化工进展 ›› 2023, Vol. 42 ›› Issue (12): 6429-6437.DOI: 10.16085/j.issn.1000-6613.2023-0056
• 材料科学与技术 • 上一篇
收稿日期:
2023-01-12
修回日期:
2023-03-07
出版日期:
2023-12-25
发布日期:
2024-01-08
通讯作者:
曹良成
作者简介:
曹伯洵(1998—),男,硕士研究生,研究方向为增材制造。E-mail:caoboxun@outlook.com。
基金资助:
CAO Boxun1,2,3(), CAO Liangcheng1()
Received:
2023-01-12
Revised:
2023-03-07
Online:
2023-12-25
Published:
2024-01-08
Contact:
CAO Liangcheng
摘要:
聚合物功能梯度材料(PGMs)是一种以聚合物为连续相,多种材质相互耦合,组成结构和性能在材料空间方向上进行连续梯度变化的非均质复合材料。传统PGMs制备方法存在原理复杂、难定制、通用性差等问题。本文介绍了增材制造(AM)基于“离散-堆积”的成型原理和优势,综述了适用于PGMs的增材制造技术:熔融沉积成型、直写成型、立体光固化、喷射成型和选择性激光烧结的功能梯度材料成型基本原理、材料特点和性能。虽然在增材制造制备PGMs的过程中存在缺乏设计准则、表征方法和系统研究方法等问题。但是,随着对增材制造新概念材料进行基础科学研究的深入,以及针对特定使役条件和工艺性能的具体应用不断发展,增材制造将成为PGMs制备的一种极佳方法。
中图分类号:
曹伯洵, 曹良成. 增材制造聚合物功能梯度材料研究进展[J]. 化工进展, 2023, 42(12): 6429-6437.
CAO Boxun, CAO Liangcheng. Advances of polymer functionally gradient materials by additive manufacturing[J]. Chemical Industry and Engineering Progress, 2023, 42(12): 6429-6437.
PGMs类型 | 制备方法 | 典型梯度材料 |
---|---|---|
共混型 | 溶解扩散法[ 熔融挤出法[ | 聚环氧乙烷/聚羟基丁酸酯[ 聚丙烯/滑石粉/聚(丙烯腈-丁二烯-苯乙烯)[ |
共聚型 | 化学/前线聚合法[ 梯度场聚合[ | 杂萘联苯聚芳醚酮-有机硅共聚物[ 聚环氧乙烷/聚(甲基丙烯酸-丙烯酸)/铜盐[ |
填充复合型 | 纤维排列法[ 梯度场聚合[ | 碳纤维/环氧树脂[ 铜-碳化硅/铁熔氧化铝/聚酯树脂[ |
互穿网络型 | 光聚合法[ 扩散聚合法[ | 聚苯乙烯/甲基丙烯酸[ 硝基纤维素/过氧化苯甲酰/二甲基丙烯酸乙二醇酯[ |
表1 典型PGMs传统制备方法
PGMs类型 | 制备方法 | 典型梯度材料 |
---|---|---|
共混型 | 溶解扩散法[ 熔融挤出法[ | 聚环氧乙烷/聚羟基丁酸酯[ 聚丙烯/滑石粉/聚(丙烯腈-丁二烯-苯乙烯)[ |
共聚型 | 化学/前线聚合法[ 梯度场聚合[ | 杂萘联苯聚芳醚酮-有机硅共聚物[ 聚环氧乙烷/聚(甲基丙烯酸-丙烯酸)/铜盐[ |
填充复合型 | 纤维排列法[ 梯度场聚合[ | 碳纤维/环氧树脂[ 铜-碳化硅/铁熔氧化铝/聚酯树脂[ |
互穿网络型 | 光聚合法[ 扩散聚合法[ | 聚苯乙烯/甲基丙烯酸[ 硝基纤维素/过氧化苯甲酰/二甲基丙烯酸乙二醇酯[ |
年份 | 主要材料 | 梯度形成方法 | 梯度性能 | 参考文献 |
---|---|---|---|---|
2012 | 硅橡胶/聚氨酯 | 交替控制出料、主被动混合 | 硬度、颜色 | [ |
2014 | 水凝胶基壳聚糖/海藻酸钠 | 交替控制出料、被动混合 | 成分变化 | [ |
2015 | 多糖水凝胶 | 交替控制出料、被动混合 | 成分变化、拉伸强度 | [ |
2015 | 水/甘油混合物、环氧树脂、水基纤维素 | 交替控制出料、主动混合 | 颜色、反应速率、电阻 | [ |
2015 | 氧化铁/聚氨酯丙烯酸光敏树脂 | 磁辅助氧化铁连续分布 | 导热、导电 | [ |
2017 | 纳米银棱柱/聚乙二醇二丙烯酸酯 | 交替控制出料、被动混合 | 吸收波长 | [ |
2017 | 海藻酸钠/聚丙烯酰胺水凝胶/丙烯酸酯聚氨酯 | 交替控制出料、被动混合 | 弹性模量 | [ |
2018 | 甲基丙烯酸酯/丙烯酸酯 | 交替控制出料、被动混合 | 弹性模量 | [ |
2019 | 碳化硅/硅胶 | 交替控制出料、被动混合 | 黏度、强度、模量 | [ |
2019 | 液晶高分子 | 挤出力、温度 | 取向梯度、机械性能 | [ |
2020 | 纤维素 | 交替控制出料、被动混合 | 弹性模量、吸水性 | [ |
2020 | 纤维素、几丁质、果胶 | 交替控制出料、被动混合 | 机械性能、流变性能 | [ |
2020 | 液晶高分子 | 打印速度、路径 | 弹性模量 | [ |
2020 | 碳化硅/聚二甲基硅氧烷 | 交替控制出料、被动混合 | 拉伸模量、硬度 | [ |
2022 | 有机硅光敏树脂 | 交替控制出料、被动混合 | 颜色 | [ |
表2 DIW制备PGMs材料及梯度形成方法
年份 | 主要材料 | 梯度形成方法 | 梯度性能 | 参考文献 |
---|---|---|---|---|
2012 | 硅橡胶/聚氨酯 | 交替控制出料、主被动混合 | 硬度、颜色 | [ |
2014 | 水凝胶基壳聚糖/海藻酸钠 | 交替控制出料、被动混合 | 成分变化 | [ |
2015 | 多糖水凝胶 | 交替控制出料、被动混合 | 成分变化、拉伸强度 | [ |
2015 | 水/甘油混合物、环氧树脂、水基纤维素 | 交替控制出料、主动混合 | 颜色、反应速率、电阻 | [ |
2015 | 氧化铁/聚氨酯丙烯酸光敏树脂 | 磁辅助氧化铁连续分布 | 导热、导电 | [ |
2017 | 纳米银棱柱/聚乙二醇二丙烯酸酯 | 交替控制出料、被动混合 | 吸收波长 | [ |
2017 | 海藻酸钠/聚丙烯酰胺水凝胶/丙烯酸酯聚氨酯 | 交替控制出料、被动混合 | 弹性模量 | [ |
2018 | 甲基丙烯酸酯/丙烯酸酯 | 交替控制出料、被动混合 | 弹性模量 | [ |
2019 | 碳化硅/硅胶 | 交替控制出料、被动混合 | 黏度、强度、模量 | [ |
2019 | 液晶高分子 | 挤出力、温度 | 取向梯度、机械性能 | [ |
2020 | 纤维素 | 交替控制出料、被动混合 | 弹性模量、吸水性 | [ |
2020 | 纤维素、几丁质、果胶 | 交替控制出料、被动混合 | 机械性能、流变性能 | [ |
2020 | 液晶高分子 | 打印速度、路径 | 弹性模量 | [ |
2020 | 碳化硅/聚二甲基硅氧烷 | 交替控制出料、被动混合 | 拉伸模量、硬度 | [ |
2022 | 有机硅光敏树脂 | 交替控制出料、被动混合 | 颜色 | [ |
年份 | 主要材料 | 梯度形成方法 | 梯度性能 | 参考 文献 |
---|---|---|---|---|
2015 | ABS P400 | 不同区域不同材料 | 密度、弹性模量 | [ |
2015 | PLA/尼龙 | 交替控制出料、 被动混合 | 颜色、拉伸强度 | [ |
2016 | ABS P400 | 不同区域不同材料 | 密度、弹性模量 | [ |
2017 | PLA/石墨烯 | 交替控制出料 | 电阻性能 | [ |
2018 | PLA/ABS/HIPS | 交替控制出料、 被动混合 | 断裂强度 | [ |
2019 | PLA/TPU | 交替控制出料、 被动混合 | 弯曲强度、 拉伸强度 | [ |
2020 | ABS/PC | 交替控制出料 | 拉伸、弹性模量 | [ |
2020 | ABS/陶瓷 | 交替控制出料 | 介电常数 | [ |
2022 | PLA/RGO | 交替控制出料、 被动混合 | 吸波性能 | [ |
表3 FDM制备PGMs材料及梯度形成方法
年份 | 主要材料 | 梯度形成方法 | 梯度性能 | 参考 文献 |
---|---|---|---|---|
2015 | ABS P400 | 不同区域不同材料 | 密度、弹性模量 | [ |
2015 | PLA/尼龙 | 交替控制出料、 被动混合 | 颜色、拉伸强度 | [ |
2016 | ABS P400 | 不同区域不同材料 | 密度、弹性模量 | [ |
2017 | PLA/石墨烯 | 交替控制出料 | 电阻性能 | [ |
2018 | PLA/ABS/HIPS | 交替控制出料、 被动混合 | 断裂强度 | [ |
2019 | PLA/TPU | 交替控制出料、 被动混合 | 弯曲强度、 拉伸强度 | [ |
2020 | ABS/PC | 交替控制出料 | 拉伸、弹性模量 | [ |
2020 | ABS/陶瓷 | 交替控制出料 | 介电常数 | [ |
2022 | PLA/RGO | 交替控制出料、 被动混合 | 吸波性能 | [ |
年份 | 主要材料 | 梯度形成方法 | 梯度性能 | 参考文献 |
---|---|---|---|---|
2016 | 光敏树脂G+ yellow | 光照强度 | 弹性模量 | [ |
2016 | 环氧和丙烯酸酯单体 | 光照波长、照射时间 | 压缩模量 | [ |
2019 | 双酚A型二酐/甲基丙烯酸缩水甘油酯/丙烯酸丁酯 | 光照强度、光-热固化 | 弹性模量、玻璃化转变温度 | [ |
2019 | 三甘醇二甲基丙烯酸酯/双酚A甲基丙烯酸缩水甘油酯 | 两个波长促进和抑制聚合 | 机械性能 | [ |
2021 | 光敏树脂Orange Tough Resin | 灰度像素、光照强度 | 体积模量、弹性模量 | [ |
2021 | 聚乙二醇二丙烯酸酯/四(3-巯基丙酸)季戊四醇酯/二苯基(2,4,6-三甲基苯甲酰基)氧化膦 | 层厚、光照强度和曝光时间 | 弹性模量 | [ |
表4 VP制备PGMs材料及梯度形成方法
年份 | 主要材料 | 梯度形成方法 | 梯度性能 | 参考文献 |
---|---|---|---|---|
2016 | 光敏树脂G+ yellow | 光照强度 | 弹性模量 | [ |
2016 | 环氧和丙烯酸酯单体 | 光照波长、照射时间 | 压缩模量 | [ |
2019 | 双酚A型二酐/甲基丙烯酸缩水甘油酯/丙烯酸丁酯 | 光照强度、光-热固化 | 弹性模量、玻璃化转变温度 | [ |
2019 | 三甘醇二甲基丙烯酸酯/双酚A甲基丙烯酸缩水甘油酯 | 两个波长促进和抑制聚合 | 机械性能 | [ |
2021 | 光敏树脂Orange Tough Resin | 灰度像素、光照强度 | 体积模量、弹性模量 | [ |
2021 | 聚乙二醇二丙烯酸酯/四(3-巯基丙酸)季戊四醇酯/二苯基(2,4,6-三甲基苯甲酰基)氧化膦 | 层厚、光照强度和曝光时间 | 弹性模量 | [ |
1 | CHEN Jiayao, LIU Xiaojiang, TIAN Yujia, et al. 3D-printed anisotropic polymer materials for functional applications[J]. Advanced Materials, 2022, 34(5): e2102877. |
2 | NIINO Masayuki, HIRAI Toshio, WATANABE Ryuzo. Functionally gradient materials. in pursuit of super heat resisting materials for spacecraft[J]. Journal of the Japan Society for Composite Materials, 1987, 13(6): 257-264. |
3 | RASHEEDAT Modupe Mahamood, ESTHER Titilayo Akinlabi. Functionally graded materials[M]. Cham: Springer International Publishing, 2017. |
4 | LI Chunching, OUYANG Liliang, ARMSTRONG James P K, et al. Advances in the fabrication of biomaterials for gradient tissue engineering[J]. Trends in Biotechnology, 2021, 39(2): 150-164. |
5 | GIACHINI P S, GUPTA S S, WANG W, et al. Additive manufacturing of cellulose-based materials with continuous, multidirectional stiffness gradients[J]. Science Advances, 2020, 6(8): eaay0929. |
6 | GARLAND Anthony, FADEL Georges. Design and manufacturing functionally gradient material objects with an off the shelf three-dimensional printer: Challenges and solutions[J]. Journal of Mechanical Design, 2015, 137(11): 111407. |
7 | MARRI G K, BALAJI C. Experimental and numerical investigations on the effect of porosity and PPI gradients of metal foams on the thermal performance of a composite phase change material heat sink[J]. International Journal of Heat and Mass Transfer, 2021, 164: 120454. |
8 | LI Weikai, HAN Baohong. Research and application of functionally gradient materials[J]. IOP Conference Series: Materials Science and Engineering, 2018, 394(2): 022065. |
9 | OUYANG Liliang, ARMSTRONG James P K, CHEN Qu, et al. Void-free 3D bioprinting for in situ endothelialization and microfluidic perfusion[J]. Advanced Functional Materials, 2020, 30(1): 1908349. |
10 | SHAO Lei, GAO Qing, XIE Chaoqi, et al. Directly coaxial 3D bioprinting of large-scale vascularized tissue constructs[J]. Biofabrication, 2020, 12(3): 035014. |
11 | WU Haihua, LIU Li, CAI Yu, et al. A novel gradient graphene composite with broadband microwave absorption fabricated by fused deposition modelling[J]. Materials Technology, 2022, 37(4): 280-287. |
12 | CRAMER Corson L, WANG Hsin, MA Kaka. Performance of functionally graded thermoelectric materials and devices: A review[J]. Journal of Electronic Materials, 2018, 47(9): 5122-5132. |
13 | 张丽, 周杭生, 黄金, 等. 聚合物梯度材料的构筑及性能研究[J]. 复合材料学报, 2022, 39(9): 4244-4258. |
ZHANG Li, ZHOU Hangsheng, HUANG Jin, et al. Research progress on construction and properties of polymer gradient materials[J]. Acta Materiae Compositae Sinica, 2022, 39(9): 4244-4258. | |
14 | CHEN L, YANG C, XIAO Y, et al. Millifluidics, microfluidics, and nanofluidics: Manipulating fluids at varying length scales[J]. Materials Today Nano, 2021, 16: 100136. |
15 | GARCÍA-COLLADO A, BLANCO J M, GUPTA M K, et al. Advances in polymers based multi-material additive-manufacturing techniques: State-of-art review on properties and applications[J]. Additive Manufacturing, 2022, 50: 102577. |
16 | ZHANG Chi, CHEN Fei, HUANG Zhifeng, et al. Additive manufacturing of functionally graded materials: A review[J]. Materials Science and Engineering A, 2019, 764: 138209. |
17 | CLAUSSEN Kai U, SCHEIBEL Thomas, SCHMIDT Hans-Werner, et al. Polymer gradient materials: Can nature teach us new tricks? [J]. Macromolecular Materials and Engineering, 2012, 297(10): 938-957. |
18 | ZHAO Li, KATSUNORI Tsuchiya, YOSHIO Inoue. Fully-biodegradable poly(3-hydroxybutyrate)/poly(vinyl alcohol) blend films with compositional gradient[J]. Macromolecular Bioscience, 2004, 4(8): 699-705. |
19 | ZHAO Li, HE Yong, INOUE Yoshio. Quantitative analysis of compositional distribution in biodegradable poly(ethylene oxide)/poly(3-hydroxybutyrate) blend film with compositional gradient by FTIR microspectroscopy[J]. Macromolecular Chemistry and Physics, 2005, 206(8): 841-849. |
20 | HONMA Tomonori, ZHAO Li, ASAKAWA Naoki, et al. Poly(ɛ-caprolactone)/chitin and poly(ɛ-caprolactone)/chitosan blend films with compositional gradients: Fabrication and their biodegradability[J]. Macromolecular Bioscience, 2006, 6(3): 241-249. |
21 | SAITO Takashi, TANUMA Hiroaki, PAN Pengju, et al. Gelatin/poly(ethylene oxide) blend films with compositional gradient: Fabrication and characterization[J]. Macromolecular Materials and Engineering, 2010, 295(3): 256-262. |
22 | WEN Bianying, WU Gang, YU Jian. A flat polymeric gradient material: Preparation, structure and property[J]. Polymer, 2004, 45(10): 3359-3365. |
23 | 熊锃. 端羟基聚丁二烯型聚氨酯梯度材料的制备[D]. 武汉: 武汉理工大学, 2013. |
XIONG Zeng. Synthesis of hydroxyl-terminated polybutadiene-polyurethane gradient material[D]. Wuhan: Wuhan University of Technology, 2013. | |
24 | DANIELE Nuvoli, VALERIA Alzari, POJMAN John A, et al. Synthesis and characterization of functionally gradient materials obtained by frontal polymerization[J]. ACS Applied Materials & Interfaces, 2015, 7(6): 3600-3606. |
25 | 何钦政. 杂萘联苯聚芳醚酮-有机硅共聚物的合成及其梯度材料的研究[D]. 大连: 大连理工大学, 2020. |
HE Qinzheng. Synthesis of poly(phthalazinone ether ketone)-polysiloxane and study on gradient materials of their copolymers [D]. Dalian: Dalian University of Technology, 2020 | |
26 | ALMASI Davood, SADEGHI Maliheh, LAU Woei Jye, et al. Functionally graded polymeric materials: A brif review of current fabrication methods and introduction of a novel fabrication method[J]. Materials Science and Engineering C, 2016, 64(1): 102-107. |
27 | JANG J, HAN S. Mechanical properties of glass-fibre mat/PMMA functionally gradient composite[J]. Composites Part A: Applied Science and Manufacturing, 1999, 30(9): 1045-1053. |
28 | HUANG Z M, WANG Q A, RAMAKRISHNA S. Tensile behaviour of functionally graded braided carbon fibre/epoxy composite material[J]. Polymers and Polymer Composites, 2002, 10(4): 307-314. |
29 | KLINGSHIRN C, KOIZUMI M, HAUPERT F, et al. Structure and wear of centrifuged epoxy-resin/carbon fiber functionally graded materials[J]. Journal of Materials Science Letters, 2000, 19(3): 263-266. |
30 | LI Jing, PENG Xiaoling. Fabrication of Ni/epoxy resin functionally graded materials via a reciprocating magnetic field[J]. Journal of Magnetics, 2020, 25(3): 383-388. |
31 | FARAHNAKIAN M, ELHAMI JOOSHEGHAN S, MORADI M. Dual filler functionally graded polymermaterials-manufacturing process and characteristics[J]. Materials and Manufacturing Processes, 2021, 36(3): 301-307. |
32 | HIDEYUKI Nakanishi, NOBUHIRO Namikawa, TOMOHISA Norisuye, et al. Autocatalytic phase separation and graded co-continuous morphology generated by photocuring[J]. Soft Matter, 2006, 2(2): 149-156. |
33 | XIAO Zhenggang, YING Sanjiu, HE Weidong, et al. Synthesis, morphology, component distribution, and mechanical properties of nitrocellulose/gradient poly(ethylene glycol dimethacrylate) semi-IPN material[J]. Journal of Applied Polymer Science, 2007, 105(2): 510-514. |
34 | FRANCHIN Giorgia, SCANFERLA Paolo, ZEFFIRO Luca, et al. Direct ink writing of geopolymeric inks[J]. Journal of the European Ceramic Society, 2017, 37(6): 2481-2489. |
35 | ZHOU Luyu, GAO Qing, FU Jianzhong, et al. Multimaterial 3D printing of highly stretchable silicone elastomers[J]. ACS Applied Materials & Interfaces, 2019, 11(26): 23573-23583. |
36 | OXMAN Neri, TSAI Elizabeth, FIRSTENBERG Michal. Digital anisotropy: A variable elasticity rapid prototyping platform[J]. Virtual and Physical Prototyping, 2012, 7(4): 261-274. |
37 | Laia MOGAS-SOLDEVILA, Jorge DURO-ROYO, OXMAN Neri. Water-based robotic fabrication: large-scale additive manufacturing of functionally graded hydrogel composites via multichamber extrusion[J]. 3D Printing and Additive Manufacturing, 2014, 1(3): 141-151. |
38 | Jorge DURO-ROYO, Laia MOGAS-SOLDEVILA, OXMAN Neri. Flow-based fabrication: An integrated computational workflow for design and digital additive manufacturing of multifunctional heterogeneously structured objects[J]. Computer-Aided Design, 2015, 69: 143-154. |
39 | KOKKINIS Dimitri, SCHAFFNER Manuel, STUDART André R. Multimaterial magnetically assisted 3D printing of composite materials[J]. Nature Communications, 2015, 6(1): 8643. |
40 | BAKARICH Shannon E, GORKIN Robert, GATELY Reece, et al. 3D printing of tough hydrogel composites with spatially varying materials properties[J]. Additive Manufacturing, 2017, 14: 24-30. |
41 | KOKKINIS Dimitri, BOUVILLE Florian, STUDART André R. 3D printing of materials with tunable failure via bioinspired mechanical gradients[J]. Advanced Materials, 2018, 30(19): 1705808. |
42 | HASSAN Islam, SELVAGANAPATHY Ponnambalam Ravi. A microfluidic printhead with integrated hybrid mixing by sequential injection for multimaterial 3D printing[J]. Additive Manufacturing, 2022, 50: 102559. |
43 | HARDIN James O, OBER Thomas J, VALENTINE Alexander D, et al. Microfluidic printheads for multimaterial 3D printing of viscoelastic inks[J]. Advanced Materials, 2015, 27(21): 3279-3284. |
44 | JOANNA Idaszek, MARCO Costantini, KARLSEN Tommy A, et al. 3D bioprinting of hydrogel constructs with cell and material gradients for the regeneration of full-thickness chondral defect using a microfluidic printing head[J]. Biofabrication, 2019, 11(4): 044101. |
45 | HARING Alexander P, KHAN Assad U, LIU Guoliang, et al. 3D printed functionally graded plasmonic constructs[J]. Advanced Optical Materials, 2017, 5(18): 1700367. |
46 | REN Luquan, SONG Zhengyi, LIU Huili, et al. 3D printing of materials with spatially non-linearly varying properties[J]. Materials & Design, 2018, 156: 470-479. |
47 | OBER Thomas J, DANIELE Foresti, LEWIS Jennifer A. Active mixing of complex fluids at the microscale[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(40): 12293-12298. |
48 | ORTEGA Jason M, GOLOBIC Melody, SAIN John D, et al. Active mixing of disparate inks for multimaterial 3D printing[J]. Advanced Materials Technologies, 2019, 4(7): 1800717. |
49 | NGUYEN Du T, Timothy D YEE, DUDUKOVIC Nikola A, et al. 3D printing of compositional gradients using the microfluidic circuit analogy[J]. Advanced Materials Technologies, 2019, 4(12): 1900784. |
50 | ZHANG Chun, LU Xili, FEI Guoxia, et al. 4D printing of a liquid crystal elastomer with a controllable orientation gradient[J]. ACS Applied Materials & Interfaces, 2019, 11(47): 44774-44782. |
51 | LEE Nic A, WEBER Ramon E, KENNEDY Joseph H, et al. Sequential multimaterial additive manufacturing of functionally graded biopolymer composites[J]. 3D Printing and Additive Manufacturing, 2020, 7(5): 205-215. |
52 | REN Luquan, LI Bingqian, HE Yulin, et al. Programming shape-morphing behavior of liquid crystal elastomers via parameter-encoded 4D printing[J]. ACS Applied Materials & Interfaces, 2020, 12(13): 15562-15572. |
53 | GAO Fan, ZHANG Yuanzhi. Method for preparing micro-nano-particle-reinforced PDMS-based FGM using 3D printing single nozzle[J]. Materials Letters, 2020, 280: 128548. |
54 | YANG Chenjing, WU Baiheng, RUAN Jian, et al. 3D-printed biomimetic systems with synergetic color and shape responses based on oblate cholesteric liquid crystal droplets[J]. Advanced Materials, 2021, 33(10): e2006361. |
55 | BERGONZI L, VETTORI M, STEFANINI L, et al. Different infill geometry influence on mechanical properties of FDM produced PLA[J]. IOP Conference Series: Materials Science and Engineering, 2021, 1038(1): 012071. |
56 | 刘崇蒙. 基于熔融沉积技术的多色多材料快速成型系统的研究[D]. 武汉: 华中科技大学, 2019. |
LIU Chongmeng. Research on multi-color and multi-material rapid prototyping system based on fused deposition modeling[D]. Wuhan: Huazhong University of Science and Technology, 2019. | |
57 | ZHUANG Yuan, SONG Wentong, NING Gang, et al. 3D-printing of materials with anisotropic heat distribution using conductive polylactic acid composites[J]. Materials & Design, 2017, 126: 135-140. |
58 | MOHAMMAD ABU HASAN Khondoker, ASAD Asad, DAN Sameoto. Printing with mechanically interlocked extrudates using a custom bi-extruder for fused deposition modelling[J]. Rapid Prototyping Journal, 2018, 24(6): 921-934. |
59 | SRIVASTAVA Manu, MAHESHWARI Sachin, KUNDRA T K. Virtual modelling and simulation of functionally graded material component using FDM technique[J]. Materials Today: Proceedings, 2015, 2(4/5): 3471-3480. |
60 | SRIVASTAVA Manu, MAHESHWARI Sachin, KUNDRA T K, et al. Virtual design, modelling and analysis of functionally graded materials by fused deposition modeling[J]. Materials Today: Proceedings, 2016, 3(10): 3660-3665. |
61 | HASANOV Seymur, GUPTA Ankit, NASIROV Aslan, et al. Mechanical characterization of functionally graded materials produced by the fused filament fabrication process[J]. Journal of Manufacturing Processes, 2020, 58: 923-935. |
62 | GOULAS Athanasios, ZHANG Shiyu, MCGHEE Jack R, et al. Fused filament fabrication of functionally graded polymer composites with variable relative permittivity for microwave devices[J]. Materials & Design, 2020, 193: 108871. |
63 | ZHOU Aiwu, XU Changyu, POJCHANUN Kanitthamniyom, et al. Magnetic soft millirobots 3D printed by circulating vat photopolymerization to manipulate droplets containing hazardous agents for in vitro diagnostics[J]. Advanced Materials, 2022, 34(15): e2200061. |
64 | PETERSON Gregory I, SCHWARTZ Johanna J, ZHANG Di, et al. Production of materials with spatially-controlled cross-link density via vat photopolymerization[J]. ACS Applied Materials & Interfaces, 2016, 8(42): 29037-29043. |
65 | KUANG Xiao, WU Jiangtao, CHEN Kaijuan, et al. Grayscale digital light processing 3D printing for highly functionally graded materials[J]. Science Advances, 2019, 5(5): eaav5790. |
66 | ZHANG Qiang, KUANG Xiao, WENG Shayuan, et al. Shape-memory balloon structures by pneumatic multi-material 4D printing[J]. Advanced Functional Materials, 2021, 31(21): 2010872. |
67 | VALIZADEH Iman, ABOUD Ahmad AL, Edgar DÖRSAM, et al. Tailoring of functionally graded hyperelastic materials via grayscale mask stereolithography 3D printing[J]. Additive Manufacturing, 2021, 47: 102108. |
68 | LARSEN Esben Kjaer Unmack, LARSEN Niels, B, ALMDAL Kristoffer, et al. Multimaterial hydrogel with widely tunable elasticity by selective photopolymerization of PEG diacrylate and epoxy monomers[J]. Journal of Polymer Science Part B: Polymer Physics, 2016, 54(13): 1195-1201. |
69 | UZCATEGUI Asais Camila, HIGGINS Callie I, HERGERT John E, et al. Microscale photopatterning of through‐thickness modulus in a monolithic and functionally graded 3D‐printed part[J]. Small Science, 2021, 1(3): 2000017. |
70 | DE BEER Martin P, VAN DER LAAN Harry L, COLE Megan A, et al. Rapid, continuous additive manufacturing by volumetric polymerization inhibition patterning[J]. Science Advances, 2019, 5(1): eaau8723. |
71 | DOUBROVSKI E L, TSAI E Y, DIKOVSKY D, et al. Voxel-based fabrication through material property mapping: a design method for bitmap printing[J]. Computer-Aided Design, 2015, 60: 3-13. |
72 | CHRISTOPH Bader, DOMINIK Kolb, WEAVER James C, et al. Making data matter: Voxel printing for the digital fabrication of data across scales and domains[J]. Science Advances, 2018, 4(5): eaas8652. |
73 | LAN Hongbo. Active mixing nozzle for multi-material and multi-scale 3D printing[C]//Volume 2: Additive Manufacturing; Materials. June 4-8, 2017. Los Angeles, California, USA. American Society of Mechanical Engineers, 2017: 040904. |
74 | 冯东, 王博, 戚方伟, 等. 选择性激光烧结用聚合物基材料制备研究进展[J]. 化工进展, 2021, 40(8): 4290-4304. |
FENG Dong, WANG Bo, QI Fangwei, et al. Research progress in the preparation of polymer-based materials for selective laser sintering[J]. Chemical Industry and Engineering Progress, 2021, 40(8): 4290-4304. | |
75 | CHUNG Haseung, Suman DAS. Processing and properties of glass bead particulate-filled functionally graded Nylon-11 composites produced by selective laser sintering[J]. Materials Science and Engineering A, 2006, 437(2): 226-234. |
76 | CHUNG Haseung, Suman DAS. Functionally graded Nylon-11/silica nanocomposites produced by selective laser sintering[J]. Materials Science and Engineering A, 2008, 487(1/2): 251-257. |
77 | CHUEH Yuanhui, ZHANG Xiaoji, WEI Chao, et al. Additive manufacturing of polymer-metal/ceramic functionally graded composite components via multiple material laser powder bed fusion[J]. Journal of Manufacturing Science and Engineering, 2020, 142(5): 051003. |
78 | PENG Xirui, KUANG Xiao, ROACH Devin J, et al. Integrating digital light processing with direct ink writing for hybrid 3D printing of functional structures and devices[J]. Additive Manufacturing, 2021, 40: 101911. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 胡喜, 王明珊, 李恩智, 黄思鸣, 陈俊臣, 郭秉淑, 于博, 马志远, 李星. 二硫化钨复合材料制备与储钠性能研究进展[J]. 化工进展, 2023, 42(S1): 344-355. |
[3] | 许友好, 王维, 鲁波娜, 徐惠, 何鸣元. 中国炼油创新技术MIP的开发策略及启示[J]. 化工进展, 2023, 42(9): 4465-4470. |
[4] | 林晓鹏, 肖友华, 管奕琛, 鲁晓东, 宗文杰, 傅深渊. 离子聚合物-金属复合材料(IPMC)柔性电极的研究进展[J]. 化工进展, 2023, 42(9): 4770-4782. |
[5] | 朱传强, 茹晋波, 孙亭亭, 谢兴旺, 李长明, 高士秋. 固体高分子脱硝剂选择性非催化还原NO x 特性[J]. 化工进展, 2023, 42(9): 4939-4946. |
[6] | 李伯耿, 罗英武, 刘平伟. 聚合物产品工程研究内容与方法的思考[J]. 化工进展, 2023, 42(8): 3905-3909. |
[7] | 王报英, 王皝莹, 闫军营, 汪耀明, 徐铜文. 聚合物包覆膜在金属分离回收中的研究进展[J]. 化工进展, 2023, 42(8): 3990-4004. |
[8] | 向阳, 黄寻, 魏子栋. 电催化有机合成反应的活性和选择性调控研究进展[J]. 化工进展, 2023, 42(8): 4005-4014. |
[9] | 张超, 杨鹏, 刘广林, 赵伟, 杨绪飞, 张伟, 宇波. 表面微结构对阵列微射流沸腾换热的影响[J]. 化工进展, 2023, 42(8): 4193-4203. |
[10] | 于静文, 宋璐娜, 刘砚超, 吕瑞东, 武蒙蒙, 冯宇, 李忠, 米杰. 一种吲哚基超交联聚合物In-HCP对水中碘的吸附作用[J]. 化工进展, 2023, 42(7): 3674-3683. |
[11] | 单雪影, 张濛, 张家傅, 李玲玉, 宋艳, 李锦春. 阻燃型环氧树脂的燃烧数值模拟[J]. 化工进展, 2023, 42(7): 3413-3419. |
[12] | 于志庆, 黄文斌, 王晓晗, 邓开鑫, 魏强, 周亚松, 姜鹏. B掺杂Al2O3@C负载CoMo型加氢脱硫催化剂性能[J]. 化工进展, 2023, 42(7): 3550-3560. |
[13] | 余希希, 张金帅, 雷文, 刘承果. 基于动态共价键自修复的光固化高分子材料研究进展[J]. 化工进展, 2023, 42(7): 3589-3599. |
[14] | 杨竞莹, 施万胜, 黄振兴, 谢利娟, 赵明星, 阮文权. 改性纳米零价铁材料制备的研究进展[J]. 化工进展, 2023, 42(6): 2975-2986. |
[15] | 许春树, 姚庆达, 梁永贤, 周华龙. 氧化石墨烯/碳纳米管对几种典型高分子材料的性能影响[J]. 化工进展, 2023, 42(6): 3012-3028. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |