化工进展 ›› 2023, Vol. 42 ›› Issue (12): 6535-6543.DOI: 10.16085/j.issn.1000-6613.2023-0132
• 资源与环境化工 • 上一篇
胡玉瑛1,2(), 王鑫1, 张世豪1, 胡锋平1, 汪楚乔1, 吴静2, 许莉3, 许高平3
收稿日期:
2023-02-03
修回日期:
2023-05-31
出版日期:
2023-12-25
发布日期:
2024-01-08
通讯作者:
胡玉瑛
作者简介:
胡玉瑛(1992—),女,博士,副教授,研究方向为有机废弃物处理处置。E-mail:hu_yuying@foxmail.com。
基金资助:
HU Yuying1,2(), WANG Xin1, ZHANG Shihao1, HU Fengping1, WANG Chuqiao1, WU Jing2, XU Li3, XU Gaoping3
Received:
2023-02-03
Revised:
2023-05-31
Online:
2023-12-25
Published:
2024-01-08
Contact:
HU Yuying
摘要:
厌氧消化是一种可持续的有机废弃物处理处置技术,在降解有机废弃物的同时可以产生可再生能源沼气,是一种环境友好型处理技术。然而,厌氧消化系统内基质具有复杂的流变特性,其黏度高、流动性差,阻碍了反应的顺利进行。因此,研究厌氧消化的流场特性有助于了解厌氧消化系统内部流态,强化运行效果与过程稳定性。本文分析了厌氧消化基质的特性与适用的流变模型,总结了计算流体力学(CFD)数值模拟过程中的模型选取以及粒子图像测速法(PIV)和正电子发射粒子跟踪(PEPT)技术的应用现状。获得可靠的流场可视化结果,需要在考量厌氧消化基质剪切稀化特性的同时关注黏弹性、触变性等其他流变特性。在今后的研究中,应综合运用多种流场可视化技术对厌氧消化水力学特性进行优化。
中图分类号:
胡玉瑛, 王鑫, 张世豪, 胡锋平, 汪楚乔, 吴静, 许莉, 许高平. 厌氧消化流场可视化技术研究进展[J]. 化工进展, 2023, 42(12): 6535-6543.
HU Yuying, WANG Xin, ZHANG Shihao, HU Fengping, WANG Chuqiao, WU Jing, XU Li, XU Gaoping. Research progress on the visualization of flow field of anaerobic digestion[J]. Chemical Industry and Engineering Progress, 2023, 42(12): 6535-6543.
流变模型 | 基质 | 温度/℃ | 含固率/% | 流变参数 | 参考文献 | |||
---|---|---|---|---|---|---|---|---|
K/Pa·s n | n | |||||||
Power law | 猪粪 | 35 | 20.02 | 4.80235 | 0.39060 | — | — | [ |
猪粪 | 17~24 | 20 | 41.1 | 0.34 | — | — | [ | |
15 | 3.4 | 0.42 | — | — | [ | |||
10 | 1.0 | 0.55 | — | — | [ | |||
猪粪 | 17~24 | 15 | 2.4 | 0.38 | — | — | [ | |
20 | 56.8 | 0.35 | — | — | [ | |||
奶牛粪便 | 17~24 | 15 | 22.9 | 0.41 | — | — | [ | |
10 | 2.6 | 0.42 | — | — | [ | |||
奶牛粪便 | 35 | 12.1 | 5.885 | 0.367 | — | — | [ | |
17~24 | 15 | 31.3 | 0.3 | — | — | [ | ||
家禽粪便 | 17~24 | 20 | 0.9 | 0.43 | — | — | [ | |
15 | 1.7 | 0.41 | — | — | [ | |||
10 | 1.2 | 0.37 | — | — | [ | |||
家禽粪便 | 17~24 | 15 | 2.4 | 0.38 | — | — | [ | |
20 | 35.4 | 0.29 | — | — | [ | |||
H-B | 猪粪 | 35 | 20.02 | 4.68951 | 0.39362 | 0.28068 | — | [ |
污泥 | 25 | 4 | 3.6251 | 0.2722 | 1.0059 | — | [ | |
污泥 | — | 0.85 | 6.8873 | 1.3602 | 0.1722 | — | [ | |
Bingham | 猪粪 | 35 | 20.02 | — | — | 22.12129 | 0.06662 | [ |
污泥 | 25 | 4 | — | — | 11.0712 | 0.0022 | [ | |
污泥 | — | 0.85 | — | — | -0.5705 | 0.0085 | [ | |
污泥 | 20 | 6.01 | — | — | 62.9400 | 0.1635 | [ | |
污泥 | 20 | 4.48 | — | — | 28.2200 | 0.0662 | [ |
表1 不同流变模型在厌氧消化基质中的应用
流变模型 | 基质 | 温度/℃ | 含固率/% | 流变参数 | 参考文献 | |||
---|---|---|---|---|---|---|---|---|
K/Pa·s n | n | |||||||
Power law | 猪粪 | 35 | 20.02 | 4.80235 | 0.39060 | — | — | [ |
猪粪 | 17~24 | 20 | 41.1 | 0.34 | — | — | [ | |
15 | 3.4 | 0.42 | — | — | [ | |||
10 | 1.0 | 0.55 | — | — | [ | |||
猪粪 | 17~24 | 15 | 2.4 | 0.38 | — | — | [ | |
20 | 56.8 | 0.35 | — | — | [ | |||
奶牛粪便 | 17~24 | 15 | 22.9 | 0.41 | — | — | [ | |
10 | 2.6 | 0.42 | — | — | [ | |||
奶牛粪便 | 35 | 12.1 | 5.885 | 0.367 | — | — | [ | |
17~24 | 15 | 31.3 | 0.3 | — | — | [ | ||
家禽粪便 | 17~24 | 20 | 0.9 | 0.43 | — | — | [ | |
15 | 1.7 | 0.41 | — | — | [ | |||
10 | 1.2 | 0.37 | — | — | [ | |||
家禽粪便 | 17~24 | 15 | 2.4 | 0.38 | — | — | [ | |
20 | 35.4 | 0.29 | — | — | [ | |||
H-B | 猪粪 | 35 | 20.02 | 4.68951 | 0.39362 | 0.28068 | — | [ |
污泥 | 25 | 4 | 3.6251 | 0.2722 | 1.0059 | — | [ | |
污泥 | — | 0.85 | 6.8873 | 1.3602 | 0.1722 | — | [ | |
Bingham | 猪粪 | 35 | 20.02 | — | — | 22.12129 | 0.06662 | [ |
污泥 | 25 | 4 | — | — | 11.0712 | 0.0022 | [ | |
污泥 | — | 0.85 | — | — | -0.5705 | 0.0085 | [ | |
污泥 | 20 | 6.01 | — | — | 62.9400 | 0.1635 | [ | |
污泥 | 20 | 4.48 | — | — | 28.2200 | 0.0662 | [ |
多相流模型 | 研究内容 | 流变模型 | 湍流模型 | 表征物理量 | 主要发现 | 参考文献 |
---|---|---|---|---|---|---|
单相流 | 开发考虑流变特性的CFD模型、研究底物均质化时间 | Power-Law | — | 均匀度指数 | 定义了新的用来确定底物完全混合时间的参数——均匀度指数 | [ |
基于CFD评价污泥厌氧消化反应器搅拌性能 | Power-Law | Standard k- | 流场、剪切速率、 流量准数 | 反应器内靠近底部、顶部和壁面区域以及搅拌轴附近容易形成死区 | [ | |
基于CFD研究活性炭投加的混合模式 | — | — | 流场 | 确定了120s/h的间歇式混合方式 | [ | |
分析比较消化器的泵送方式、反应器形状 | Power-Law | realizable k-ɛ | 流场、死区 | 研究表明机械导流管混合比外部泵循环更有效,并且蛋形消化器比圆柱形混合更有效 | [ | |
液固两相流 | 优化污泥厌氧消化搅拌条件 | — | RNG k- | 速度场、固相浓度场 | 通过功率和能耗分析确定了180r/min是该反应器的最佳混合转速 | [ |
气液两相流 | 研究厌氧单消化和共消化的混合模式和能耗 | Power-Law | Standard k- | 流场、功率准数 | 共消化比单一消化有更低的能耗和更高的净能量产出 | [ |
研究污泥流变特性对厌氧消化反应器性能的影响 | H-B | — | 流场、剪切速率 | H-B模型可以用于模拟非牛顿流体污泥,在高剪切速率下考虑使用Bingham模型 | [ | |
分析不同多相流模型、相间作用力对液相速度的影响 | Power-Law | k- RNG k- realizable k-ɛ | 速度场 | 欧拉双流体模型模拟的液相速度更接近于实际,相间作用力考虑升力和曳力组合时,模拟结果更可信 | [ | |
研究剪切力和叶轮设计对沼气产量的影响 | Power-Law | — | 速度场、混合时间 | 相比于传统涡轮状叶轮,使用双螺带状叶轮可以提高50%的甲烷产率 | [ | |
三相流 | 定量评估工业规模下沼气混合厌氧反应器的混合质量 | Power-LawH-B | — | 死区、均匀度指数 | 首次提出浓度区间相对比例来定量评估混合质量 | [ |
表2 CFD在厌氧消化系统中流场可视化的应用
多相流模型 | 研究内容 | 流变模型 | 湍流模型 | 表征物理量 | 主要发现 | 参考文献 |
---|---|---|---|---|---|---|
单相流 | 开发考虑流变特性的CFD模型、研究底物均质化时间 | Power-Law | — | 均匀度指数 | 定义了新的用来确定底物完全混合时间的参数——均匀度指数 | [ |
基于CFD评价污泥厌氧消化反应器搅拌性能 | Power-Law | Standard k- | 流场、剪切速率、 流量准数 | 反应器内靠近底部、顶部和壁面区域以及搅拌轴附近容易形成死区 | [ | |
基于CFD研究活性炭投加的混合模式 | — | — | 流场 | 确定了120s/h的间歇式混合方式 | [ | |
分析比较消化器的泵送方式、反应器形状 | Power-Law | realizable k-ɛ | 流场、死区 | 研究表明机械导流管混合比外部泵循环更有效,并且蛋形消化器比圆柱形混合更有效 | [ | |
液固两相流 | 优化污泥厌氧消化搅拌条件 | — | RNG k- | 速度场、固相浓度场 | 通过功率和能耗分析确定了180r/min是该反应器的最佳混合转速 | [ |
气液两相流 | 研究厌氧单消化和共消化的混合模式和能耗 | Power-Law | Standard k- | 流场、功率准数 | 共消化比单一消化有更低的能耗和更高的净能量产出 | [ |
研究污泥流变特性对厌氧消化反应器性能的影响 | H-B | — | 流场、剪切速率 | H-B模型可以用于模拟非牛顿流体污泥,在高剪切速率下考虑使用Bingham模型 | [ | |
分析不同多相流模型、相间作用力对液相速度的影响 | Power-Law | k- RNG k- realizable k-ɛ | 速度场 | 欧拉双流体模型模拟的液相速度更接近于实际,相间作用力考虑升力和曳力组合时,模拟结果更可信 | [ | |
研究剪切力和叶轮设计对沼气产量的影响 | Power-Law | — | 速度场、混合时间 | 相比于传统涡轮状叶轮,使用双螺带状叶轮可以提高50%的甲烷产率 | [ | |
三相流 | 定量评估工业规模下沼气混合厌氧反应器的混合质量 | Power-LawH-B | — | 死区、均匀度指数 | 首次提出浓度区间相对比例来定量评估混合质量 | [ |
16 | FENG Xianfeng, TANG Bing, Liying BIN, et al. Rheological behavior of the sludge in a long-running anaerobic digestor: Essential factors to optimize the operation[J]. Biochemical Engineering Journal, 2016, 114: 147-154. |
17 | JIANG Jiankai, WU Jing, PONCIN Souhila, et al. Rheological characteristics of highly concentrated anaerobic digested sludge[J]. Biochemical Engineering Journal, 2014, 86: 57-61. |
18 | LIU Gangjin, LIU Yi, WANG Zhiyong, et al. The effects of temperature, organic matter and time-dependency on rheological properties of dry anaerobic digested swine manure[J]. Waste Management, 2015, 38: 449-454. |
19 | 董登志, 张静思, 吴志根, 等. 高含固污泥临界剪切应力影响因素的研究[J]. 西安交通大学学报, 2017, 51(11): 57-62. |
DONG Dengzhi, ZHANG Jingsi, WU Zhigen, et al. Effect of high-solid sewage sludge on critical shear stress[J]. Journal of Xi’an Jiaotong University, 2017, 51(11): 57-62. | |
20 | 张严之, 王卉, 张翼, 等. 高含固污泥中影响因素对流变特性的影响[J]. 环境工程学报, 2016, 10(12): 7255-7259. |
ZHANG Yanzhi, WANG Hui, ZHANG Yi, et al. Effects of influence factors of high-solids sludge on rheological characteristics[J]. Chinese Journal of Environmental Engineering, 2016, 10(12): 7255-7259. | |
21 | WEI P, UIJTTEWAAL W, VAN LIER J B, et al. Impacts of shearing and temperature on sewage sludge: Rheological characterisation and integration to flow assessment[J]. Science of the Total Environment, 2021, 774: 145005. |
22 | 曹秀芹, 尹伟齐, 赵振东. 不同含水率下污泥流变模型的显著性水平分析[J]. 北京工业大学学报, 2017, 43(1): 150-157. |
CAO Xiuqin, YIN Weiqi, ZHAO Zhendong. Analysis of the significant level of sludge rheological models with different moisture contents[J]. Journal of Beijing University of Technology, 2017, 43(1): 150-157. | |
23 | 曹秀芹, 王鑫, 蒋竹荷, 等. 高含固污泥在热水解-厌氧消化工艺中的流变特性分析[J]. 环境工程学报, 2017, 11(4): 2493-2498. |
CAO Xiuqin, WANG Xin, JIANG Zhuhe, et al. Analysis on rheological characterization of high solid sludge in process of thermal hydrolysis-anaerobic digestion[J]. Chinese Journal of Environmental Engineering, 2017, 11(4): 2493-2498. | |
24 | BAUDEZ J C, MARKIS F, ESHTIAGHI N, et al. The rheological behaviour of anaerobic digested sludge[J]. Water Research, 2011, 45(17): 5675-5680. |
25 | LANDRY H, LAGUË C, ROBERGE M. Physical and rheological properties of manure products[J]. Applied Engineering in Agriculture, 2004, 20(3): 277-288. |
26 | WU Binxin. Advances in the use of CFD to characterize, design and optimize bioenergy systems[J]. Computers and Electronics in Agriculture, 2013, 93: 195-208. |
27 | 曹秀芹, 赵振东, 杨平, 等. 基于污泥流变特性对厌氧消化反应器的模拟研究[J]. 给水排水, 2016, 52(7): 36-41. |
CAO Xiuqin, ZHAO Zhendong, YANG Ping, et al. Simulation study on anaerobic digestion reactor based on rheological characteristics of sludge[J]. Water & Wastewater Engineering, 2016, 52(7): 36-41. | |
28 | CRESPÍ-LLORENS D, VICENTE P, VIEDMA A. Flow pattern of non-Newtonian fluids in reciprocating scraped surface heat exchangers[J]. Experimental Thermal and Fluid Science, 2016, 76: 306-323. |
29 | WU B, BIBEAU E L. Development of 3-D anaerobic digester heat transfer model for cold weather applications[J]. Transactions of the ASABE, 2006, 49(3): 749-757. |
30 | DAPELO Davide, BRIDGEMAN John. Assessment of mixing quality in full-scale, biogas-mixed anaerobic digestion using CFD[J]. Bioresource Technology, 2018, 265: 480-489. |
31 | TERASHIMA Mitsuharu, GOEL Rajeev, KOMATSU Kazuya, et al. CFD simulation of mixing in anaerobic digesters[J]. Bioresource Technology, 2009, 100(7): 2228-2233. |
32 | 曹秀芹, 赵振东, 杨平, 等. 污泥厌氧消化反应器搅拌性能的CFD模拟[J]. 给水排水, 2016, 52(3): 137-141. |
CAO Xiuqin, ZHAO Zhendong, YANG Ping, et al. CFD simulation of stirring performance of sludge anaerobic digestion reactor[J]. Water & Wastewater Engineering, 2016, 52(3): 137-141. | |
33 | ZHANG Jingxin, QI Qiuxian, MAO Liwei, et al. Mixing strategies—Activated carbon nexus: Rapid start-up of thermophilic anaerobic digestion with the mesophilic anaerobic sludge as inoculum[J]. Bioresource Technology, 2020, 310: 123401. |
34 | WU Binxin. CFD simulation of mixing in egg-shaped anaerobic digesters[J]. Water Research, 2010, 44(5): 1507-1519. |
35 | 曹秀芹, 杜金海, 李彩斌, 等. 污泥厌氧消化搅拌条件的优化分析[J]. 环境科学与技术, 2015, 38(1): 100-105. |
CAO Xiuqin, DU Jinhai, LI Caibin, et al. Optimal analysis on the mixing condition of sludge in the process of anaerobic digestion[J]. Environmental Science & Technology, 2015, 38(1): 100-105. | |
36 | CRAIG K J, NIEUWOUDT M N, NIEMAND L J. CFD simulation of anaerobic digester with variable sewage sludge rheology[J]. Water Research, 2013, 47(13): 4485-4497. |
37 | 王乐, 樊敏, 詹翔宇, 等. 气体搅拌下厌氧消化反应器CFD数值模拟及模型研究[J]. 农业机械学报, 2018, 49(2): 305-312. |
WANG Le, FAN Min, ZHAN Xiangyu, et al. Numerical simulation and models of gas-stirred anaerobic digester by CFD[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(2): 305-312. | |
38 | CUI Minhua, ZHENG Zhiyong, YANG Meng, et al. Revealing hydrodynamics and energy efficiency of mixing for high-solid anaerobic digestion of waste activated sludge[J]. Waste Management, 2021, 121: 1-10. |
39 | YU Liang, MA Jingwei, FREAR Craig, et al. Multiphase modeling of settling and suspension in anaerobic digester[J]. Applied Energy, 2013, 111: 28-39. |
40 | KARIM K, THOMA G J, AL-DAHHAN M H. Gas-lift digester configuration effects on mixing effectiveness[J]. Water Research, 2007, 41(14): 3051-3060. |
41 | 宋金礼, 陈贵军, 王娟. 发酵罐内固液两相流的数值模拟[J]. 节能, 2015, 34(5): 22-25. |
SONG Jinli, CHEN Guijun, WANG Juan. Numerical simulation of solid-liquid two-phase flow in fermentation tank[J]. Energy Conservation, 2015, 34(5): 22-25. | |
42 | 曹秀芹, 江坤, 尹伟齐, 等. 基于两相流模型污泥消化反应器内流场分析[J]. 环境科学与技术, 2018, 41(5): 120-125. |
1 | 孟晓山, 汤子健, 陈琳, 等. 厌氧消化系统酸化预警及调控技术研究进展[J]. 化工进展, 2023, 42(3): 1595-1605. |
MENG Xiaoshan, TANG Zijian, CHEN Lin, et al. Research progress of the early warning and regulation techniques for excessive acidification in the anaerobic digestion system[J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1595-1605. | |
2 | LEONZIO Grazia. Study of mixing systems and geometric configurations for anaerobic digesters using CFD analysis[J]. Renewable Energy, 2018, 123: 578-589. |
3 | ZHANG Yuan, YU Guangren, YU Liang, et al. Computational fluid dynamics study on mixing mode and power consumption in anaerobic mono- and co-digestion[J]. Bioresource Technology, 2016, 203: 166-172. |
4 | LEBRANCHU Aline, DELAUNAY Stéphane, MARCHAL Philippe, et al. Impact of shear stress and impeller design on the production of biogas in anaerobic digesters[J]. Bioresource Technology, 2017, 245: 1139-1147. |
5 | 曹秀芹, 柴莲莲, 徐国庆, 等. 基于猪粪流变特性的厌氧消化反应器内的数值模拟[J]. 环境工程学报, 2020, 14(2): 498-505. |
CAO Xiuqin, CHAI Lianlian, XU Guoqing, et al. Numerical simulation in anaerobic digestion reactor based on rheological properties of pig manure[J]. Chinese Journal of Environmental Engineering, 2020, 14(2): 498-505. | |
6 | HURTADO F J, KAISER A S, ZAMORA B. Fluid dynamic analysis of a continuous stirred tank reactor for technical optimization of wastewater digestion[J]. Water Research, 2015, 71: 282-293. |
7 | HOFFMANN A C, SKORPEN Å, CHANG Y. Positron emission particle tracking and CFD investigation of hydrocyclones acting on liquids of varying viscosity[J]. Chemical Engineering Science, 2019, 200: 310-319. |
8 | LUO H, AL-DAHHAN M H. Verification and validation of CFD simulations for local flow dynamics in a draft tube airlift bioreactor[J]. Chemical Engineering Science, 2011, 66(5): 907-923. |
9 | 房洪芹. 双层斜叶组合桨搅拌槽内流体流场的数值模拟及PIV试验研究[D]. 镇江: 江苏大学, 2020. |
FANG Hongqin. Numerical simulation and PIV experimental study of fluid flow field in a stirred tank with double-layer inclined blade combined impellers[D]. Zhenjiang: Jiangsu University, 2020. | |
42 | CAO Xiuqin, JIANG Kun, YIN Weiqi, et al. Analysis of flow field in sludge digestion reactor based on two phase flow model[J]. Environmental Science & Technology, 2018, 41(5): 120-125. |
43 | WANG Xu, DING Jie, GUO Wanqian, et al. Scale-up and optimization of biohydrogen production reactor from laboratory-scale to industrial-scale on the basis of computational fluid dynamics simulation[J]. International Journal of Hydrogen Energy, 2010, 35(20): 10960-10966. |
44 | WEI P, MUDDE R F, UIJTTEWAAL W, et al. Characterising the two-phase flow and mixing performance in a gas-mixed anaerobic digester: Importance for scaled-up applications[J]. Water Research, 2019, 149: 86-97. |
45 | D’ BASTIANI C, ALBA J L, MAZZAROTTO G T, et al. Three-phase hydrodynamic simulation and experimental validation of an upflow anaerobic sludge blanket reactor[J]. Computers & Mathematics With Applications, 2021, 83: 95-110. |
46 | HAO Feilin, SHEN Mingwei. Development, simulation, and laboratory test of novel gas-solid-liquid separator for UASB/EGSB reactor of wastewater treatment[J]. Journal of Environmental Chemical Engineering, 2021, 9(3): 105217. |
47 | Jorge RAMÍREZ-MUÑOZ, Román GUADARRAMA-PÉREZ, Alejandro ALVARADO-LASSMAN, et al. CFD study of the hydrodynamics and biofilm growth effect of an anaerobic inverse fluidized bed reactor operating in the laminar regime[J]. Journal of Environmental Chemical Engineering, 2021, 9(1): 104674. |
48 | WANG Xu, DING Jie, GUO Wanqian, et al. A hydrodynamics-reaction kinetics coupled model for evaluating bioreactors derived from CFD simulation[J]. Bioresource Technology, 2010, 101(24): 9749-9757. |
49 | ZHANG J B, PONCIN S, WU J, et al. A multiscale approach for studying an anaerobic multiphase bioreactor[J]. Chemical Engineering Science, 2011, 66(14): 3423-3431. |
50 | WU J, ZHANG J B, JIANG Y, et al. Impacts of hydrodynamic conditions on sludge digestion in internal circulation anaerobic digester[J]. Process Biochemistry, 2012, 47(11): 1627-1632. |
51 | JIANG Jiankai, WU Jing, ZHANG Jinbai, et al. Multiscale hydrodynamic investigation to intensify the biogas production in upflow anaerobic reactors[J]. Bioresource Technology, 2014, 155: 1-7. |
52 | ALBERINI F, LIU L, STITT E H, et al. Comparison between 3-D-PTV and 2-D-PIV for determination of hydrodynamics of complex fluids in a stirred vessel[J]. Chemical Engineering Science, 2017, 171: 189-203. |
53 | GUNTZBURGER Yoann, FONTAINE André, FRADETTE Louis, et al. An experimental method to evaluate global pumping in a mixing system: Application to the MaxblendTM for Newtonian and non-Newtonian fluids[J]. Chemical Engineering Journal, 2013, 214: 394-406. |
10 | WU Binxin. CFD simulation of mixing for high-solids anaerobic digestion[J]. Biotechnology and Bioengineering, 2012, 109(8): 2116-2126. |
11 | HU Yuying, WU Jing, PONCIN Souhila, et al. Flow field investigation of high solid anaerobic digestion by particle image velocimetry (PIV)[J]. Science of the Total Environment, 2018, 626: 592-602. |
12 | 王彦祥, 何琴, 李蕾, 等. 餐厨垃圾中温干式厌氧消化污泥的流变特性研究[J]. 环境科学学报, 2014, 34(12): 3171-3178. |
WANG Yanxiang, HE Qin, LI Lei, et al. Rheological characteristic analysis of dry anaerobic digestion sludge of food waste under mesophilic conditions[J]. Acta Scientiae Circumstantiae, 2014, 34(12): 3171-3178. | |
13 | 牛耕芜, 倪哲. 鸡粪接种污泥联合厌氧发酵过程中的流变特性研究[J]. 沈阳农业大学学报, 2020, 51(2): 245-249. |
NIU Gengwu, NI Zhe. Rheological study on anaerobic co-digestion of chicken manure and sludges[J]. Journal of Shenyang Agricultural University, 2020, 51(2): 245-249. | |
14 | TIAN Libin, SHEN Fei, YUAN Hairong, et al. Reducing agitation energy-consumption by improving rheological properties of corn stover substrate in anaerobic digestion[J]. Bioresource Technology, 2014, 168: 86-91. |
15 | 刘青青, 曹秀芹, 王鑫, 等. 总固体和温度对污泥流变特性的影响[J]. 科学技术与工程, 2018, 18(3): 379-384. |
LIU Qingqing, CAO Xiuqin, WANG Xin, et al. Effect of TS and temperature on rheological properties of sludge[J]. Science Technology and Engineering, 2018, 18(3): 379-384. | |
54 | KHATIBI M, TIME R W, RABENJAFIMANANTSOA H A. Particles falling through viscoelastic non-Newtonian flows in a horizontal rectangular channel analyzed with PIV and PTV techniques[J]. Journal of Non-Newtonian Fluid Mechanics, 2016, 235: 143-153. |
55 | 曹秀芹, 袁海光, 赵振东, 等. 黄原胶溶液模拟消化污泥流动性能分析[J]. 农业工程学报, 2017, 33(15): 260-265. |
CAO Xiuqin, YUAN Haiguang, ZHAO Zhendong, et al. Analysis on xanthan gum solution to simulate flow performance of digestion sludge[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(15): 260-265. | |
56 | SINDALL Rebecca C, DAPELO Davide, LEADBEATER Tom, et al. Positron emission particle tracking (PEPT): A novel approach to flow visualisation in lab-scale anaerobic digesters[J]. Flow Measurement and Instrumentation, 2017, 54: 250-264. |
57 | PARKER D J, BROADBENT C J, FOWLES P, et al. Positron emission particle tracking—A technique for studying flow within engineering equipment[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1993, 326(3): 592-607. |
58 | Mark AL-SHEMMERI, Kit WINDOWS-YULE, Estefania LOPEZ-QUIROGA, et al. Coffee bean particle motion in a spouted bed measured using positron emission particle tracking (PEPT)[J]. Journal of Food Engineering, 2021, 311: 110709. |
59 | DAPELO D, TRUNK R, KRAUSE M J, et al. Towards Lattice-Boltzmann modelling of unconfined gas mixing in anaerobic digestion[J]. Computers & Fluids, 2019, 180: 11-21. |
[1] | 王云飞, 秦蕊, 郑利军, 李焱, 李清平. 旋转填充床CFD模拟研究进展[J]. 化工进展, 2023, 42(S1): 1-9. |
[2] | 黄益平, 李婷, 郑龙云, 戚傲, 陈政霖, 史天昊, 张新宇, 郭凯, 胡猛, 倪泽雨, 刘辉, 夏苗, 主凯, 刘春江. 三级环流反应器中气液流动与传质规律[J]. 化工进展, 2023, 42(S1): 175-188. |
[3] | 孙继鹏, 韩靖, 唐杨超, 闫汉博, 张杰瑶, 肖苹, 吴峰. 硫黄湿法成型过程数值模拟与操作参数优化[J]. 化工进展, 2023, 42(S1): 189-196. |
[4] | 罗成, 范晓勇, 朱永红, 田丰, 崔楼伟, 杜崇鹏, 王飞利, 李冬, 郑化安. 中低温煤焦油加氢反应器不同分配器中液体分布的CFD模拟[J]. 化工进展, 2023, 42(9): 4538-4549. |
[5] | 奚永兰, 王成成, 叶小梅, 刘洋, 贾昭炎, 曹春晖, 韩挺, 张应鹏, 田雨. 微纳米气泡在厌氧消化中的应用研究进展[J]. 化工进展, 2023, 42(8): 4414-4423. |
[6] | 卜治丞, 焦波, 林海花, 孙洪源. 脉动热管计算流体力学模型与研究进展[J]. 化工进展, 2023, 42(8): 4167-4181. |
[7] | 庄捷, 薛锦辉, 赵斌成, 张文艺. 猪粪厌氧消化进程中重金属与腐殖质的有机结合机制[J]. 化工进展, 2023, 42(6): 3281-3291. |
[8] | 张成松, 张静, 龚斌, 李明洋, 袁佳新, 李宏业. 自吸射流柔性搅拌桨振动特性[J]. 化工进展, 2023, 42(4): 1728-1738. |
[9] | 孟晓山, 汤子健, 陈琳, 呼和涛力, 周政忠. 厌氧消化系统酸化预警及调控技术研究进展[J]. 化工进展, 2023, 42(3): 1595-1605. |
[10] | 闫兴清, 戴行涛, 喻健良, 李岳, 韩冰, 胡军. 高压氢气泄漏射流研究进展[J]. 化工进展, 2023, 42(3): 1118-1128. |
[11] | 祝佳欣, 朱雯喆, 徐俊, 谢靖, 王文标, 谢丽. 基于导电材料强化抗生素胁迫厌氧消化的研究进展[J]. 化工进展, 2023, 42(2): 1008-1019. |
[12] | 禹言芳, 李毓, 孟辉波, 刘桓辰. Lightnin静态混合器内气液两相混合与传质强化特性[J]. 化工进展, 2023, 42(12): 6180-6190. |
[13] | 邱沫凡, 蒋琳, 刘荣正, 刘兵, 唐亚平, 刘马林. 气固流化床化学反应数值模拟中颗粒尺度模型研究进展[J]. 化工进展, 2023, 42(10): 5047-5058. |
[14] | 杨锋苓, 梁国林, 张翠勋, 王贵超. 疏水Rushton搅拌桨的减阻性能[J]. 化工进展, 2022, 41(9): 4682-4690. |
[15] | 彭德其, 冯源, 王依然, 谭卓伟, 俞天兰, 吴淑英. 立式缩放管内液固颗粒群浓度分布与汇聚特性[J]. 化工进展, 2022, 41(9): 4662-4672. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |