化工进展 ›› 2023, Vol. 42 ›› Issue (12): 6507-6517.DOI: 10.16085/j.issn.1000-6613.2023-0180
• 资源与环境化工 • 上一篇
于姗1,2(), 张洪华1,2, 付梦瑶1,2, 段元刚1,2, 段超1,2, 黄靖元1,2, 唐春1,2, 黄泽皑1,2, 周莹1,2()
收稿日期:
2023-02-13
修回日期:
2023-04-15
出版日期:
2023-12-25
发布日期:
2024-01-08
通讯作者:
于姗,周莹
作者简介:
于姗(1986—),女,博士,副教授,硕士生导师,研究方向为天然气资源的清洁利用。E-mail:yushan@swpu.edu.cn。
基金资助:
YU Shan1,2(), ZHANG Honghua1,2, FU Mengyao1,2, DUAN Yuangang1,2, DUAN Chao1,2, HUANG Jingyuan1,2, TANG Chun1,2, HUANG Ze’ai1,2, ZHOU Ying1,2()
Received:
2023-02-13
Revised:
2023-04-15
Online:
2023-12-25
Published:
2024-01-08
Contact:
YU Shan, ZHOU Ying
摘要:
为保障国家能源安全,减少我国对国外油气资源的依存度,必须加大对国内天然气等资源的开发。在天然气的开采净化过程中,往往会产生酸气H2S与CO2等。现有酸气处理技术主要通过克劳斯工艺回收得到H2S中的硫黄,并未对CO2进行处理,造成了氢资源的浪费和严重的碳排放。如果能将H2S与CO2协同转化,则有望在减少碳排放的同时得到氢气、合成气和硫黄高值化学品。本文基于国内外30多年相关领域的实验研究和理论模拟,总结阐述了H2S与CO2协同转化的发展历史,并分别从热反应(直接热反应、工艺流程和经济性评估、催化热分解)、光催化、电催化和等离子体催化角度详细综述了H2S与CO2协同转化的研究进展。从催化剂、反应条件和反应产物分布等方面展开了细致的分析,对比了各种技术的优缺点。展望了H2S与CO2协同转化的发展趋势,近期可考虑使用绿电进行电催化技术的小规模应用示范;同时可以考虑通过太阳光储热的方式减小热催化技术的碳排放,或通过太阳能聚光等方式提升光催化技术的催化效率等。此外,在后续研究中,必须结合酸性气藏的特点,考虑不同的H2S/CO2比例或是H2O等杂质分子对反应过程的影响。
中图分类号:
于姗, 张洪华, 付梦瑶, 段元刚, 段超, 黄靖元, 唐春, 黄泽皑, 周莹. 天然气藏中酸气H2S与CO2协同转化研究进展[J]. 化工进展, 2023, 42(12): 6507-6517.
YU Shan, ZHANG Honghua, FU Mengyao, DUAN Yuangang, DUAN Chao, HUANG Jingyuan, TANG Chun, HUANG Ze’ai, ZHOU Ying. Research progress on synergistic conversion of acid gas H2S and CO2 in natural gas[J]. Chemical Industry and Engineering Progress, 2023, 42(12): 6507-6517.
反应体系 | CO2转化率 /% | H2S转化率 /% | CO选择性 /% | S2选择性 /% | H2选择性 /% |
---|---|---|---|---|---|
热力学平衡值 | 26.5 | 33.9 | 69.7 | 76.1 | 21.5 |
空白实验 | 1.7 | 2.2 | 15.1 | 18.2 | 1.4 |
SiO2 | 4.6 | 4.8 | 42.7 | 42.8 | 4.0 |
CaO | 26.0 | 26.4 | 53.9 | 57.4 | 14.6 |
γ-Al2O3 | 24.3 | 24.8 | 51.1 | 56.6 | 14.5 |
NiO/γ-Al2O3 | 24.8 | 27.6 | 52.7 | 56.7 | 22.1 |
NiO/MgO | 25.6 | 27.9 | 53.3 | 58.1 | 16.6 |
MgO | 25.2 | 25.4 | 50.2 | 51.5 | 8.2 |
表1 1073K、100000h-1空速条件下,V(H2S)∶V(CO2)∶V(N2)=3∶3∶14时,使用不同催化剂时H2S与CO2的转换率以及各种产物的选择性(均为摩尔分数)[18]
反应体系 | CO2转化率 /% | H2S转化率 /% | CO选择性 /% | S2选择性 /% | H2选择性 /% |
---|---|---|---|---|---|
热力学平衡值 | 26.5 | 33.9 | 69.7 | 76.1 | 21.5 |
空白实验 | 1.7 | 2.2 | 15.1 | 18.2 | 1.4 |
SiO2 | 4.6 | 4.8 | 42.7 | 42.8 | 4.0 |
CaO | 26.0 | 26.4 | 53.9 | 57.4 | 14.6 |
γ-Al2O3 | 24.3 | 24.8 | 51.1 | 56.6 | 14.5 |
NiO/γ-Al2O3 | 24.8 | 27.6 | 52.7 | 56.7 | 22.1 |
NiO/MgO | 25.6 | 27.9 | 53.3 | 58.1 | 16.6 |
MgO | 25.2 | 25.4 | 50.2 | 51.5 | 8.2 |
催化剂 | 反应产物生成速率(以催化剂面积计)/mmol·m-2 | |||
---|---|---|---|---|
H2 | CO | SO2 | S2 | |
FeS | 0.889 | 0.027 | 0.025 | 0.252 |
RuO2 | 0.009 | 0.001 | 0.007 | 0.003 |
MoS2 | 0.014 | 0.070 | 0.004 | 0.014 |
Nb2O5 | 0.011 | 0.093 | 0.028 | 0.074 |
IrO2 | 0.027 | 0.003 | 0.001 | 0.012 |
V2O5 | 0.141 | 0.210 | 0.013 | 0.730 |
CdS | 0.005 | 0.017 | 0.001 | 0.017 |
PbS | 0.037 | 0.054 | 0.023 | 0.001 |
Mn3O4 | 0.038 | 0.065 | 0.011 | 0.199 |
CoS | 0.217 | 0.143 | 0.069 | 0.001 |
NiS | 1.502 | 0.285 | 0.051 | 0.001 |
WS2 | 0.032 | 0.019 | 0.005 | 0.001 |
表2 873K下V(H2S)∶V(CO2)∶V(H2O)=60∶60∶1时不同催化剂5h内催化H2S与CO2协同转化的效率[25]
催化剂 | 反应产物生成速率(以催化剂面积计)/mmol·m-2 | |||
---|---|---|---|---|
H2 | CO | SO2 | S2 | |
FeS | 0.889 | 0.027 | 0.025 | 0.252 |
RuO2 | 0.009 | 0.001 | 0.007 | 0.003 |
MoS2 | 0.014 | 0.070 | 0.004 | 0.014 |
Nb2O5 | 0.011 | 0.093 | 0.028 | 0.074 |
IrO2 | 0.027 | 0.003 | 0.001 | 0.012 |
V2O5 | 0.141 | 0.210 | 0.013 | 0.730 |
CdS | 0.005 | 0.017 | 0.001 | 0.017 |
PbS | 0.037 | 0.054 | 0.023 | 0.001 |
Mn3O4 | 0.038 | 0.065 | 0.011 | 0.199 |
CoS | 0.217 | 0.143 | 0.069 | 0.001 |
NiS | 1.502 | 0.285 | 0.051 | 0.001 |
WS2 | 0.032 | 0.019 | 0.005 | 0.001 |
反应体系 | 产率/µmol·g-1·h-1 | |||
---|---|---|---|---|
气相产物 | 液相产物 | |||
CH4 | CO | H2 | HCOOH | |
纯水溶液无CO2 | — | — | — | — |
纯水溶液 | 0.3 | 0.3 | 0.6 | — |
NaOH(100mmol/L) | — | 0.3 | — | — |
NaCl(500mmol/L) | — | 0.8 | 1.8 | — |
NaBr(500mmol/L) | — | 0.5 | 0.7 | — |
Na2S(100mmol/L) | — | 2.8 | 209.4 | 25.7 |
表3 Cu-TiO2在不同反应溶质中的光催化CO2还原产率[39]
反应体系 | 产率/µmol·g-1·h-1 | |||
---|---|---|---|---|
气相产物 | 液相产物 | |||
CH4 | CO | H2 | HCOOH | |
纯水溶液无CO2 | — | — | — | — |
纯水溶液 | 0.3 | 0.3 | 0.6 | — |
NaOH(100mmol/L) | — | 0.3 | — | — |
NaCl(500mmol/L) | — | 0.8 | 1.8 | — |
NaBr(500mmol/L) | — | 0.5 | 0.7 | — |
Na2S(100mmol/L) | — | 2.8 | 209.4 | 25.7 |
处理工艺 | 碳税/每吨CO2 | ||||
---|---|---|---|---|---|
0 | 10 | 25 | 50 | 100 | |
MDEA + LO-CAT | 0.00948 | 0.0124 | 0.0168 | 0.0242 | 0.0389 |
双塔络合法脱硫 | 0.01103 | 0.0140 | 0.0184 | 0.0258 | 0.0405 |
干法脱硫 | 0.06636 | 0.0693 | 0.0737 | 0.0811 | 0.0958 |
电催化系统(50mA/cm2,商用电) | 0.01123 | 0.01123 | 0.01123 | 0.01123 | 0.01123 |
电催化系统(50mA/cm2,绿电) | -0.02285 | -0.02285 | -0.02285 | -0.02285 | -0.02285 |
表4 常用处理工艺和H2S与CO2电催化系统估算的每立方米气体运行成本[54]
处理工艺 | 碳税/每吨CO2 | ||||
---|---|---|---|---|---|
0 | 10 | 25 | 50 | 100 | |
MDEA + LO-CAT | 0.00948 | 0.0124 | 0.0168 | 0.0242 | 0.0389 |
双塔络合法脱硫 | 0.01103 | 0.0140 | 0.0184 | 0.0258 | 0.0405 |
干法脱硫 | 0.06636 | 0.0693 | 0.0737 | 0.0811 | 0.0958 |
电催化系统(50mA/cm2,商用电) | 0.01123 | 0.01123 | 0.01123 | 0.01123 | 0.01123 |
电催化系统(50mA/cm2,绿电) | -0.02285 | -0.02285 | -0.02285 | -0.02285 | -0.02285 |
处理工艺 | 优势 | 劣势 |
---|---|---|
直接热转化技术 | 经济性评估体系完善,工艺改造成本低 | 能耗高 |
热催化技术 | 处理量大,工艺改造成本低 | 能耗较高,反应过程认识不明确 |
光催化技术 | 能量来源广,绿色无污染 | 转化效率低,产物复杂,机理研究不充分 |
电催化技术 | 反应条件温和,活性高 | 电极材料成本高,工艺开发不够完善,机理研究不充分 |
等离子体催化技术 | 操作简单,装置体积小,能量效率高 | 湿度、反应气体纯度影响大、能耗较高 |
表5 H2S与CO2协同转化技术对比
处理工艺 | 优势 | 劣势 |
---|---|---|
直接热转化技术 | 经济性评估体系完善,工艺改造成本低 | 能耗高 |
热催化技术 | 处理量大,工艺改造成本低 | 能耗较高,反应过程认识不明确 |
光催化技术 | 能量来源广,绿色无污染 | 转化效率低,产物复杂,机理研究不充分 |
电催化技术 | 反应条件温和,活性高 | 电极材料成本高,工艺开发不够完善,机理研究不充分 |
等离子体催化技术 | 操作简单,装置体积小,能量效率高 | 湿度、反应气体纯度影响大、能耗较高 |
1 | 黄黎明. 高含硫气藏安全清洁高效开发技术新进展[J]. 天然气工业, 2015, 35(4): 1-6. |
HUANG Liming. New progresses in safe, clean and efficient development technologies for high-sulfur gas reservoirs[J]. Natural Gas Industry, 2015, 35(4): 1-6. | |
2 | 张婧, 张铁, 孙峰, 等. 硫化氢直接分解制取氢气和硫黄研究进展[J]. 化工进展, 2017, 36(4): 1448-1459. |
ZHANG Jing, ZHANG Tie, SUN Feng, et al. Research progress on hydrogen and sulfur production from direct decomposition of hydrogen sulfide[J]. Chemical Industry and Engineering Progress, 2017, 36(4): 1448-1459. | |
3 | FELLMUTH P, LUTZ W, BÜLOW M. Influence of weakly coordinated cations and basic sites upon the reaction of H2S and CO2 on zeolites[J]. Zeolites, 1987, 7(4): 367-371. |
4 | LUTZ W, SEIDEL A, BODDENBERG B. On the formation of COS from H2S and CO2 in the presence of zeolite/salt compounds[J]. Adsorption Science & Technology, 1998, 16(7): 577-581. |
5 | BOWMAN M G. Thermochemical cycle for splitting hydrogen sulfide: US4999178[P]. 1991-03-12. |
6 | TOWLER G P, LYNN S. Development of a zero-emissions sulfur-recovery process. 1. Thermochemistry and reaction kinetics of mixtures of hydrogen sulfide and carbon dioxide at high temperature[J]. Industrial & Engineering Chemistry Research, 1993, 32(11): 2800-2811. |
7 | TOWLER G P, LYNN S. Development of a zero-emissions sulfur-recovery process. 2. Sulfur-recovery process based on the reactions of hydrogen sulfide and carbon dioxide at high temperature[J]. Industrial & Engineering Chemistry Research, 1993, 32(11): 2812-2819. |
8 | TOWLER G P, LYNN S. Sulfur recovery with reduced emissions, low capital investment and hydrogen co-production[J]. Chemical Engineering Communications, 1996, 155(1): 113-143. |
9 | BASSANI A, MANENTI F, RANZI E, et al. Novel coal gasification process: Improvement of syngas yield and cut of emissions[J]. Chemical Engineering Transactions, 2015, 43: 1483-1488. |
10 | MANENTI. CO2 as feedstock: a new pathway to syngas[M]. Computer Aided Chemical Engineering, 2015, 37: 1049-1054. |
11 | BASSANI A, PIROLA C, MAGGIO E, et al. Acid Gas to Syngas (AG2S™) technology applied to solid fuel gasification: Cutting H2S and CO2 emissions by improving syngas production[J]. Applied Energy, 2016, 184: 1284-1291. |
12 | EL-MELIH A M, IBRAHIM S, GUPTA A K, et al. Experimental examination of syngas recovery from acid gases[J]. Applied Energy, 2016, 164: 64-68. |
13 | SELIM H, IBRAHIM S, SHOAIBI A AL, et al. Investigation of sulfur chemistry with acid gas addition in hydrogen/air flames[J]. Applied Energy, 2014, 113: 1134-1140. |
14 | IBRAHIM S, RAJ A. Kinetic simulation of acid gas (H2S and CO2) destruction for simultaneous syngas and sulfur recovery[J]. Industrial & Engineering Chemistry Research, 2016, 55(24): 6743-6752. |
15 | 闫天兰, 闫玥儿, 张亚红, 等. 二硫化钼加氢脱硫催化剂研究进展[J]. 复旦学报(自然科学版), 2022, 61(6): 683-698. |
YAN Tianlan, YAN Yue’er, ZHANG Yahong, et al. Research progress of MoS2 hydrodesulfurization catalysts[J]. Journal of Fudan University (Natural Science), 2022, 61(6): 683-698. | |
16 | SORIANO D, KEENER T C, KHANG Soon-Jai. Catalytic production of elemental sulfur from the thermal decomposition of H2S in the presence of CO2 [J]. Chemical Engineering Communications, 1996, 143(1): 73-89. |
17 | MALOKA I, ALIWI S, NAMAN S. Thermal reduction of CO2 in the presence of H2S[J]. Petroleum Science and Technology, 2006, 24(1): 117-127. |
18 | SU Hui, LI Yuyang, LI Ping, et al. Simultaneous recovery of carbon and sulfur resources from reduction of CO2 with H2S using catalysts[J]. Journal of Energy Chemistry, 2016, 25(1): 110-116. |
19 | MA Jun, SUN Nannan, ZHANG Xuelan, et al. A short review of catalysis for CO2 conversion[J]. Catalysis Today, 2009, 148(3/4): 221-231. |
20 | SHI Chunkai, ZHANG Peng. Role of MgO over γ-Al2O3-supported Pd catalysts for carbon dioxide reforming of methane[J]. Applied Catalysis B: Environmental, 2015, 170/171: 43-52. |
21 | OMAE I. Aspects of carbon dioxide utilization[J]. Catalysis Today, 2006, 115(1/2/3/4): 33-52. |
22 | TAIRA K. Dry reforming reactions of CH4 over CeO2/MgO catalysts at high concentrations of H2S, and behavior of CO2 at the CeO2-MgO interface[J]. Journal of Catalysis, 2022, 407: 29-43. |
23 | LIU Xiaozhan, ZHAO Lu, LI Ying, et al. Ni-Mo sulfide semiconductor catalyst with high catalytic activity for one-step conversion of CO2 and H2S to syngas in non-thermal plasma[J]. Catalysts, 2019, 9(6): 525. |
24 | KARAN K, MEHROTRA A K, BEHIE L A. A high-temperature experimental and modeling study of homogeneous gas-phase COS reactions applied to Claus plants[J]. Chemical Engineering Science, 1999, 54(15/16): 2999-3006. |
25 | ALDERMAN N P, PENEAU V, VIASUS C J, et al. Syn-gas from waste: The reduction of CO2 with H2S[J]. Reaction Chemistry & Engineering, 2019, 4(4): 763-771. |
26 | ZHANG Fenglian, WEI Zheng, JIANG Guoxia, et al. Synergistic conversion of acid gases (H2S and CO2) to valuable chemicals: Carbonyl sulfide synthesis over vacancy-defective CoMo sulfide catalysts[J]. Applied Catalysis B: Environmental, 2022, 319: 121912. |
27 | FUJISHIMA A, HONDA K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238(5358): 37-38. |
28 | BORGARELLO E, KALYANASUNDARAM K, GRÄTZEL M, et al. Visible light induced generation of hydrogen from H2S in CdS-dispersions, hole transfer catalysis by RuO2 [J]. Helvetica Chimica Acta, 1982, 65(1): 243-248. |
29 | DAN Meng, YU Shan, LI Yi, et al. Hydrogen sulfide conversion: How to capture hydrogen and sulfur by photocatalysis[J]. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2020, 42: 100339. |
30 | DAN Meng, ZHANG Qian, YU Shan, et al. Noble-metal-free MnS/In2S3 composite as highly efficient visible light driven photocatalyst for H2 production from H2S[J]. Applied Catalysis B: Environmental, 2017, 217: 530-539. |
31 | DAN Meng, WEI Shiqian, DORONKIN D E, et al. Novel MnS/(In x Cu1- x )2S3 composite for robust solar hydrogen sulphide splitting via the synergy of solid solution and heterojunction[J]. Applied Catalysis B: Environmental, 2019, 243: 790-800. |
32 | YU Shan, FAN Xiangbing, WANG Xian, et al. Efficient photocatalytic hydrogen evolution with ligand engineered all-inorganic InP and InP/ZnS colloidal quantum dots[J]. Nature Communications, 2018, 9(1): 4009. |
33 | YU Shan, WU Fan, ZOU Pengkun, et al. Highly value-added utilization of H2S in Na2SO3 solution over Ca-CdS nanocrystal photocatalysts[J]. Chemical Communications, 2020, 56(91): 14227-14230. |
34 | DAN Meng, XIANG Jianglai, YANG Jian, et al. Beyond hydrogen production: Solar-driven H2S-donating value-added chemical production over Mn x Cd1- x S/Cd y Mn1- y S catalyst[J]. Applied Catalysis B: Environmental, 2021, 284: 119706. |
35 | 淡猛, 蔡晴, 向将来, 等. 用于光催化分解硫化氢制氢的金属硫化物[J]. 化学进展, 2020, 32(7): 917-926. |
DAN Meng, CAI Qing, XIANG Jianglai, et al. Metal sulfide semiconductors for photocatalytic hydrogen production from waste hydrogen sulfide[J]. Progress in Chemistry, 2020, 32(7): 917-926. | |
36 | LI Xin, YU Jiaguo, JARONIEC M, et al. Cocatalysts for selective photoreduction of CO2 into solar fuels[J]. Chemical Reviews, 2019, 119(6): 3962-4179. |
37 | WANG Yi’ou, CHEN Enqi, TANG Junwang. Insight on reaction pathways of photocatalytic CO2 conversion[J]. ACS Catalysis, 2022, 12(12): 7300-7316. |
38 | LIN Huiwen, LUO Shunqin, ZHANG Huabin, et al. Toward solar-driven carbon recycling[J]. Joule, 2022, 6(2): 294-314. |
39 | NAVARRO-JAÉN S, VIRGINIE M, BONIN J, et al. Highlights and challenges in the selective reduction of carbon dioxide to methanol[J]. Nature Reviews Chemistry, 2021, 5(8): 564-579. |
40 | TRAN Duyen P H, PHAM Minh-Thuan, Xuan-Thanh BUI, et al. CeO2 as a photocatalytic material for CO2 conversion: A review[J]. Solar Energy, 2022, 240: 443-466. |
41 | 郭立行, 庞蔚莹, 马克遥, 等. 层序空间多孔结构TiO2实现高效光催化CO2还原[J]. 化工进展, 2023, 42(7): 3643-3651. |
GUO Lixing, PANG Weiying, MA Keyao, et al. Hierarchically multilayered TiO2 with spatial pore-structure for efficient photocatalytic CO2 reduction[J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3643-3651. | |
42 | CAO Yuehan, GUO Lan, DAN Meng, et al. Modulating electron density of vacancy site by single Au atom for effective CO2 photoreduction[J]. Nature Communications, 2021, 12(1): 1-10. |
43 | BERTON M, MELLO R, GONZÁLEZ-NÚÑEZ M E. Iodide-photocatalyzed reduction of carbon dioxide to formic acid with thiols and hydrogen sulfide[J]. ChemSusChem, 2016, 9(24): 3397-3400. |
44 | ZHOU Ruixin, GUZMAN M I. CO2 reduction under periodic illumination of ZnS[J]. The Journal of Physical Chemistry C, 2014, 118(22): 11649-11656. |
45 | GONELL F, PUGA A V, JULIÁN-LÓPEZ B, et al. Copper-doped titania photocatalysts for simultaneous reduction of CO2 and production of H2 from aqueous sulfide[J]. Applied Catalysis B: Environmental, 2016, 180: 263-270. |
46 | LI Kai, CAI Yanming, YANG Xiaohan, et al. H2S involved photocatalytic system: A novel syngas production strategy by boosting the photoreduction of CO2 while recovering hydrogen from the environmental toxicant[J]. Advanced Functional Materials, 2022, 32(20): 2113002. |
47 | 段超, 唐春, 吴梦南, 等. 电催化分解硫化氢制氢脱硫研究进展[J]. 天然气化工(C1化学与化工), 2021, 46(S1): 24-30. |
DUAN Chao, TANG Chun, WU Mengnan, et al. Progress in electrocatalytic decomposition of hydrogen sulfide to hydrogen and sulfur[J]. Natural Gas Chemical Industry, 2021, 46(S1): 24-30. | |
48 | DUAN Chao, TANG Chun, YU Shan, et al. Efficient electrocatalytic desulfuration and synchronous hydrogen evolution from H2S via anti-sulfuretted NiSe nanowire array catalyst[J]. Applied Catalysis B: Environmental, 2023, 324: 122255. |
49 | ZHANG Mo, GUAN Jing, TU Yunchuan, et al. Highly efficient H2 production from H2S via a robust graphene-encapsulated metal catalyst[J]. Energy & Environmental Science, 2020, 13(1): 119-126. |
50 | WANG Genxiang, CHEN Junxiang, DING Yichun, et al. Electrocatalysis for CO2 conversion: From fundamentals to value-added products[J]. Chemical Society Reviews, 2021, 50(8): 4993-5061. |
51 | 彭仁杰, 周继承, 罗羽裳, 等. 硫化氢分解制取氢和单质硫研究进展[J]. 天然气化工(C1化学与化工), 2015, 40(1): 89-94. |
PENG Renjie, ZHOU Jicheng, LUO Yushang, et al. Research progress in hydrogen and sulfur production from hydrogen sulfide[J]. Natural Gas Chemical Industry, 2015, 40(1): 89-94. | |
52 | 华亚妮, 冯少广, 党欣悦, 等. CO2电催化还原产合成气研究进展[J]. 化工进展, 2022, 41(3): 1224-1240. |
HUA Yani, FENG Shaoguang, DANG Xinyue, et al. Research progress of CO2 electrocatalytic reduction to syngas[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1224-1240. | |
53 | MA Weiguang, WANG Hong, YU Wei, et al. Achieving simultaneous CO2 and H2S conversion via a coupled solar-driven electrochemical approach on non-precious-metal catalysts[J]. Angewandte Chemie International Edition, 2018, 57(13): 3473-3477. |
54 | ZHANG Bo, BAI Jing, ZHANG Yan, et al. High yield of CO and synchronous S recovery from the conversion of CO2 and H2S in natural gas based on a novel electrochemical reactor[J]. Environmental Science & Technology, 2021, 55(21): 14854-14862. |
55 | FU Xianzhong, LI Jie, PAN Xinrong, et al. A single microbial electrochemical system for CO2 reduction and simultaneous biogas purification, upgrading and sulfur recovery[J]. Bioresource Technology, 2020, 297: 122448. |
56 | 王乾浩, 赵璐, 孙付琳, 等. ZSM-5催化剂与低温等离子体协同转化H2S-CO2制合成气[J]. 化工学报, 2022, 73(1): 255-265. |
WANG Qianhao, ZHAO Lu, SUN Fulin, et al. Production of syngas derived from H2S-CO2 via synergy of ZSM-5 catalyst and non-thermal plasma[J]. CIESC Journal, 2022, 73(1): 255-265. | |
57 | ZHAO Lu, LIU Xiaozhan, MU Xiaoliang, et al. Highly selective conversion of H2S-CO2 to syngas by combination of non-thermal plasma and MoS2/Al2O3 [J]. Journal of CO2 Utilization, 2020, 37: 45-54. |
58 | GUTSOL K, NUNNALLY T, RABINOVICH A, et al. Plasma assisted dissociation of hydrogen sulfide[J]. International Journal of Hydrogen Energy, 2012, 37(2): 1335-1347. |
59 | ZHAO Guibing, JOHN Sanil, ZHANG Jijun, et al. Production of hydrogen and sulfur from hydrogen sulfide in a nonthermal-plasma pulsed corona discharge reactor[J]. Chemical Engineering Science, 2007, 62(8): 2216-2227. |
[1] | 杨寒月, 孔令真, 陈家庆, 孙欢, 宋家恺, 王思诚, 孔标. 微气泡型下向流管式气液接触器脱碳性能[J]. 化工进展, 2023, 42(S1): 197-204. |
[2] | 徐晨阳, 都健, 张磊. 基于图神经网络的化学反应优劣评价[J]. 化工进展, 2023, 42(S1): 205-212. |
[3] | 王胜岩, 邓帅, 赵睿恺. 变电吸附二氧化碳捕集技术研究进展[J]. 化工进展, 2023, 42(S1): 233-245. |
[4] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[5] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[6] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[7] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[8] | 郑谦, 官修帅, 靳山彪, 张长明, 张小超. 铈锆固溶体Ce0.25Zr0.75O2光热协同催化CO2与甲醇合成DMC[J]. 化工进展, 2023, 42(S1): 319-327. |
[9] | 戴欢涛, 曹苓玉, 游新秀, 徐浩亮, 汪涛, 项玮, 张学杨. 木质素浸渍柚子皮生物炭吸附CO2特性[J]. 化工进展, 2023, 42(S1): 356-363. |
[10] | 王正坤, 黎四芳. 双子表面活性剂癸炔二醇的绿色合成[J]. 化工进展, 2023, 42(S1): 400-410. |
[11] | 高雨飞, 鲁金凤. 非均相催化臭氧氧化作用机理研究进展[J]. 化工进展, 2023, 42(S1): 430-438. |
[12] | 王乐乐, 杨万荣, 姚燕, 刘涛, 何川, 刘逍, 苏胜, 孔凡海, 朱仓海, 向军. SCR脱硝催化剂掺废特性及性能影响[J]. 化工进展, 2023, 42(S1): 489-497. |
[13] | 赵景超, 谭明. 表面活性剂对电渗析减量化工业含盐废水的影响[J]. 化工进展, 2023, 42(S1): 529-535. |
[14] | 邓丽萍, 时好雨, 刘霄龙, 陈瑶姬, 严晶颖. 非贵金属改性钒钛基催化剂NH3-SCR脱硝协同控制VOCs[J]. 化工进展, 2023, 42(S1): 542-548. |
[15] | 孙玉玉, 蔡鑫磊, 汤吉海, 黄晶晶, 黄益平, 刘杰. 反应精馏合成甲基丙烯酸甲酯工艺优化及节能[J]. 化工进展, 2023, 42(S1): 56-63. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |