust collector in dry desulfurization of 300MW unit[C]// Proceedings of the 17th Seminar on Sulfur Dioxide nitrogen oxide and Mercury Pollution Prevention Technology and Fine Particulate matter (PM2.5) Control and Monitoring Technology. Hangzhou, 2013: 21-25. | |
32 | 许广林. 半干法脱硫后除尘器设计技术问题的探讨[C]//中国硅酸盐学会环保学术年会论文集. 北京: 中国建材工业出版社, 2012: 99-101, 112. |
XU Guanglin. Discussion on the design technology of dust collector after semi-dry method of desulfurization[C]//Proceedings of the Environmental Protection Academic Annual Conference of the Chinese Ceramics Society. Beijing: China Building Materials Press, 2012: 99-101, 112. | |
33 | 袁学玲. 环境湿度对PTFE覆膜滤料过滤性能影响研究[D]. 北京: 北京化工大学, 2015. |
YUAN Xueling. The effect of humidity on dust removal performance using PTFE membrane[D]. Beijing: Beijing University of Chemical Technology, 2015. | |
34 | LI Mengqi, REN Jianxing. Study on the change characteristics of dust specific resistivity and electrostatic precipitation efficiency[J]. IOP Conference Series: Earth and Environmental Science, 2018, 108: 052115. |
35 | CHOI Ho-Kyung, PARK Seok-Joo, Jeong-Hwan LIM, et al. A study on the characteristics of improvement in filtration performance by dust precharging[J]. Korean Journal of Chemical Engineering, 2002, 19(2): 342-346. |
36 | FENG Zhuangbo, LONG Zhengwei, MO Jinhan. Experimental and theoretical study of a novel electrostatic enhanced air filter (EEAF) for fine particles[J]. Journal of Aerosol Science, 2016, 102: 41-54. |
[1] | 符乐, 杨阳, 徐文青, 耿錾卜, 朱廷钰, 郝润龙. 新型相变有机胺吸收捕集CO2技术研究进展[J]. 化工进展, 2023, 42(4): 2068-2080. |
[2] | 张卫风, 周武, 王秋华. 相变吸收捕集烟气中CO2技术的发展现状[J]. 化工进展, 2022, 41(4): 2090-2101. |
[3] | 唐思扬, 李星宇, 鲁厚芳, 钟山, 梁斌. 低能耗化学吸收碳捕集技术展望[J]. 化工进展, 2022, 41(3): 1102-1106. |
[4] | 张卫风, 许元龙, 王秋华. CO2醇胺富液低能耗再生研究进展[J]. 化工进展, 2021, 40(8): 4497-4507. |
[5] | 王傢俊, 邓帅, 赵睿恺, 赵力. 电子级HF吸附法回收的节能降耗潜力分析[J]. 化工进展, 2021, 40(7): 3645-3655. |
[6] | 汪静, 武卫东, 王浩, 李振博, 刘荟. 辅助冷凝器冷却水量对闭式热泵干燥系统性能的影响[J]. 化工进展, 2021, 40(3): 1307-1314. |
[7] | 唐建峰, 王玉娟, 王曰, 花亦怀, 褚洁, 桑伟, 陈静. Aspen HYSYS对胺法脱碳再生工艺模拟的适用性[J]. 化工进展, 2021, 40(2): 747-754. |
[8] | 郑洋洋, 宋小三, 王三反, 张志华, 宋正平, 马林. 添加剂对单膜双室同槽电解膜电积工艺的影响[J]. 化工进展, 2020, 39(S2): 440-446. |
[9] | 赵红涛, 王树民. 燃煤烟气胺法脱碳MVR再生系统关键参数及能耗分析[J]. 化工进展, 2020, 39(S1): 256-262. |
[10] | 张丹, 杨敏博, 冯霄, 王彧斐. 反应器级数对甲醇制芳烃过程的影响分析[J]. 化工进展, 2020, 39(9): 3556-3562. |
[11] | 陈杰,张媛媛,花亦怀,唐建峰,郭昊,田汝峰,曾庆军. 天然气半贫液脱碳工艺三元胺液配方优选[J]. 化工进展, 2020, 39(3): 975-983. |
[12] | 陆诗建,高丽娟,王家凤,赵东亚,王鑫,朱全民. 烟气CO2捕集热能梯级利用节能工艺耦合优化[J]. 化工进展, 2020, 39(2): 728-737. |
[13] | 孙志豪, 郭子东, 陈俊, 陆星洲, 魏凤玉. 哌嗪类有机胺脱除二氧化硫性能及机理探讨[J]. 化工进展, 2019, 38(s1): 46-51. |
[14] | 陈昇, 曹新波, 赵梦, 刘岑凡, 康昊源, 王勇, 王维, 谢国山. MTO前脱丙烷分离流程模拟及优化[J]. 化工进展, 2019, 38(07): 3473-3481. |
[15] | 蒋洪, 张世坚, 敬加强, 朱聪. 常规及创新高压凝液回收流程对比[J]. 化工进展, 2019, 38(06): 2581-2589. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |