化工进展 ›› 2023, Vol. 42 ›› Issue (2): 821-838.DOI: 10.16085/j.issn.1000-6613.2022-0702
章建忠1(), 许升1,2(), 樊家澍1, 费振宇1, 王堃1, 黄建1, 崔峰波1, 冉文华1
收稿日期:
2022-04-19
修回日期:
2022-07-20
出版日期:
2023-02-25
发布日期:
2023-03-13
通讯作者:
许升
作者简介:
章建忠(1981—),男,高级工程师,研究方向为高性能玻璃纤维产品的开发与应用。E-mail:jianzhong.zhang@jushi.com。
基金资助:
ZHANG Jianzhong1(), XU Sheng1,2(), FAN Jiashu1, FEI Zhenyu1, WANG Kun1, HUANG Jian1, CUI Fengbo1, RAN Wenhua1
Received:
2022-04-19
Revised:
2022-07-20
Online:
2023-02-25
Published:
2023-03-13
Contact:
XU Sheng
摘要:
玻璃纤维增强树脂材料是应用最为广泛的工程复合材料。自20世纪末以来,玻璃纤维与基体树脂之间的界面结合越来越被关注,浸润剂是玻璃纤维表面处理的功能性复合涂层,是玻璃纤维生产与使用顺畅性的重要保障,也是构建玻璃纤维与树脂界面结合的重要“化学桥梁”。然而浸润剂配方具有高度保密性,行业内也缺乏系统可靠的浸润剂技术数据库,限制了人们对浸润剂知识及其作用的理解。通过对已经公开发表的相关文献进行广泛对比分析,本文对玻璃纤维浸润剂目前的表征与分析方法进行综述。首先对浸润剂的基础知识进行了简单概括,随后介绍了浸润剂的典型表征与分析技术,最后对浸润剂表征技术的发展现状、行业难点进行总结与展望,从而帮助复合材料行业的研发与生产人员更好地理解玻璃纤维浸润剂在增强复合材料中的作用。
中图分类号:
章建忠, 许升, 樊家澍, 费振宇, 王堃, 黄建, 崔峰波, 冉文华. 玻璃纤维浸润剂的分析与表征技术进展[J]. 化工进展, 2023, 42(2): 821-838.
ZHANG Jianzhong, XU Sheng, FAN Jiashu, FEI Zhenyu, WANG Kun, HUANG Jian, CUI Fengbo, RAN Wenhua. Progress in characterization and analysis of glass fiber sizing[J]. Chemical Industry and Engineering Progress, 2023, 42(2): 821-838.
浸润剂表征技术 | 获得的浸润剂信息 |
---|---|
FTIR | 浸润剂组成的基本结构、浸润剂组分在玻璃纤维表面的吸附与黏结情况、硅烷层的水解情况、浸润剂的分解情况 |
NIR | 浸润剂中硅烷与成膜剂之间的反应 |
NMR | 鉴别玻璃纤维表面萃取的浸润剂结构与类型 |
GPC、HPLC | 萃取的浸润剂组分的分子量 |
IGC | 硅烷在玻璃纤维表面的吸附与结构、表面能、表面不均匀性(过于灵敏,无法给出浸润剂层的确切信息) |
LOI | 玻璃纤维表面浸润剂涂层的含量(无法给出浸润剂分布以及玻璃纤维与浸润剂间的作用信息) |
SIMS | 硅烷与成膜剂组分鉴别、复合材料的界面相形成、硅烷与成膜剂反应(需要二者中存在特定原子)、硅烷聚合程度 |
MDE | 浸润剂膜的溶胀作用(液态基体树脂渗透到浸润剂薄膜中的扩散系数以及浸润剂在基体树脂中的溶解性)、浸润剂与树脂间相互作用 |
GC/MS | 浸润剂热解产物鉴定 |
TGA | 浸润剂热稳定性、热降解行为(结果可能取决于浸润剂涂层的厚度) |
DSC、DMA | 浸润剂相转变温度及浸润剂、浸润剂对玻璃纤维-树脂界面相形成的影响、成膜剂的模量与热转变等 |
SEM | 浸润剂涂层形貌与涂覆效果 |
AFM | 浸润剂涂层表面形貌和粗糙度、硅烷层分布 (仅局部)、浸润剂与树脂界面相作用 |
EKA | 玻璃纤维表面的zeta电位、等电点、浸润剂组分优先吸附情况、纤维-树脂相互作用、硅烷在玻璃纤维表面的吸附情况 |
CA | 表面能、表面浸润剂涂层均匀性和厚度、润湿性、玻璃纤维表面羟基浓度 |
表1 浸润剂表征技术与所获得的玻璃纤维表面浸润剂信息
浸润剂表征技术 | 获得的浸润剂信息 |
---|---|
FTIR | 浸润剂组成的基本结构、浸润剂组分在玻璃纤维表面的吸附与黏结情况、硅烷层的水解情况、浸润剂的分解情况 |
NIR | 浸润剂中硅烷与成膜剂之间的反应 |
NMR | 鉴别玻璃纤维表面萃取的浸润剂结构与类型 |
GPC、HPLC | 萃取的浸润剂组分的分子量 |
IGC | 硅烷在玻璃纤维表面的吸附与结构、表面能、表面不均匀性(过于灵敏,无法给出浸润剂层的确切信息) |
LOI | 玻璃纤维表面浸润剂涂层的含量(无法给出浸润剂分布以及玻璃纤维与浸润剂间的作用信息) |
SIMS | 硅烷与成膜剂组分鉴别、复合材料的界面相形成、硅烷与成膜剂反应(需要二者中存在特定原子)、硅烷聚合程度 |
MDE | 浸润剂膜的溶胀作用(液态基体树脂渗透到浸润剂薄膜中的扩散系数以及浸润剂在基体树脂中的溶解性)、浸润剂与树脂间相互作用 |
GC/MS | 浸润剂热解产物鉴定 |
TGA | 浸润剂热稳定性、热降解行为(结果可能取决于浸润剂涂层的厚度) |
DSC、DMA | 浸润剂相转变温度及浸润剂、浸润剂对玻璃纤维-树脂界面相形成的影响、成膜剂的模量与热转变等 |
SEM | 浸润剂涂层形貌与涂覆效果 |
AFM | 浸润剂涂层表面形貌和粗糙度、硅烷层分布 (仅局部)、浸润剂与树脂界面相作用 |
EKA | 玻璃纤维表面的zeta电位、等电点、浸润剂组分优先吸附情况、纤维-树脂相互作用、硅烷在玻璃纤维表面的吸附情况 |
CA | 表面能、表面浸润剂涂层均匀性和厚度、润湿性、玻璃纤维表面羟基浓度 |
1 | SANJAY M R, ARPITHA G R, YOGESHA B. Study on mechanical properties of natural-glass fibre reinforced polymer hybrid composites: A review[J]. Materials Today: Proceedings, 2015, 2(4/5): 2959-2967. |
2 | RAFIEE Roham. On the mechanical performance of glass-fibre-reinforced thermosetting-resin pipes: A review[J]. Composite Structures, 2016, 143: 151-164. |
3 | THOMASON J. Glass fibre sizings: A review of the scientific literature[M]. Create Space Independent Publishing Platform, 2012. |
4 | THOMASON J. Glass fibre sizing: A review[J]. Composites Part a: Applied Science and Manufacturing, 2019, 127: 105619. |
5 | 张志坚, 谢孝勋, 章建忠. 浅析浸润剂及成形工艺对玻璃纤维性能的影响[J]. 玻璃纤维, 2011(4): 18-22. |
ZHANG Zhijian, XIE Xiaoxun, ZHANG Jianzhong. Influences of sizing and fiberizing techologies on glass fiber properties[J]. Fiber Glass, 2011(4): 18-22. | |
6 | THOMASON James. A review of the analysis and characterisation of polymeric glass fibre sizings[J]. Polymer Testing, 2020, 85: 106421. |
7 | LI H. Fiberglass science and technology[M]. Berlin: Springer International Publishing, 2021. |
8 | 张耀明. 玻璃纤维与矿物棉全书[M]. 北京: 化学工业出版社, 2001. |
ZHANG Yaoming. Glass fibre and mineral wool encyclopedia[M]. Beijing: Chemical Industry Press, 2001. | |
9 | 祖群, 赵谦. 高性能玻璃纤维[M]. 北京: 国防工业出版社, 2017. |
ZU Qun, ZHAO Qian. High performance glass fiber[M]. Beijing: National Defense Industry Press, 2017. | |
10 | CHEN Ruey Shan, MUHAMMAD Yusri Helmi, AHMAD Sahrim. Physical, mechanical and environmental stress cracking characteristics of epoxy/glass fiber composites: Effect of matrix/fiber modification and fiber loading[J]. Polymer Testing, 2021, 96: 107088. |
11 | XING Dan, XI Xiongyu, QI Minggang, et al. Optimization on the formulation of sizing to enhance the mechanical properties of basalt fiber[J]. The Journal of the Textile Institute, 2021, 112(4): 515-525. |
12 | 章建忠, 许升, 樊家澍, 等. 润滑剂对短切玻璃纤维及其增强PBT性能的影响[J]. 工程塑料应用, 2022, 50(6): 154-158. |
ZHANG Jianzhong, XU Sheng, FAN Jiashu, et al. Study of lubricant on the properties of chopped glass fiber and its reinforced PBT composites[J]. Engineering Plastics Application, 2022, 50(6): 154-158. | |
13 | MISHRA L, KHAN A S, VELO M M A C, et al. Effects of surface treatments of glass fiber-reinforced post on bond strength to root dentine: A systematic review[J]. Materials, 2020, 13(8): E1967. |
14 | GRAF Robert T, KOENIG Jack L, ISHIDA Hatsuo. Characterization of silane-treated glass fibers by diffuse reflectance Fourier transform spectrometry[J]. Analytical Chemistry, 1984, 56(4): 773-778. |
15 | CULLER S R, ISHIDA H, KOENIG J L. The use of infrared methods to study polymer interfaces[J]. Annual Review of Materials Science, 1983, 13: 363-386. |
16 | LI Wenchen, CHU Kuanwu, LIU Lingyun. Multipurpose zwitterionic polymer-coated glass fiber filter for effective separation of oil-water mixtures and emulsions and removal of heavy metals[J]. ACS Applied Polymer Materials, 2021, 3(3): 1276-1284. |
17 | CHIANG Chwan-Hwa, ISHIDA Hatsuo, KOENIG Jack L. The structure of γ-aminopropyltriethoxysilane on glass surfaces[J]. Journal of Colloid and Interface Science, 1980, 74(2): 396-404. |
18 | NAVIROJ S, CULLER S R, KOENIG J L, et al. Structure and adsorption characteristics of silane coupling agents on silica and E-glass fiber; dependence on pH[J]. Journal of Colloid and Interface Science, 1984, 97(2): 308-317. |
19 | BIKIARIS D, MATZINOS P, LARENA A, et al. Use of silane agents and poly(propylene-g-maleic anhydride) copolymer as adhesion promoters in glass fiber/polypropylene composites[J]. Journal of Applied Polymer Science, 2001, 81(3): 701-709. |
20 | SUZUKI Noriyuki, ISHIDA Hatsuo. Effect of the miscibility between a silane and a sizing agent on silanol condensation[J]. Journal of Applied Polymer Science, 2003, 87(4): 589-598. |
21 | KITAGAWA K, HAYASAKI S, OZAKI Y. In situ analysis of sizing agents on fibre reinforcements by near-infrared light-fibre optics spectroscopy[J]. Vibrational Spectroscopy, 1997, 15(1): 43-51. |
22 | TANOGLU M, ZIAEE S, MCKNIGHT S H, et al. Investigation of properties of fiber/matrix interphase formed due to the glass fiber sizings[J]. Journal of Materials Science, 2001, 36(12): 3041-3053. |
23 | STEVIE Fred A, DONLEY Carrie L. Introduction to X-ray photoelectron spectroscopy[J]. Journal of Vacuum Science & Technology A, 2020, 38(6): 063204. |
24 | PINTORI Giovanna, CATTARUZZA Elti. XPS/ESCA on glass surfaces: A useful tool for ancient and modern materials[J]. Optical Materials: X, 2022, 13: 100108. |
25 | DONG Yubing, ZHU Yaofeng, ZHAO Yongzhen, et al. Enhance interfacial properties of glass fiber/epoxy composites with environment-friendly water-based hybrid sizing agent[J]. Composites Part A: Applied Science and Manufacturing, 2017, 102: 357-367. |
26 | LE-HUY Christopher C, BRITCHER Leanne G, MATISONS Janis G. The effect of silane concentration on the adsorption of poly(vinyl acetate-co-maleate) and γ-methacryloxypropyl-trimethoxysilane onto E-glass fibers[J]. Silicon Chemistry, 2002, 1(3): 195-205. |
27 | 王梓帆, 张乾, 陈照峰, 等. 玻璃纤维表面涂层研究进展[J]. 玻璃纤维, 2022(1): 34-44. |
WANG Zifan, ZHANG Qian, CHEN Zhaofeng, et al. Research progress of surface coatings for fiberglass[J]. Fiber Glass, 2022(1): 34-44. | |
28 | 蒋彩, 车辙, 邢飞, 等. 碳纳米管改性连续纤维增强树脂基复合材料层间性能的研究进展[J]. 复合材料学报, 2022, 39(3): 863-883. |
JIANG Cai, CHE Zhe, XING Fei, et al. Research progress on interlaminar property of carbon nanotube-continuous fiber reinforced resin matrix composites[J]. Acta Materiae Compositae Sinica, 2022, 39(3): 863-883. | |
29 | 郭宏伟, 莫祖学, 沈一丁, 等. 玻璃纤维表面纳米改性的研究进展[J]. 陶瓷学报, 2015, 36(6): 569-577. |
GUO Hongwei, MO Zuxue, SHEN Yiding, et al. The research progress on the treatment of glass fiber surface by nanomaterial[J]. Journal of Ceramics, 2015, 36(6): 569-577. | |
30 | REN Junjie, CHEN Long, LIU Zhanqiang, et al. Study on the heat transfer reinforcement of glass fiber/epoxy resin composites by grafting and dispersing graphene oxide[J]. Composites Science and Technology, 2021, 216: 109039. |
31 | PARIZI Mohammad J Ghasemi, SHAHVERDI Hossein, Joan Josep ROA, et al. Improving mechanical properties of glass fiber reinforced polymers through silica-based surface nanoengineering[J]. ACS Applied Polymer Materials, 2020, 2(7): 2667-2675. |
32 | FANG Jianpeng, ZHANG Ling, LI Chunzhong. Largely enhanced transcrystalline formation and properties of polypropylene on the surface of glass fiber as induced by PEI-CNT and PEI-GO modification[J]. Polymer, 2020, 186: 122025. |
33 | HE Yuxin, CHEN Qiuyu, WU Dongyang, et al. Effect of multiscale reinforcement by fiber surface treatment with polyvinyl alcohol/graphene oxide/oxidized carbon nanotubes on the mechanical properties of reinforced hybrid fiber composites[J]. Composites Science and Technology, 2021, 204: 108634. |
34 | HUA Yang, LI Fei, HU Ning, et al. Frictional characteristics of graphene oxide-modified continuous glass fiber reinforced epoxy composite[J]. Composites Science and Technology, 2022, 223: 109446. |
35 | CAO Zhanping, HAO Tingyu, WANG Pan, et al. Surface modified glass fiber membranes with superior chemical and thermal resistance for O/W separation[J]. Chemical Engineering Journal, 2017, 309: 30-40. |
36 | FAGERHOLM H M, LINDSJÖ C, ROSENHOLM J B, et al. Physical characterization of E-glass fibres treated with alkylphenylpoly(oxyethylene) alcohol[J]. Colloids and Surfaces, 1992, 69(2/3): 79-86. |
37 | FAGERHOLM H M, LINDSJÖ C, ROSENHOLM J B. Physical characterization of E-glass fibres treated with alkylphenylpoly(oxyethylene) alcohol—Fibres conditioned in solutions of different pH[J]. Journal of Materials Science, 1995, 30(9): 2420-2424. |
38 | FAGERHOLM Heidi M, ROSENHOLM Jarl B, HORR Thomas J, et al. Modification of industrial E-glass fibres by long-chain alcohol adsorption[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1996, 110(1): 11-22. |
39 | NORSTRÖM A E E, FAGERHOLM H M, ROSENHOLM J B. Surface characterization of silane-treated industrial glass fibers[J]. Journal of Adhesion Science and Technology, 2001, 15(6): 665-679. |
40 | THOMASON J L, DWIGHT D W. The use of XPS for characterisation of glass fibre sizings[M]//Silanes and Other Coupling Agents. Boca Raton: CRC Press, 2020: 127-139. |
41 | THOMASON J L, DWIGHT D W. The use of XPS for characterisation of glass fibre coatings[J]. Composites Part A: Applied Science and Manufacturing, 1999, 30(12): 1401-1413. |
42 | THOMASON J L, DWIGHT D W. XPS analysis of the coverage and composition of coatings on glass fibres[J]. Journal of Adhesion Science and Technology, 2000, 14(5): 745-764. |
43 | LASSAS Ann-Cathrine, FAGERHOLM Lars E, STELOUND Bengt G, et al. Modification of E-glass fiber surfaces with polyacrylic acid polymers from an aqueous solution[J]. Polymer Composites, 1993, 14(1): 1-6. |
44 | LIU Xiaoming, THOMASON James L, JONES Frank R. XPS and AFM study of interaction of organosilane and sizing with E-glass fibre surface[J]. The Journal of Adhesion, 2008, 84(4): 322-338. |
45 | METWALLI E, HAINES D, BECKER O, et al. Surface characterizations of mono-, di-, and tri-aminosilane treated glass substrates[J]. Journal of Colloid and Interface Science, 2006, 298(2): 825-831. |
46 | WANG D, JONES F R, DENISON P. TOF SIMS and XPS study of the interaction of hydrolysed γ-aminopropyltriethoxysilane with E-glass surfaces[J]. Journal of Adhesion Science and Technology, 1992, 6(1): 79-98. |
47 | BAKHAREV Pavel V, HUANG Ming, SAXENA Manav, et al. Chemically induced transformation of chemical vapour deposition grown bilayer graphene into fluorinated single-layer diamond[J]. Nature Nanotechnology, 2020, 15(1): 59-66. |
48 | WANG D, JONES F R, DENISON P. Surface analytical study of the interaction between γ-amino propyl triethoxysilane and E-glass surface[J]. Journal of Materials Science, 1992, 27(1): 36-48. |
49 | LIU X M, JONES F R, THOMASON J L. Differentiation of silane adsorption onto model E-glass surfaces from mixed solutions of amino and glycidyl silanes[M]//Silanes and Other Coupling Agents, VSP International Science Publisher, 2007: 17-28. |
50 | SHALLENBERGER Jeffrey R, METWALLI EzzEldin, PANTANO Carlo G, et al. Adsorption of polyamides and polyamide-silane mixtures at glass surfaces[J]. Surface and Interface Analysis, 2003, 35(8): 667-672. |
51 | Edda RÄDLEIN, FRISCHAT Günther Heinz. Atomic force microscopy as a tool to correlate nanostructure to properties of glasses[J]. Journal of Non-Crystalline Solids, 1997, 222: 69-82. |
52 | TURRIÓN S G, OLMOS D, GONZÁLEZ-BENITO J. Complementary characterization by fluorescence and AFM of polyaminosiloxane glass fibers coatings[J]. Polymer Testing, 2005, 24(3): 301-308. |
53 | ACHARI A EL, GHENAIM A, WOLFF V, et al. Topographic study of glass fibers by atomic force microscopy[J]. Textile Research Journal, 1996, 66(8): 483-490. |
54 | Moutushi DEY, DEITZEL J M, WJr GILLESPIE J, et al. Influence of sizing formulations on glass/epoxy interphase properties[J]. Composites Part A: Applied Science and Manufacturing, 2014, 63: 59-67. |
55 | SCHOLTENS Boudewijn J R, BRACKMAN Josephine C. Influence of the film former on fibre-matrix adhesion and mechanical properties of glass-fibre reinforced thermoplastics[J]. The Journal of Adhesion, 1995, 52(1/2/3/4): 115-129. |
56 | MAI K, MÄDER E, MÜHLE M. Interphase characterization in composites with new non-destructive methods[J]. Composites Part A: Applied Science and Manufacturing, 1998, 29(9/10): 1111-1119. |
57 | GUPTA Prabhat K, INNISS Daryl, KURKJIAN Charles R, et al. Nanoscale roughness of oxide glass surfaces[J]. Journal of Non-Crystalline Solids, 2000, 262(1/2/3): 200-206. |
58 | GAO Shanglin, Edith MÄDER. Characterisation of interphase nanoscale property variations in glass fibre reinforced polypropylene and epoxy resin composites[J]. Composites Part A: Applied Science and Manufacturing, 2002, 33(4): 559-576. |
59 | CHU Zonglin, SEEGER Stefan. Superamphiphobic surfaces[J]. Chemical Society Reviews, 2014, 43(8): 2784-2798. |
60 | ZHONG Qi, SHI Guogui, SUN Qing, et al. Robust PVA-GO-TiO2 composite membrane for efficient separation oil-in-water emulsions with stable high flux[J]. Journal of Membrane Science, 2021, 640: 119836. |
61 | LI Bingfeng, YIN Xingxing, XUE Shuaiya, et al. Facile fabrication of graphene oxide and MOF-based superhydrophobic dual-layer coatings for enhanced corrosion protection on magnesium alloy[J]. Applied Surface Science, 2022, 580: 152305. |
62 | MILLER Bernard, YOUNG Raymond A. Methodology for studying the wettability of filaments[J]. Textile Research Journal, 1975, 45(5): 359-365. |
63 | MILLER Bernard, MURI Pierre, REBENFELD Ludwig. A microbond method for determination of the shear strength of a fiber/resin interface[J]. Composites Science and Technology, 1987, 28(1): 17-32. |
64 | BARRAZA Harry J, Michael J HWA, BLAKLEY Kevin, et al. Wetting behavior of elastomer-modified glass fibers[J]. Langmuir, 2001, 17(17): 5288-5296. |
65 | NISHIOKA G M. Interaction of organosilanes with glass fibers[J]. Journal of Non-Crystalline Solids, 1990, 120(1/2/3): 102-107. |
66 | 侯忠良, 狄剑锋, 齐宏进. 润湿天平法测量纤维接触角的研究[J]. 合成纤维, 2007, 36(3): 34-36, 44. |
HOU Zhongliang, DI Jianfeng, QI Hongjin. Study on contact angles of PP fibers by wetting balance method[J]. Synthetic Fiber in China, 2007, 36(3): 34-36, 44. | |
67 | MÄDER E. Study of fibre surface treatments for control of interphase properties in composites[J]. Composites Science and Technology, 1997, 57(8): 1077-1088. |
68 | LIU Wei, ZHU Yaofeng, QIAN Chen, et al. Interfacial modification between glass fiber and polypropylene using a novel waterborne amphiphilic sizing agent[J]. Composites Part B: Engineering, 2022, 241: 110029. |
69 | ZHU Yaofeng, LIU Wei, DAI Hongbo, et al. Synthesis of a self-assembly amphiphilic sizing agent by RAFT polymerization for improving the interfacial compatibility of short glass fiber-reinforced polypropylene composites[J]. Composites Science and Technology, 2022, 218: 109181. |
70 | PARK Soo Jin, KIM Taek Jin. Studies on surface energetics of glass fabrics in an unsaturated polyester matrix system: effect of sizing treatment on glass fabrics[J]. Journal of Applied Polymer Science, 2001, 80(9): 1439-1445. |
71 | ZHURAVLEV L T. Surface characterization of amorphous silica—A review of work from the former USSR[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1993, 74(1): 71-90. |
72 | ZHURAVLEV L T. Concentration of hydroxyl groups on the surface of amorphous silicas[J]. Langmuir, 1987, 3(3): 316-318. |
73 | ROMANENKO K V, LAPINA O B, SIMONOVA L G, et al. 1H and 29Si-MAS NMR characterization of silicate fiberglass supports[J]. Physical Chemistry Chemical Physics, 2003, 5(12): 2686-2691. |
74 | PANTANO C G, FRY R A, MUELLER K T. Effect of boron oxide on surface hydroxyl coverage of aluminoborosilicate glass fibres: A 19F solid state NMR study[J]. Physics and Chemistry of Glasses, 2003, 44(2): 64-68. |
75 | MITTAL Kash L. Characterization of the interaction between silanes and solid surfaces by the streaming potential method[M]//Silanes and Other Coupling Agents, Boca Raton: CRC Press, 2007: 39-48. |
76 | GHOLAMI Fatemeh, TOMAS Martin, GHOLAMI Zahra, et al. Surface characterization of carbonaceous materials using inverse gas chromatography: A review[J]. Electrochem, 2020, 1(4): 367-387. |
77 | HAMIEH Tayssir, ALI-AHMAD, JRAD Asmaa, et al. Surface thermodynamics and Lewis acid-base properties of metal-organic framework Crystals by Inverse gas chromatography at infinite dilution[J]. Journal of Chromatography A, 2022, 1666: 462849. |
78 | DUTSCHK Victoria, Edith MÄDER, RUDOY Victor. Determination of polarity parameters for glass fibres by inverse gas chromatography: Some results and remarks[J]. Journal of Adhesion Science and Technology, 2001, 15(11): 1373-1389. |
79 | MILLS Ryan H, William T Y TZE, GARDNER Douglas J, et al. Inverse gas chromatography for the determination of the dispersive surface free energy and acid-base interactions of a sheet molding compound. I. Matrix material and glass[J]. Journal of Applied Polymer Science, 2008, 109(6): 3519-3524. |
80 | BRYLKA Bartholomäus, SCHEMMANN Malte, WOOD Jeffrey, et al. DMA based characterization of stiffness reduction in long fiber reinforced polypropylene[J]. Polymer Testing, 2018, 66: 296-302. |
81 | MILLER D G. The use of DMA for characterization of organic coatings on multiple glass fiber strands[J]. American Laboratory, 1982, 14(1): 80. |
82 | MAIER G, BIEHL K H. Thermomechanical measurements of fibre finish[J]. Kunststoffe German Plastics, 1986, 76(3): 282-284. |
83 | ECKSTEIN Yona. Role of silanes in adhesion-Part I. Dynamic mechanical properties of silane coatings on glass fibers[J]. Journal of Adhesion Science and Technology, 1988, 2(1): 339-348. |
84 | CARLIER V, SCLAVONS M, LEGRAS R. Supported dynamic mechanical thermal analysis: An easy, powerful and very sensitive technique to assess thermal properties of polymer, coating and even nanocoating[J]. Polymer, 2001, 42(12): 5327-5335. |
85 | ZINCK P, GERARD J F. On the hybrid character of glass fibres surface networks[J]. Journal of Materials Science, 2005, 40(9): 2759-2760. |
86 | THOMASON J L. Investigation of composite interphase using dynamic mechanical analysis: Artifacts and reality[J]. Polymer Composites, 1990, 11(2): 105-113. |
87 | LARSON B K, DRZAL L T, VAN ANTWERP J. Swelling and dissolution rates of glass fiber sizings in matrix resin via micro-dielectrometry[J]. Polymer Composites, 1995, 16(5): 415-420. |
88 | THOMASON James L, NAGEL Ulf, YANG Liu, et al. A study of the thermal degradation of glass fibre sizings at composite processing temperatures[J]. Composites Part A: Applied Science and Manufacturing, 2019, 121: 56-63. |
89 | JENKINS P, MENDEZ S R, RODRIGUEZ E, et al. Investigation of the strength of thermally conditioned basalt and E-glass fibres[C]//20th International Conference on Composite Materials, Copenhagen, 2015. |
90 | GAO P, WARD Y L, SU K B, et al. Effects of chemical composition and thermal stability of finishes on the compatibility between glass fiber and high melting temperature thermoplastics[J]. Polymer Composites, 2000, 21(2): 312-321. |
91 | RUDZINSKI S, HÄUSSLER L, HARNISCH C, et al. Glass fibre reinforced polyamide composites: Thermal behaviour of sizings[J]. Composites Part A: Applied Science and Manufacturing, 2011, 42(2): 157-164. |
92 | DRUMM Charlene A, ULICNY John C. Analysis of coating on glass fiber reinforcements[J]. Polymer Composites, 1989, 10(1): 44-51. |
93 | GOROWARA R L, KOSIK W E, MCKNIGHT S H, et al. Molecular characterization of glass fiber surface coatings for thermosetting polymer matrix/glass fiber composites[J]. Composites Part A: Applied Science and Manufacturing, 2001, 32(3/4): 323-329. |
94 | GAO Shanglin, Edith MÄDER, ABDKADER Anwar, et al. Sizings on alkali-resistant glass fibers:Environmental effects on mechanical properties[J]. Langmuir, 2003, 19(6): 2496-2506. |
95 | THOMASON J L. The interface region in glass fibre-reinforced epoxy resin composites: 3. Characterization of fibre surface coatings and the interphase[J]. Composites, 1995, 26(7): 487-498. |
96 | WU H F, DWIGHT D W, HUFF N T. Effects of silane coupling agents on the interphase and performance of glass-fiber-reinforced polymer composites[J]. Composites Science and Technology, 1997, 57(8): 975-983. |
97 | FEUILLADE V, BERGERET A, J-C QUANTIN, et al. Characterisation of glass fibres used in automotive industry for SMC body panels[J]. Composites Part A: Applied Science and Manufacturing, 2006, 37(10): 1536-1544. |
98 | FEUILLADE V, BERGERET A, J-C QUANTIN, et al. Relationships between the glass fibre sizing composition and the surface quality of sheet moulding compounds (SMC) body panels[J]. Composites Science and Technology, 2006, 66(1): 115-127. |
99 | GUO Xiaoye, LU Yonggen, SUN Ying, et al. Effect of sizing on interfacial adhesion property of glass fiber-reinforced polyurethane composites[J]. Journal of Reinforced Plastics and Composites, 2018, 37(5): 321-330. |
100 | BLEDZKI A K, LIESER J, WACKER G, et al. Characterization of the surfaces of treated glass fibres with different methods of investigation[J]. Composite Interfaces, 1997, 5(1): 41-53. |
101 | BEAUVAIS Muriel, SERREAU Laurence, HEITZ Caroline, et al. How do silanes affect the lubricating properties of cationic double chain surfactant on silica surfaces?[J]. Journal of Colloid and Interface Science, 2009, 331(1): 178-184. |
102 | WANG Dandan, HARTZ William F, CHRISTENSEN Kirsten E, et al. Surface modification of glass fiber membrane via insertion of a bis(diarylcarbene) assisted with polymerization and cross-linking reactions[J]. Surfaces and Interfaces, 2022, 32: 102155. |
103 | WANG Z T, LUO H J, ZHANG J, et al. Water-soluble polysiloxane sizing for improved heat resistance of basalt fiber[J]. Materials Chemistry and Physics, 2021, 272: 125024. |
104 | ZARRINI Salman, ABRAMS Cameron F. Roles of the coupling agent and surfactant in droplet structure in sizing emulsions: A molecular dynamics simulations study[J]. Langmuir, 2021, 37(33): 10183-10190. |
105 | ZARRINI Salman, ABRAMS Cameron F. Modeling sizing emulsion droplet deposition onto silica using all-atom molecular dynamics simulations[J]. Composites Part B: Engineering, 2022, 235: 109712. |
106 | CHOWDHURY Sanjib C, PROSSER Riley, SIRK Timothy W, et al. Glass fiber-epoxy interactions in the presence of silane: A molecular dynamics study[J]. Applied Surface Science, 2021, 542: 148738. |
107 | YEON Jejoon, CHOWDHURY Sanjib C, GILLESPIE John WJr. Mechanical properties and damage analysis of S-glass: A reactive molecular dynamics study[J]. Composites Part B: Engineering, 2022, 234: 109706. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 胡喜, 王明珊, 李恩智, 黄思鸣, 陈俊臣, 郭秉淑, 于博, 马志远, 李星. 二硫化钨复合材料制备与储钠性能研究进展[J]. 化工进展, 2023, 42(S1): 344-355. |
[3] | 林晓鹏, 肖友华, 管奕琛, 鲁晓东, 宗文杰, 傅深渊. 离子聚合物-金属复合材料(IPMC)柔性电极的研究进展[J]. 化工进展, 2023, 42(9): 4770-4782. |
[4] | 单雪影, 张濛, 张家傅, 李玲玉, 宋艳, 李锦春. 阻燃型环氧树脂的燃烧数值模拟[J]. 化工进展, 2023, 42(7): 3413-3419. |
[5] | 于志庆, 黄文斌, 王晓晗, 邓开鑫, 魏强, 周亚松, 姜鹏. B掺杂Al2O3@C负载CoMo型加氢脱硫催化剂性能[J]. 化工进展, 2023, 42(7): 3550-3560. |
[6] | 杨竞莹, 施万胜, 黄振兴, 谢利娟, 赵明星, 阮文权. 改性纳米零价铁材料制备的研究进展[J]. 化工进展, 2023, 42(6): 2975-2986. |
[7] | 许春树, 姚庆达, 梁永贤, 周华龙. 氧化石墨烯/碳纳米管对几种典型高分子材料的性能影响[J]. 化工进展, 2023, 42(6): 3012-3028. |
[8] | 朱雅静, 徐岩, 简美鹏, 李海燕, 王崇臣. 金属有机框架材料用于海水提铀的研究进展[J]. 化工进展, 2023, 42(6): 3029-3048. |
[9] | 张宁, 吴海滨, 李钰, 李剑锋, 程芳琴. 漂浮型光催化材料的制备及其在水处理领域的应用研究进展[J]. 化工进展, 2023, 42(5): 2475-2485. |
[10] | 陈飞, 刘成宝, 陈丰, 钱君超, 邱永斌, 孟宪荣, 陈志刚. g-C3N4基超级电容器用电极材料的研究进展[J]. 化工进展, 2023, 42(5): 2566-2576. |
[11] | 刘念, 陈葵, 武斌, 纪利俊, 吴艳阳, 韩金玲. 蛋黄-壳介孔磁性炭微球的制备及其对红霉素的高效吸附[J]. 化工进展, 2023, 42(5): 2724-2732. |
[12] | 王嘉, 彭冲, 唐磊, 陆安慧. 渣油加氢催化剂活性相结构调控及对反应性能影响[J]. 化工进展, 2023, 42(4): 1811-1821. |
[13] | 陈仪, 郭耀励, 叶海星, 李宇璇, 牛青山. 二维纳米材料在渗透汽化脱盐膜中的应用[J]. 化工进展, 2023, 42(3): 1437-1447. |
[14] | 薛博, 杨婷婷, 王雪峰. 聚苯胺/碳纳米管气敏材料的研究进展[J]. 化工进展, 2023, 42(3): 1448-1456. |
[15] | 王晓亮, 于振秋, 常雷明, 赵浩男, 宋晓琦, 高靖淞, 张一波, 黄传辉, 刘忆, 杨绍斌. 电沉积法制备氢氧化物/氧化物超级电容器电极的研究进展[J]. 化工进展, 2023, 42(10): 5272-5285. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |