化工进展 ›› 2023, Vol. 42 ›› Issue (12): 6518-6534.DOI: 10.16085/j.issn.1000-6613.2023-0130
• 资源与环境化工 • 上一篇
许春树1,2(), 姚庆达2,3, 梁永贤2, 周华龙2,4()
收稿日期:
2023-02-02
修回日期:
2023-03-14
出版日期:
2023-12-25
发布日期:
2024-01-08
通讯作者:
周华龙
作者简介:
许春树(1981—),男,高级工程师,研究方向为鞋用材料的功能设计及检测分析。E-mail:echose@126.com。
基金资助:
XU Chunshu1,2(), YAO Qingda2,3, LIANG Yongxian2, ZHOU Hualong2,4()
Received:
2023-02-02
Revised:
2023-03-14
Online:
2023-12-25
Published:
2024-01-08
Contact:
ZHOU Hualong
摘要:
金属-有机框架材料(MOFs)相较于传统吸附材料具有较大的比表面积、可调的孔隙和拓扑结构、丰富的活性官能团等优点,可作为高性能吸附剂去除水体中的重金属污染物。本文介绍了MOFs作为水处理吸附的结构特性,重点分析了基于金属节点掺杂、侧基功能化和合成后修饰的多孔性、表面活性、框架柔性、水稳定性、可扩展性、生物毒性和循环使用性MOFs的调控策略,而后介绍了MOFs在去除重金属离子方面的研究进展,详细介绍了MOFs对水中Pb(Ⅱ)、Hg(Ⅱ)等阳离子型重金属离子和Cr(Ⅵ)、As(Ⅲ)/As(Ⅴ)等阴离子型含氧离子的吸附性能,并阐述MOFs去除水中重金属离子的作用机理。最后,提出了提升MOFs的水稳定性与吸附性能、平衡MOFs结构特性的关系、研究MOFs在自然界的迁移与富集以及MOFs的低成本高效益的可控性制备等研究方向,以期对MOFs在高性能吸附领域提供参考。
中图分类号:
许春树, 姚庆达, 梁永贤, 周华龙. 金属-有机框架材料的调控策略及其对典型重金属离子的吸附性能[J]. 化工进展, 2023, 42(12): 6518-6534.
XU Chunshu, YAO Qingda, LIANG Yongxian, ZHOU Hualong. Modulation strategies of metal-organic framework materials and its adsorption performance on typical heavy metal ions[J]. Chemical Industry and Engineering Progress, 2023, 42(12): 6518-6534.
毒性等级 | 体外 | 体内 | 参考文献 |
---|---|---|---|
‒ | MOF-74(Mg)、MOF-74(Co)、UiO-66、UiO-67 | MOF-74(Mg) | [ |
+ | MIL-100(Fe) | MOF-74(Co)、UiO-66、UiO-67 | [ |
++ | MIL-101(Fe)、ZIF-7、ZIF-8、MIL-88A、MIL-88B | MIL-100(Fe)、ZIF-7 | [ |
+++ | ZIF-67、NOTT-100、Hf-TPCC、MIL-125(Fe) | ZIF-8、MIL-101(Fe)、MIL-88A、MIL-88B、Hf-TPCC、MIL-125(Fe) | [ |
++++ | HKUST-1、Cu-TPCC | HKUST-1、NOTT-100、Cu-TPCC、ZIF-67 | [ |
表1 部分典型MOFs的生物毒性总结
毒性等级 | 体外 | 体内 | 参考文献 |
---|---|---|---|
‒ | MOF-74(Mg)、MOF-74(Co)、UiO-66、UiO-67 | MOF-74(Mg) | [ |
+ | MIL-100(Fe) | MOF-74(Co)、UiO-66、UiO-67 | [ |
++ | MIL-101(Fe)、ZIF-7、ZIF-8、MIL-88A、MIL-88B | MIL-100(Fe)、ZIF-7 | [ |
+++ | ZIF-67、NOTT-100、Hf-TPCC、MIL-125(Fe) | ZIF-8、MIL-101(Fe)、MIL-88A、MIL-88B、Hf-TPCC、MIL-125(Fe) | [ |
++++ | HKUST-1、Cu-TPCC | HKUST-1、NOTT-100、Cu-TPCC、ZIF-67 | [ |
MOFs | 比表面积/m2·g-1 | 重金属离子类型 | 吸附pH | 循环次数 | 吸附量/mg·g-1 | 参考文献 |
---|---|---|---|---|---|---|
MIL-101(Fe)-NH2 | 454.6 | Pb(Ⅱ) | 5 | 6 | 227.9 | [ |
Zr-SA-SH | 296 | Pb(Ⅱ) | 4 | 4 | 510 | [ |
Zr-SA-SH | 296 | Hg(Ⅱ) | 4 | 4 | 1080 | [ |
UiO-66-SH | 721 | Hg(Ⅱ) | 7 | 5 | 822 | [ |
MOF-808-COOH | 126.9 | Pb(Ⅱ) | 5.8 | — | 390.2 | [ |
MIL-101(Fe)-(COOH)2 | 184 | Pb(Ⅱ) | 5 | 5 | 467.63 | [ |
ZIF-8/PSF | 968 | Pb(Ⅱ) | 5.5 | 5 | 220.04 | [ |
UiO-66-(COOH)2 | 443 | Pb(Ⅱ) | 6 | 4 | 357.0 | [ |
UiO-66-COOH | 422.64 | Pb(Ⅱ) | 5.5 | 5 | 186.14 | [ |
MOF-808-COOH | 1411 | Pb(Ⅱ) | 5.2 | 6 | 192.68 | [ |
UiO-66-NH2 | 1144 | Pb(Ⅱ) | 5.5 | 5 | 227.80 | [ |
Zr-TCPP | — | Hg(Ⅱ) | 7.1 | 3 | 233.65 | [ |
MIL-101(Fe/Co) | — | Hg(Ⅱ) | 6 | 4 | 312.97 | [ |
TMU-59 | — | Hg(Ⅱ) | 4.5 | — | 约1500 | [ |
MOF-808-SH | 636 | Hg(Ⅱ) | 5 | 6 | 977.5 | [ |
UiO-66-NH2 | — | Hg(Ⅱ) | 6.5 | — | 223.8 | [ |
Zn-MOF | — | Hg(Ⅱ) | 5 | — | 476 | [ |
Zn-MOF | — | Pb(Ⅱ) | 5 | — | 909 | [ |
Cd-MOF | 48.07 | Pb(Ⅱ) | 7 | 3 | 536.3 | [ |
表2 部分MOFs对典型阳离子型重金属的吸附性能
MOFs | 比表面积/m2·g-1 | 重金属离子类型 | 吸附pH | 循环次数 | 吸附量/mg·g-1 | 参考文献 |
---|---|---|---|---|---|---|
MIL-101(Fe)-NH2 | 454.6 | Pb(Ⅱ) | 5 | 6 | 227.9 | [ |
Zr-SA-SH | 296 | Pb(Ⅱ) | 4 | 4 | 510 | [ |
Zr-SA-SH | 296 | Hg(Ⅱ) | 4 | 4 | 1080 | [ |
UiO-66-SH | 721 | Hg(Ⅱ) | 7 | 5 | 822 | [ |
MOF-808-COOH | 126.9 | Pb(Ⅱ) | 5.8 | — | 390.2 | [ |
MIL-101(Fe)-(COOH)2 | 184 | Pb(Ⅱ) | 5 | 5 | 467.63 | [ |
ZIF-8/PSF | 968 | Pb(Ⅱ) | 5.5 | 5 | 220.04 | [ |
UiO-66-(COOH)2 | 443 | Pb(Ⅱ) | 6 | 4 | 357.0 | [ |
UiO-66-COOH | 422.64 | Pb(Ⅱ) | 5.5 | 5 | 186.14 | [ |
MOF-808-COOH | 1411 | Pb(Ⅱ) | 5.2 | 6 | 192.68 | [ |
UiO-66-NH2 | 1144 | Pb(Ⅱ) | 5.5 | 5 | 227.80 | [ |
Zr-TCPP | — | Hg(Ⅱ) | 7.1 | 3 | 233.65 | [ |
MIL-101(Fe/Co) | — | Hg(Ⅱ) | 6 | 4 | 312.97 | [ |
TMU-59 | — | Hg(Ⅱ) | 4.5 | — | 约1500 | [ |
MOF-808-SH | 636 | Hg(Ⅱ) | 5 | 6 | 977.5 | [ |
UiO-66-NH2 | — | Hg(Ⅱ) | 6.5 | — | 223.8 | [ |
Zn-MOF | — | Hg(Ⅱ) | 5 | — | 476 | [ |
Zn-MOF | — | Pb(Ⅱ) | 5 | — | 909 | [ |
Cd-MOF | 48.07 | Pb(Ⅱ) | 7 | 3 | 536.3 | [ |
MOFs | 比表面积/m2·g-1 | 含氧阴离子类型 | 吸附pH | 循环次数 | 吸附量/mg·g-1 | 参考文献 |
---|---|---|---|---|---|---|
GUT-3 | — | As(Ⅴ) | 3 | 2 | 33.91 | [ |
Zr-SA-SH | 513 | Cr(Ⅵ) | 3 | — | 202.0 | [ |
UiO-66 | 800 | Cr(Ⅵ) | 3 | — | 85.45 | [ |
ZIF-8 | 1050 | Cr(Ⅵ) | 3 | — | 150.85 | [ |
Ce-UiO-66 | 1101 | Cr(Ⅵ) | — | — | 30.03 | [ |
Cd-MOF | 48.07 | Cr(Ⅵ) | 6 | 3 | 703.0 | [ |
UiO-66-NH2 | 919 | Cr(Ⅵ) | 2 | 5 | 338.98 | [ |
UiO-66@UiO-67 | 314.95 | Cr(Ⅵ) | 2 | 5 | 932.1 | [ |
MIL-101(Cr)-NH2 | ≈2000 | Cr(Ⅵ) | 4 | — | 45 | [ |
UiO-66-CH3 | 316.26 | Cr(Ⅵ) | — | 3 | 194.55 | [ |
Ce-MOF-808 | 335.12 | As(Ⅲ) | 11 | — | 402.10 | [ |
MOF-74(Zn) | 604 | As(Ⅲ) | 12 | 3 | 204.92 | [ |
MIL-101(Fe/Al)-NH2 | 402 | As(Ⅴ) | 6.5 | — | 146.8 | [ |
UiO-66(Fe/Zr) | 498.33 | As(Ⅲ) | 7 | 5 | 121.81 | [ |
UiO-66(Fe/Zr) | 498.33 | As(Ⅴ) | 9 | 5 | 227.3 | [ |
Eu-MOF-COOH | 1069 | As(Ⅴ) | 8 | — | 23.68 | [ |
Yb-MOF | — | As(Ⅴ) | 5 | — | 81.169 | [ |
表3 部分MOFs对典型阴离子型含氧离子的吸附性能
MOFs | 比表面积/m2·g-1 | 含氧阴离子类型 | 吸附pH | 循环次数 | 吸附量/mg·g-1 | 参考文献 |
---|---|---|---|---|---|---|
GUT-3 | — | As(Ⅴ) | 3 | 2 | 33.91 | [ |
Zr-SA-SH | 513 | Cr(Ⅵ) | 3 | — | 202.0 | [ |
UiO-66 | 800 | Cr(Ⅵ) | 3 | — | 85.45 | [ |
ZIF-8 | 1050 | Cr(Ⅵ) | 3 | — | 150.85 | [ |
Ce-UiO-66 | 1101 | Cr(Ⅵ) | — | — | 30.03 | [ |
Cd-MOF | 48.07 | Cr(Ⅵ) | 6 | 3 | 703.0 | [ |
UiO-66-NH2 | 919 | Cr(Ⅵ) | 2 | 5 | 338.98 | [ |
UiO-66@UiO-67 | 314.95 | Cr(Ⅵ) | 2 | 5 | 932.1 | [ |
MIL-101(Cr)-NH2 | ≈2000 | Cr(Ⅵ) | 4 | — | 45 | [ |
UiO-66-CH3 | 316.26 | Cr(Ⅵ) | — | 3 | 194.55 | [ |
Ce-MOF-808 | 335.12 | As(Ⅲ) | 11 | — | 402.10 | [ |
MOF-74(Zn) | 604 | As(Ⅲ) | 12 | 3 | 204.92 | [ |
MIL-101(Fe/Al)-NH2 | 402 | As(Ⅴ) | 6.5 | — | 146.8 | [ |
UiO-66(Fe/Zr) | 498.33 | As(Ⅲ) | 7 | 5 | 121.81 | [ |
UiO-66(Fe/Zr) | 498.33 | As(Ⅴ) | 9 | 5 | 227.3 | [ |
Eu-MOF-COOH | 1069 | As(Ⅴ) | 8 | — | 23.68 | [ |
Yb-MOF | — | As(Ⅴ) | 5 | — | 81.169 | [ |
1 | 胡双意, 訾茜, 邓先涛, 等. 多元催化氧化+改良A2/O工艺处理工业园区废水[J]. 中国给水排水, 2022, 38(18): 68-71. |
HU Shuangyi, ZI Qian, DENG Xiantao, et al. Application of multi-element catalytic oxidation and modified A2/O process in the treatment of wastewater from industrial park[J]. China Water & Wastewater, 2022, 38(18): 68-71. | |
2 | 姚庆达, 温会涛, 杨长凯, 等. 多层氧化石墨烯膜的结构、性能及在水处理中的应用进展[J]. 材料导报, 2020, 34(15): 15047-15058. |
YAO Qingda, WEN Huitao, YANG Changkai, et al. Structure and performance of multilayer graphene oxide membrane and its application in water treatment: A review[J]. Materials Reports, 2020, 34(15): 15047-15058. | |
3 | 盛梦霜, 余梅, 尚静, 等. 三维氧化石墨烯气凝胶高效吸附与可见光光催化去除六价铬[J]. 科学通报, 2022, 67(S1): 447-458. |
SHENG Mengshuang, YU Mei, SHANG Jing, et al. High efficient adsorption and photocatalytic removal of hexavalent chromium over three-dimensional graphene oxide aerogel under visible light[J]. Chinese Science Bulletin, 2022, 67(S1): 447-458. | |
4 | 张丽珠, 王欢, 李琼, 等. 木质素衍生吸附材料及其在废水处理中的应用研究进展[J]. 化工进展, 2022, 41(7): 3731-3744. |
ZHANG Lizhu, WANG Huan, LI Qiong, et al. Research progress on the preparation of lignin-derived adsorption materials and their application in wastewater treatment[J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3731-3744. | |
5 | 姚庆达, 梁永贤, 王小卓, 等. GO/CS的结构、性能及其在水处理中的应用研究进展[J]. 材料导报, 2022, 36(4): 36-48. |
YAO Qingda, LIANG Yongxian, WANG Xiaozhuo, et al. Structure and performance of graphene oxide/chitosan composite and its application in water treatment: A review[J]. Materials Reports, 2022, 36(4): 36-48. | |
6 | 万红友, 阎靖炜, 郭丛, 等. Cu/Fe-MOF复合材料在水处理过程应用研究进展[J]. 水处理技术, 2022, 48(11): 1-7. |
WAN Hongyou, YAN Jingwei, GUO Cong, et al. A critical review of Cu/Fe-MOF composite materials applied in the water treatment process and its prospect[J]. Technology of Water Treatment, 2022, 48(11): 1-7. | |
7 | PEI Yuanchao, ZHANG Yaxin, MA Jie, et al. Carboxyl functional poly(ionic liquid)s confined in metal-organic frameworks with enhanced adsorption of metal ions from water[J]. Separation and Purification Technology, 2022, 299: 121790. |
8 | ZHENG Min, XU Lei, CHEN Chen, et al. MOFs and GO-based composites as deliberated materials for the adsorption of various water contaminants[J]. Separation and Purification Technology, 2022, 294: 121187. |
9 | SOLTANI Roozbeh, PELALAK Rasool, PISHNAMAZI Mahboubeh, et al. A water-stable functionalized NiCo-LDH/MOF nanocomposite: Green synthesis, characterization, and its environmental application for heavy metals adsorption[J]. Arabian Journal of Chemistry, 2021, 14(4): 103052. |
10 | 王崇臣, 王恂. 金属-有机骨架在水处理中的应用研究进展[J]. 工业水处理, 2020, 40(11): 1-9. |
WANG Chongchen, WANG Xun. The application of metal-organic frameworks in the wastewater treatment: A state-of-the-art review[J]. Industrial Water Treatment, 2020, 40(11): 1-9. | |
11 | 唐朝春, 王顺藤, 黄从新, 等. 介孔金属有机框架材料吸附水中重金属离子研究进展[J]. 化工进展, 2022, 41(6): 3263-3278. |
TANG Chaochun, WANG Shunteng, HUANG Congxin, et al. Research progress on adsorption of heavy metal ions in water by mesoporous metal organic framework materials[J]. Chemical Industry and Engineering Progress, 2022, 41(6): 3263-3278. | |
12 | 附青山, 张磊, 张伟, 等. 金属-有机框架材料对废水中污染物的吸附研究进展[J]. 材料导报, 2021, 35(11): 11100-11110. |
FU Qingshan, ZHANG Lei, ZHANG Wei, et al. Research progress in metal-organic frame materials for adsorptive removal of contamination in wastewater[J]. Materials Reports, 2021, 35(11): 11100-11110. | |
13 | YUSUFF Adeyinka, POPOOLA Lekan, BABATUNDE Esther. Adsorption of cadmium ion from aqueous solutions by copper-based metal organic framework: Equilibrium modeling and kinetic studies[J]. Applied Water Science, 2019, 9(4): 106. |
14 | ZHAO Liang, AZHAR Muhammad R, LI Xiaojie, et al. Adsorption of cerium (Ⅲ) by HKUST-1 metal-organic framework from aqueous solution[J]. Journal of Colloid and Interface Science, 2019, 542: 421-428. |
15 | ZHANG Zilong, CHEN Zhao, XIAO Yu, et al. Study of the dynamic adsorption and the effect of the presence of different cations and anions on the adsorption of As(Ⅴ) on GUT-3[J]. Applied Organometallic Chemistry, 2021, 35(8): e6289. |
16 | CAI Yawen, FENG Jinghua, TAN Xiaoli, et al. Efficient capture of R e O 4 - on magnetic amine-functionalized MIL-101(Cr): Revealing from selectivity to mechanism[J]. Science of the Total Environment, 2021, 771(1): 144840. |
17 | HAN Bo, CHAKRABORTY Anutosh. Highly efficient adsorption desalination employing protonated-amino-functionalized MOFs[J]. Desalination, 2022, 541: 116045. |
18 | HAN Gang, QIAN Qihui. RODRIGUEZ Katherine Mizrahi,et al. Hydrothermal synthesis of sub-20nm amine-functionalized MIL-101(Cr) nanoparticles with high surface area and enhanced CO2 uptake[J]. Industrial & Engineering Chemistry Research, 2020, 59(16): 7888-7900. |
19 | ELTAHER B J, SABOUNI R, GHOMMEM M, et al. A comparative study of metal-organic frameworks for mercury detection in competitive aqueous environment[J]. International Journal of Environmental Science and Technology, 2022, 19: 12193-12210. |
20 | Shiwen LYU, LIU Jingmin, LI Chunyang, et al. A novel and universal metal-organic frameworks sensing platform for selective detection and efficient removal of heavy metal ions[J]. Chemical Engineering Journal, 2019, 375: 122111. |
21 | DENG Hexiang, GRUNDER Sergio, CORDOVA Kyle E, et al. Large-pore apertures on series of metal-organic frameworks[J]. Science, 2012, 336(6084): 1018-1023. |
22 | ZHAO Zhiwei, LEI Renchan, ZHANG Yizhe, et al. Defect controlled MOF-808 for seawater uranium capture with high capacity and selectivity[J]. Journal of Molecular Liquids, 2022, 367: 120514. |
23 | FENG Xiao, Hajek Julianna, Himanshu Sekhar Jena, et al. Engineering a highly defective stable UiO-66 with tunable lewis- Brønsted acidity: The role of the hemilabile linker[J]. Journal of the American Chemical Society, 2020, 142(6): 3174-3183. |
24 | YANG Pengfei, SHU Yufang, ZHUANG Qixin, et al. Metal-organic frameworks bearing dense alkyl thiol for the efficient degradation and concomitant removal and toxic Cr(Ⅵ)[J]. Langmuir, 2019, 35(49): 16226-16233. |
25 | WANG Chen, LIN Guo, XI Yunhao, et al. Development of mercaptosuccinic anchored MOF through one-step preparation to enhance adsorption capacity and selectivity for Hg(Ⅱ) and Pb(Ⅱ)[J]. Journal of Molecular Liquids, 2020, 317: 113896. |
26 | Jaehyoung KOO, HWANG In-Chul, YU Xiujun, et al. Hollowing out MOFs: Hierarchical micro- and mesoporous MOFs with tailorable porosity via selective acid etching[J]. Chemical Science, 2017, 8(10): 6799-6803. |
27 | YANG Changping, HU Congyi, JIANG Zhongwei, et al. Facile synthesis of porphyrin-MOFs with high photo-Fenton activity to efficiently degrade ciprofloxacin[J]. Journal of Colloid and Interface Science, 2022, 622: 690-699. |
28 | XU Guihua, HE Qiaoning, HUANG Kexin, et al. Hierarchically ultrasmall Hf-based MOF: Mesopore adjustment and reconstruction by recycle using acid etching strategy[J]. Chemical Engineering Journal, 2023, 455: 140632. |
29 | Carolina ARDILA-SUÁREZ, MOLINA V Daniel R, ALEM Halima, et al. Synthesis of ordered microporous/macroporous MOF-808 through modulator-induced defect-formation, and surfactant self-assembly strategies[J]. Physical Chemistry Chemical Physics, 2020, 22(22): 12591-12604. |
30 | YANG Xiaoli, WU Suilan, WANG Panhao, et al. Hierarchical 3D ordered meso-/macroporous metal-organic framework produced through a facile template-free self-assembly[J]. Journal of Solid State Chemistry, 2018, 258: 220-224. |
31 | ZHANG Boce, LUO Yaguang, KANYUCK Kelsey, et al. Facile and template-free solvothermal synthesis of mesoporous/macroporous metal-organic framework nanosheets[J]. RSC Advances, 2018, 8(58): 33059-33064. |
32 | CHAI Xu, DONG Huaqi, ZHANG Zenggao, et al. A novel Zr-MOF modified by 4,6-diamino-2-mercaptopyrimidine for exceptional Hg(Ⅱ) removal[J]. Journal of Water Process Engineering, 2022, 46: 102606. |
33 | WANG Chen, LIN Guo, ZHAO Jiling, et al. Enhancing Au(Ⅲ) adsorption capacity and selectivity via engineering MOF with mercapto-1,3,4-thiadiazole[J]. Chemical Engineering Journal, 2020, 388: 124221. |
34 | YUAN Yufei, YU Junting, CHEN Huanhuan, et al. Thiol-functionalized Zr metal-organic frameworks for efficient removal of Fe3+ from water[J]. Cell Reports Physical Science, 2022, 3(3): 100783. |
35 | ALQADAMI Ayoub Abdullah, KHAN Moonis Ali, SIDDIQUI Masoom Raza, et al. Development of citric anhydride anchored mesoporous MOF through post synthesis modification to sequester potentially toxic lead(Ⅱ) from water[J]. Microporous and Mesoporous Materials, 2018, 261: 198-206. |
36 | FU Xibiao, LIU Jun, REN Zheng, et al. Introduction of phosphate groups into metal-organic frameworks to synthesize MIL-101(Cr)-PMIDA for selective adsorption of U(Ⅵ)[J]. Journal of Radioanalytical and Nuclear Chemistry, 2022, 331(2): 889-902. |
37 | JI Chenghan, YU Hang, LU Junhe, et al. High-efficiency and sustainable desalination using thermo-regenerable MOF-808-EDTA: Temperature-regulated proton transfer[J]. ACS Applied Materials & Interfaces, 2021, 13(20): 23833-23842. |
38 | WU Ning, GUO Hao, PENG Liping, et al. Three-step post-synthetic modification metal-organic framework as a ratiometric fluorescent probe for the detection of creatinine[J]. Microporous and Mesoporous Materials, 2022, 338: 111989. |
39 | YI Xiuchun, XI Fugui, QI Yan, et al. Synthesis and click modification of an azido-functionalized Zr(Ⅳ) metal-organic framework and a catalytic study[J]. RSC Advances, 2015, 5(2): 893-900. |
40 | RANI Reetu, DEEP Akash, MIZAIKOFF Boris, et al. Enhanced hydrothermal stability of Cu MOF by post synthetic modification with amino acids[J]. Vacuum, 2019, 164: 449-457. |
41 | Hyeok Joon JUN, YOO Dong Kyu, JHUNG Sung Hwa. Metal-organic framework (MOF-808) functionalized with ethyleneamines: Selective adsorbent to capture CO2 under low pressure[J]. Journal of CO2 Utilization, 2022, 58: 101932. |
42 | AKBARIAN Mohadeseh, SANCHOOLI Esmael, OVEISI Ali Reza, et al. Choline chloride-coated UiO-66-Urea MOF: A novel multifunctional heterogeneous catalyst for efficient one-pot three-component synthesis of 2-amino-4H-chromenes[J]. Journal of Molecular Liquids, 2020, 325: 115228. |
43 | Gérard FÉREY, SERRE Christian. Large breathing effects in three-dimensional porous hybrid matter: Facts, analyses, rules and consequences[J]. Chemical Society Reviews, 2009, 38(5): 1380-1399. |
44 | TIMOFEEVA Maria N, PANCHENKO Valentina N, KHAN Nazmul Abedin, et al. Isostructural metal-carboxylates MIL-100(M) and MIL-53(M) (M: V, Al, Fe and Cr) as catalysts for condensation of glycerol with acetone[J]. Applied Catalysis A: General, 2017, 529(5): 167-174. |
45 | EHRLING Sebastian, SENKOVSKA Irena, Volodymyr BON, et al. Flexibility and switchable porosity in metal-organic frameworks: Phenomena, characterization and functions[M]//Comprehensive Coordination Chemistry Ⅲ. Amsterdam: Elsevier, 2021: 328-375. |
46 | BAGHERZADEH Elham, ZEBARJAD Seyed Mojtaba, MADAAH HOSSEINI Hamid Reza, et al. Interplay between morphology and band gap energy in Fe-MIL-88A prepared via a high temperature surfactant-assisted solvothermal method[J]. Materials Chemistry and Physics, 2022, 277: 125536. |
47 | WANG Hepeng, Jürgen GETZSCHMANN, SENKOVSKA Irena, et al. Structural transformation and high pressure methane adsorption of Co2(1,4-bdc)2dabco[J]. Microporous and Mesoporous Materials, 2008, 116(1/2/3): 653-657. |
48 | PANAHI Leila, Reza NAIMI-JAMAL M, MOKHTARI Javad, et al. Mechanochemically synthesized nanoporous metal-organic framework Cu2(BDC)2(DABCO): An efficient heterogeneous catalyst for preparation of carbamates[J]. Microporous and Mesoporous Materials, 2017, 244(15): 208-217. |
49 | CHO Kyung Ho, YOON Ji Woong, LEE Jeong Hyeon, et al. Effect of framework rigidity in metal-organic frameworks for adsorptive separation of ethane/ethylene[J]. Microporous and Mesoporous Materials, 2020, 307: 110473. |
50 | HAN Bo, CHAKRABORTY Anutosh. Adsorption characteristics of methyl-functional ligand MOF-801 and water systems: Adsorption chiller modelling and performances[J]. Applied Thermal Engineering, 2020, 175(5): 115393. |
51 | CHEANG Tuckyun, HUANG Wenbin, LI Weiping, et al. Exposed carboxyl functionalized MIL-101 derivatives for rapid and efficient extraction of heavy metals from aqueous solution[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 649: 129517. |
52 | PARK Kyo Sung, NI Zheng, CÔTÉ Adrien P, et al. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks[J]. PNAS, 2006, 103(27): 10186-10191. |
53 | YANG Cuilian, WEN Jia, XUE Zhuangzhuang, et al. The accumulation and toxicity of ZIF-8 nanoparticles in Corbicula fluminea [J]. Journal of Environmental Sciences, 2023, 127: 91-101. |
54 | JASUJA Himanshu, HUANG Yougui, WALTON Krista S. Adjusting the stability of metal-organic frameworks under humid conditions by ligand functionalization[J]. Langmuir, 2012, 28(49): 16874-16880. |
55 | QIN Guoxu, WANG Jing, LI Lei, et al. Highly water-stable Cd-MOF/Tb3+ ultrathin fluorescence nanosheets for ultrasensitive and selective detection of Cefixime[J]. Talanta, 2021, 221: 121421. |
56 | XIA Yifan, BAO Guangming, PENG Xiongxin, et al. A highly water-stable dual-emission fluorescent probe based on Eu3+-loaded MOF for the simultaneous detection and quantification of Fe3+ and Al3+ in swine wastewater[J]. Analytica Chimica Acta, 2022, 1221: 340115. |
57 | AN Junrong, WANG Ye, DONG Wenwen, et al. Efficient visible-light photoreduction of CO2 to CH4 over an Fe-based metal-organic framework (PCN-250-Fe3) in a solid-gas mode[J]. ACS Applied Energy Materials, 2022, 5(2): 2384-2390. |
58 | YANG Huajun, PENG Fang, HONG Anh N, et al. Ultrastable high-connected chromium metal-organic frameworks[J]. Journal of the American Chemical Society, 2021, 143(36): 14470-14474. |
59 | LI Chun, CHANDRESH Abhinav, ZHANG Zejun, et al. Stability and degradation of metal-organic-framework films under ambient air explored by uptake and diffusion experiments[J]. Advanced Materials Interfaces, 2022, 9(3): 2101947. |
60 | WANG Liangjie, LI Xitong, YANG Bo, et al. The chemical stability of metal-organic frameworks in water treatments: Fundamentals, effect of water matrix and judging methods[J]. Chemical Engineering Journal, 2022, 450: 138215. |
61 | Hyunchul OH, MAURER Stefan, Rafael BALDERAS-XICOHTENCATL, et al. Efficient synthesis for large-scale production and characterization for hydrogen storage of ligand exchanged MOF-74/174/184-M (M=Mg2+, Ni2+)[J]. International Journal of Hydrogen Energy, 2017, 42(2): 1027-1035. |
62 | VELASCO Ever, XIAN Shikai, YU Liang, et al. Large scale synthesis and propylene purification by a high-performance MOF sorbent Y-abtc[J]. Separation and Purification Technology, 2022, 282: 120010. |
63 | LI Nan, JIAN Changping, SONG Yaping, et al. Scalable synthesis of MIL-88A(Fe) for efficient aerobic oxidation of cyclohexene to 2-cyclohexene-1-ol[J]. Molecular Catalysis, 2023, 535: 112899. |
64 | LEON Felix, LI Chenfei, REYNES Javier F, et al. Mechanosynthesis and photophysics of colour-tunable photoluminescent group 13 metal complexes with sterically demanding salen and salophen ligands[J]. Faraday Discussions, 2023, 241: 63-78. |
65 | CAO Jing, LI Yang, WANG Lijun, et al. Solvent-free MOF-CVD prepared ZIF-67 film with hollow and opened morphology for supercapacitor application[J]. Journal of Alloys and Compounds, 2023, 936: 168262. |
66 | NEUER Anna Lena, JESSERNIG Alexander, GERKEN Lukas R H, et al. Cellular fate and performance of group Ⅳ metal organic framework radioenhancers[J]. Biomaterials Science, 2022, 10(22): 6558-6569. |
67 | Àngels RUYRA, YAZDI Amirali, Jordi ESPÍN, et al. Synthesis, culture medium stability, and in vitro and in vivo zebrafish embryo toxicity of metal-organic framework nanoparticles[J]. Chemistry—A European Journal, 2015, 21(6): 2508-2518. |
68 | LAN Suke, ZHANG Jiahao, LI Xin, et al. Low toxicity of metal-organic framework MOF-74(Co) nano-particles in vitro and in vivo [J]. Nanomaterials, 2022, 12(19): 3398. |
69 | HAO Fang, YAN Xiuping. Nano-sized zeolite-like metal-organic frameworks induced hematological effects on red blood cell[J]. Journal of Hazardous Materials, 2022, 424: 127353. |
70 | WAGNER Alixandra, LIU Qian, ROSE Olivia L, et al. Toxicity screening of two prevalent metal organic frameworks for therapeutic use in human lung epithelial cells[J]. International Journal of Nanomedicine, 2019, 14: 7583-7591. |
71 | Jue CUN, FAN Xi, PAN Qingqing, et al. Copper-based metal-organic frameworks for biomedical applications[J]. Advances in Colloid and Interface Science, 2022, 305: 102686. |
72 | LI Qiao, LI Rui, MA Xinyue, et al. Efficient removal of antimonate from water by yttrium-based metal-organic framework: Adsorbent stability and adsorption mechanism investigation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 633: 127877. |
73 | ROY Debashis, NEOGI Sudarsan, DE Sirshendu. Adsorptive removal of heavy metals from battery industry effluent using MOF incorporated polymeric beads: A combined experimental and modeling approach[J]. Journal of Hazardous Materials, 2021, 403: 123624. |
74 | ZHAO Xudong, WANG Yaxin, LI Yali, et al. Synergy effect of pore structure and amount of carboxyl site for effective removal of Pb2+ in metal-organic frameworks[J]. Journal of Chemical & Engineering Data, 2019, 64(6): 2728-2735. |
75 | LI Yuhang, WANG Chongchen, ZENG Xu, et al. Seignette salt induced defects in Zr-MOFs for boosted Pb(Ⅱ) adsorption: Universal strategy and mechanism insight[J]. Chemical Engineering Journal, 2022, 442: 136276. |
76 | YANG Bai, XUE Wenjuan, ZHAO Xudong, et al. Synergistic dicarboxylate sites of natural citric acid modified MOF-808 for the deep removal of Pb2+ in water[J]. Journal of Molecular Liquids, 2022, 366: 120235. |
77 | ZAMAN Humaira Gul, BALOO Lavania, KUTTY Shamsul Rahman, et al. Post synthetic modification of NH2-(Zr-MOF) via rapid microwave-promoted synthesis for effective adsorption of Pb(Ⅱ) and Cd(Ⅱ)[J]. Arabian Journal of Chemistry, 2023, 16(1): 104122. |
78 | KUMAR Anshu, MAITY Debdeep, VYAS Gaurav, et al. Polyacrylic acid@zeolitic imidazolate framework-8 nanoparticles for detection and absorptive removal of cyanide from aqueous media with high efficiency[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 617(20): 126358. |
79 | HASANKOLA Zahra Seyfi, RAHIMI Rahmatollah, SHAYEGAN Hossein, et al. Removal of Hg2+ heavy metal ion using a highly stable mesoporous porphyrinic zirconium metal-organic framework[J]. Inorganica Chimica Acta, 2020, 501: 119264. |
80 | ALSHORIFI Fares T, DAFRAWY Shady M EL, AHMED Awad I. Fe/Co-MOF nanocatalysts: Greener chemistry approach for the removal of toxic metals and catalytic applications[J]. ACS Omega, 2022, 7(27): 23421-23444. |
81 | SOMAYEH Tarasi, Ramazani ALI, Morsali ALI, et al. Highly sensitive colorimetric naked-eye detection of HgⅡ using a sacrificial metal-organic framework[J]. Inorganic Chemistry, 2021, 60(17): 13588-13595. |
82 | JI Chenghan, REN Yi, YU Hang, et al. Highly efficient and selective Hg(Ⅱ) removal from water by thiol-functionalized MOF-808: Kinetic and mechanism study[J]. Chemical Engineering Journal, 2022, 430: 132960. |
83 | ZHAO Yufeng, WANG Dongfang, WEI Wei, et al. Effective adsorption of mercury by Zr(Ⅳ)-based metal-organic frameworks of UiO-66-NH2 from aqueous solution[J]. Environmental Science and Pollution Research, 2021, 28(6): 7068-7075. |
84 | HAKIMIFAR Azar, MORSALI Ali. Urea-based metal-organic frameworks as high and fast adsorbent for Hg2+ and Pb2+ removal from water[J]. Inorganic Chemistry, 2019, 58(1): 180-187. |
85 | NORAEE Zahra, JAFARI Ali, GHADERPOORI Mansour, et al. Use of metal-organic framework to remove chromium(Ⅵ) from aqueous solutions[J]. Journal of Environmental Health Science and Engineering, 2019, 17(2): 701-709. |
86 | REGO Richelle M, SRIRAM Ganesan, AJEYA Kanalli V, et al. Cerium based UiO-66 MOF as a multipollutant adsorbent for universal water purification[J]. Journal of Hazardous Materials, 2021, 416: 125941. |
87 | ZHENG Yanjin, RAO Feng, ZHANG Meili, et al. Efficient, selective, and reusable metal-organic framework-based adsorbent for the removal of Pb(Ⅱ) and Cr(Ⅵ) heavy-metal pollutants from wastewater[J]. Cleaner Engineering and Technology, 2021, 5: 100344. |
88 | CHEN Ping, WANG Yalan, ZHUANG Xiaoqin, et al. Selective removal of heavy metals by Zr-based MOFs in wastewater: New acid and amino functionalization strategy[J]. Journal of Environmental Sciences, 2023, 124: 268-280. |
89 | LI Lincheng, XU Yunlan, ZHONG Dengjie, et al. CTAB-surface-functionalized magnetic MOF@MOF composite adsorbent for Cr(Ⅵ) efficient removal from aqueous solution[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 586: 124255. |
90 | JALAYERI Haniyeh, APREA Paolo, CAPUTO Domenico, et al. Synthesis of amino-functionalized MIL-101(Cr) MOF for hexavalent chromium adsorption from aqueous solutions[J]. Environmental Nanotechnology, Monitoring & Management, 2020, 14: 100300. |
91 | ZHOU Li, LIU Hua, PAN Penghui, et al. Development of cationic benzimidazole-containing UiO-66 through step-by-step linker modification to enhance the initial sorption rate and sorption capacities for heavy metal oxo-anions[J]. Inorganic Chemistry, 2022, 61(30): 11992-12002. |
92 | PERVEZ Md Nahid, CHEN Changxun, LI Zongchen, et al. Tuning the structure of cerium-based metal-organic frameworks for efficient removal of arsenic species: The role of organic ligands[J]. Chemosphere, 2022, 303: 134934. |
93 | YU Wenting, LUO Mingbiao, YANG Yaxuan, et al. Metal-organic framework (MOF) showing both ultrahigh As(Ⅴ) and As(Ⅲ) removal from aqueous solution[J]. Journal of Solid State Chemistry, 2019, 269: 264-270. |
94 | YANG Boqian, ZHOU Xin, CHEN Yuyu, et al. Preparation of a spindle δ-MnO2@Fe/Co-MOF-74 for effective adsorption of arsenic from water[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 629: 127378. |
95 | YIN Chun, LI Shengjian, LIU Lingli, et al. Structure-tunable trivalent Fe-Al-based bimetallic organic frameworks for arsenic removal from contaminated water[J]. Journal of Molecular Liquids, 2022, 346: 117101. |
96 | GUO Qi, LI Yuan, ZHENG Liwei, et al. Facile fabrication of Fe/Zr binary MOFs for arsenic removal in water: High capacity, fast kinetics and good reusability[J]. Journal of Environmental Sciences, 2023, 128: 213-223. |
97 | YIN Lili, DENG Qinsong, KE Zhilin, et al. Synthesis, modification, and adsorption properties of Yb-MOF: Kinetic and thermodynamic studies[J]. Applied Organometallic Chemistry, 2023, 37(2): e6955. |
98 | LIU Siyuan, LIU Ming, GUO Mingming, et al. Development of Eu-based metal-organic frameworks (MOFs) for luminescence sensing and entrapping of arsenate ion[J]. Journal of Luminescence, 2021, 236: 118102. |
[1] | 胡喜, 王明珊, 李恩智, 黄思鸣, 陈俊臣, 郭秉淑, 于博, 马志远, 李星. 二硫化钨复合材料制备与储钠性能研究进展[J]. 化工进展, 2023, 42(S1): 344-355. |
[2] | 崔守成, 徐洪波, 彭楠. 两种MOFs材料用于O2/He吸附分离的模拟分析[J]. 化工进展, 2023, 42(S1): 382-390. |
[3] | 陈崇明, 陈秋, 宫云茜, 车凯, 郁金星, 孙楠楠. 分子筛基CO2吸附剂研究进展[J]. 化工进展, 2023, 42(S1): 411-419. |
[4] | 许春树, 姚庆达, 梁永贤, 周华龙. 共价有机框架材料功能化策略及其对Hg(Ⅱ)和Cr(Ⅵ)的吸附性能研究进展[J]. 化工进展, 2023, 42(S1): 461-478. |
[5] | 顾永正, 张永生. HBr改性飞灰对Hg0的动态吸附及动力学模型[J]. 化工进展, 2023, 42(S1): 498-509. |
[6] | 郭强, 赵文凯, 肖永厚. 增强流体扰动强化变压吸附甲硫醚/氮气分离的数值模拟[J]. 化工进展, 2023, 42(S1): 64-72. |
[7] | 王胜岩, 邓帅, 赵睿恺. 变电吸附二氧化碳捕集技术研究进展[J]. 化工进展, 2023, 42(S1): 233-245. |
[8] | 葛亚粉, 孙宇, 肖鹏, 刘琦, 刘波, 孙成蓥, 巩雁军. 分子筛去除VOCs的研究进展[J]. 化工进展, 2023, 42(9): 4716-4730. |
[9] | 杨莹, 侯豪杰, 黄瑞, 崔煜, 王兵, 刘健, 鲍卫仁, 常丽萍, 王建成, 韩丽娜. 利用煤焦油中酚类物质Stöber法制备碳纳米球用于CO2吸附[J]. 化工进展, 2023, 42(9): 5011-5018. |
[10] | 张振, 李丹, 陈辰, 吴菁岚, 应汉杰, 乔浩. 吸附树脂对唾液酸的分离纯化[J]. 化工进展, 2023, 42(8): 4153-4158. |
[11] | 王鑫, 王兵兵, 杨威, 徐志明. 金属表面PDA/PTFE超疏水涂层抑垢与耐腐蚀性能[J]. 化工进展, 2023, 42(8): 4315-4321. |
[12] | 姜晶, 陈霄宇, 张瑞妍, 盛光遥. 载锰生物炭制备及其在环境修复中应用研究进展[J]. 化工进展, 2023, 42(8): 4385-4397. |
[13] | 于静文, 宋璐娜, 刘砚超, 吕瑞东, 武蒙蒙, 冯宇, 李忠, 米杰. 一种吲哚基超交联聚合物In-HCP对水中碘的吸附作用[J]. 化工进展, 2023, 42(7): 3674-3683. |
[14] | 李艳玲, 卓振, 池亮, 陈曦, 孙堂磊, 刘鹏, 雷廷宙. 氮掺杂生物炭的制备与应用研究进展[J]. 化工进展, 2023, 42(7): 3720-3735. |
[15] | 白亚迪, 邓帅, 赵睿恺, 赵力, 杨英霞. 变温吸附碳捕集机组标准化测试方案探讨及性能实验[J]. 化工进展, 2023, 42(7): 3834-3846. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |