化工进展 ›› 2023, Vol. 42 ›› Issue (12): 6419-6428.DOI: 10.16085/j.issn.1000-6613.2023-0100
• 材料科学与技术 • 上一篇
张浙豪1,2(), 丁玉栋1,2(), 朱恂1,2, 王宏1,2, 程旻1,2, 廖强1,2
收稿日期:
2023-01-29
修回日期:
2023-03-23
出版日期:
2023-12-25
发布日期:
2024-01-08
通讯作者:
丁玉栋
作者简介:
张浙豪(1997—),男,硕士研究生,研究方向为强化传热传质。E-mail:20163295@cqu.edu.com。
基金资助:
ZHANG Zhehao1,2(), DING Yudong1,2(), ZHU Xun1,2, WANG Hong1,2, CHENG Min1,2, LIAO Qiang1,2
Received:
2023-01-29
Revised:
2023-03-23
Online:
2023-12-25
Published:
2024-01-08
Contact:
DING Yudong
摘要:
具有三维(3D)填料网络的复合材料导热性能优异,是解决电子器件散热问题的理想材料之一,被广泛应用于导热绝缘材料领域。本文阐述了近年来国内外关于3D导热绝缘高分子材料的重要研究进展,首先从3D填料架构的制备方式出发,介绍了制备3D导热绝缘复合材料的主流途径,包括模板法、泡沫法、3D打印法、复合颗粒法和聚合物框架法等,分析了不同构筑方法的成型机理,并对各制备方法的优缺点进行了归纳和总结;其次对关于3D导热网络的有限元模拟研究进行了总结,分析了目前常用的热传导模型;最后对制备具有3D网络结构的导热绝缘复合材料研究工作中面临的瓶颈和未来发展方向进行了阐述,主要包括3D填料网络的精细化和自由化的构建、3D填料架构与聚合物间界面热阻的处理、3D填料网络通用热传导模型的建立以及3D填料结构制备工艺的简化。以期为高导热绝缘复合材料的研发和应用提供方向和思路。
中图分类号:
张浙豪, 丁玉栋, 朱恂, 王宏, 程旻, 廖强. 具有三维填料网络的导热绝缘复合材料研究进展[J]. 化工进展, 2023, 42(12): 6419-6428.
ZHANG Zhehao, DING Yudong, ZHU Xun, WANG Hong, CHENG Min, LIAO Qiang. Recent progress on thermally conductive insulating composites with three-dimensional filler network[J]. Chemical Industry and Engineering Progress, 2023, 42(12): 6419-6428.
1 | HE Ziqiang, YAN Yunfei, ZHANG Zhien. Thermal management and temperature uniformity enhancement of electronic devices by micro heat sinks: A review[J]. Energy, 2021, 216: 119223. |
2 | LEONG Kin Yuen, CHEW Sue Ping, GURUNATHAN Balamurugan A, et al. An experimental approach to investigate thermal performance of paraffin wax and 1-hexadecanol based heat sinks for cooling of electronic system[J]. International Communications in Heat and Mass Transfer, 2019, 109: 104365. |
3 | ZHANG Yin, CHEN Min. Cloud based 5G wireless networks[M]. Cham, Switzerland: Springer International Publishing, 2016. |
4 | BURGER N, LAACHACHI A, FERRIOL M, et al. Review of thermal conductivity in composites: Mechanisms, parameters and theory[J]. Progress in Polymer Science, 2016, 61: 1-28. |
5 | FANG Haoming, BAI Shulin, WONG Ching Ping. “White graphene” - hexagonal boron nitride based polymeric composites and their application in thermal management[J]. Composites Communications, 2016, 2: 19-24. |
6 | CHEN Hongyu, GINZBURG Valeriy V, YANG Jian, et al. Thermal conductivity of polymer-based composites: Fundamentals and applications[J]. Progress in Polymer Science, 2016, 59: 41-85. |
7 | RUAN Kunpeng, ZHONG Xiao, SHI Xuetao, et al. Liquid crystal epoxy resins with high intrinsic thermal conductivities and their composites: A mini-review[J]. Materials Today Physics, 2021, 20: 100456. |
8 | 谢宇宁, 雷华, 石倩. 电子封装用导热环氧树脂基复合材料的研究进展[J]. 工程塑料应用, 2018, 46(12): 143-147. |
XIE Yuning, LEI Hua, SHI Qian. Research progress of thermal conductive epoxy matrix composites for electronic packaging[J]. Engineering Plastics Application, 2018, 46(12): 143-147. | |
9 | KUANG Zhiqiao, CHEN Yulong, LU Yonglai, et al. Fabrication of highly oriented hexagonal boron nitride nanosheet/elastomer nanocomposites with high thermal conductivity[J]. Small, 2015, 11(14): 1655-1659. |
10 | MEHRA Nitin, JESKE Madelyn, YANG Xutong, et al. Hydrogen-bond driven self-assembly of two-dimensional supramolecular melamine-cyanuric acid crystals and its self-alignment in polymer composites for enhanced thermal conduction[J]. ACS Applied Polymer Materials, 2019, 1(6): 1291-1300. |
11 | RUAN Kunpeng, GUO Yongqiang, GU Junwei. Liquid crystalline polyimide films with high intrinsic thermal conductivities and robust toughness[J]. Macromolecules, 2021, 54(10): 4934-4944. |
12 | LI Yuzhan, BADRINARAYANAN Prashanth, KESSLER Michael R. Liquid crystalline epoxy resin based on biphenyl mesogen: Thermal characterization[J]. Polymer, 2013, 54(12): 3017-3025. |
13 | GIANG Thanhkieu, KIM Jinhwan. Effect of liquid-crystalline epoxy backbone structure on thermal conductivity of epoxy-alumina composites[J]. Journal of Electronic Materials, 2017, 46(1): 627-636. |
67 | XIAO Chao, CHEN Lu, TANG Yunlu, et al. Enhanced thermal conductivity of silicon carbide nanowires (SiC w )/epoxy resin composite with segregated structure[J]. Composites Part A, Applied Science and Manufacturing, 2019, 116: 98-105. |
68 | XUE Yanming, ZHOU Xin, ZHAN Tianzhuo, et al. Densely interconnected porous BN frameworks for multifunctional and isotropically thermoconductive polymer composites[J]. Advanced Functional Materials, 2018, 28(29): 1801205. |
69 | WANG Xiongwei, WU Peiyi. Melamine foam-supported 3D interconnected boron nitride nanosheets network encapsulated in epoxy to achieve significant thermal conductivity enhancement at an ultralow filler loading[J]. Chemical Engineering Journal, 2018, 348: 723-731. |
70 | LEE Seonmin, KIM Jooheon. Thermally conductive 3D binetwork structured aggregated boron nitride/Cu-foam/polymer composites[J]. Synthetic Metals, 2020, 270: 116587. |
71 | FENG Yancong, CHEN Xin, LI Yongrui, et al. Comparison with experiment, model, and simulation for thermal conductive mechanism of polymer composites without particle network[J]. Macromolecular Chemistry and Physics, 2021, 222(19): 2100200. |
72 | 毋克凡, NUANYAI Pontarit, 张虎, 等. 树脂基碳纤维复合材料各向异性导热系数研究[J]. 工程热物理学报, 2021, 42(5): 1282-1287. |
WU Kefan, NUANYAI Pontarit, ZHANG Hu, et al. Anisotropic thermal conductivity of carbon-fiber/epoxy composites[J]. Journal of Engineering Thermophysics, 2021, 42(5): 1282-1287. | |
73 | ZHANG Yong, YANG Fei, YU Chen, et al. Improved thermal properties of three-dimensional graphene network filled polymer composites[J]. Journal of Electronic Materials, 2022, 51(1): 420-425. |
74 | YU Huitao, GUO Peili, QIN Mengmeng, et al. Highly thermally conductive polymer composite enhanced by two-level adjustable boron nitride network with leaf venation structure[J]. Composites Science and Technology, 2022, 222: 109406. |
14 | WANG Yunjing, XIA Shuang, LI Hao, et al. Unprecedentedly tough, folding-endurance, and multifunctional graphene-based artificial nacre with predesigned 3D nanofiber network as matrix[J]. Advanced Functional Materials, 2019, 29(38): 1903876. |
15 | ZHU Yingke, ZHU Yujie, HUANG Xingyi, et al. High energy density polymer dielectrics interlayered by assembled boron nitride nanosheets[J]. Advanced Energy Materials, 2019, 9(36): 1901826. |
16 | YAO Yimin, SUN Jiajia, ZENG Xiaoliang, et al. Construction of 3D skeleton for polymer composites achieving a high thermal conductivity[J]. Small, 2018, 14(13): 1704044. |
17 | HE Bo, MORTAZAVI Bohayra, ZHUANG Xiaoying, et al. Modeling Kapitza resistance of two-phase composite material[J]. Composite Structures, 2016, 152: 939-946. |
18 | YU Aiping, RAMESH Palanisamy, SUN Xiaobo, et al. Enhanced thermal conductivity in a hybrid graphite nanoplatelet–carbon nanotube filler for epoxy composites[J]. Advanced Materials, 2008, 20(24): 4740-4744. |
19 | GUO Hong, WANG Qin, LIU Jun, et al. Improved interfacial properties for largely enhanced thermal conductivity of poly(vinylidene fluoride)-based nanocomposites via functionalized multi-wall carbon nanotubes[J]. Applied Surface Science, 2019, 487: 379-388. |
20 | CAI Xinzhi, DONG Xuanzuo, Wanxin LYU, et al. Synergistic enhancement of thermal conductivity for low dielectric constant boron nitride-polytetrafluoroethylene composites by adding small content of graphene nanosheets[J]. Composites Communications, 2020, 17: 163-169. |
21 | HU Mingchang, FENG Jiyun, Ka Ming NG. Thermally conductive PP/AlN composites with a 3-D segregated structure[J]. Composites Science and Technology, 2015, 110: 26-34. |
22 | 吴宇明, 虞锦洪, 曹勇, 等. 高导热低填量聚合物基复合材料研究进展[J]. 复合材料学报, 2018, 35(4): 760-766. |
WU Yuming, YU Jinhong, CAO Yong, et al. Review of polymer-based composites with high thermal conductivity and low filler loading[J]. Acta Materiae Compositae Sinica, 2018, 35(4): 760-766. | |
23 | 袁立敏, 陈华, 冯鑫, 等. 填充型高导热绝缘材料研究综述[J]. 绝缘材料, 2017, 50(8): 29-33. |
YUAN Limin, CHEN Hua, FENG Xin, et al. Review of filled type high thermal conductive insulating materials[J]. Insulating Materials, 2017, 50(8): 29-33. | |
24 | YOON Hyungsub, MATTEINI Paolo, HWANG Byungil. Review on three-dimensional ceramic filler networking composites for thermal conductive applications[J]. Journal of Non-Crystalline Solids, 2022, 576: 121272. |
25 | 姚正高, 曹政, 张磊, 等. 三维导热高分子复合材料制备方法研究进展[J]. 工程塑料应用, 2022, 50(5): 159-164. |
YAO Zhenggao, CAO Zheng, ZHANG Lei, et al. Research progress on preparation methods of three dimensional thermal conductive polymer composites[J]. Engineering Plastics Application, 2022, 50(5): 159-164. | |
26 | SHEN Ziming, FENG Jiachun. Achieving vertically aligned SiC microwires networks in a uniform cold environment for polymer composites with high through-plane thermal conductivity enhancement[J]. Composites Science and Technology, 2019, 170: 135-140. |
27 | 姜文政, 林瑛, 江平开, 等. 三维氮化硼结构及其导热绝缘聚合物纳米复合材料[J]. 电气工程学报, 2021, 16(2): 12-24. |
JIANG Wenzheng, LIN Ying, JIANG Pingkai, et al. Three-dimensional structured boron nitride and its thermally conductive and electrically insulating composites[J]. Journal of Electrical Engineering, 2021, 16(2): 12-24. | |
28 | HE Jing, WANG Hua, QU Qiqi, et al. Self-assembled three-dimensional structure with optimal ratio of GO and SiC particles effectively improving the thermal conductivity and reliability of epoxy composites[J]. Composites Communications, 2020, 22: 100448. |
29 | 肖超. 三维导热网络的构筑及其环氧树脂复合材料性能研究[D]. 合肥: 中国科学技术大学, 2020. |
XIAO Chao. Study on the construction of three-dimensional thermally conductive network and properties of the corresponding epoxy composites[D]. Hefei: University of Science and Technology of China, 2020. | |
30 | YAO Yimin, YE Zhenqiang, HUANG Feiyang, et al. Achieving significant thermal conductivity enhancement via an ice-templated and sintered BN-SiC skeleton[J]. ACS Applied Materials & Interfaces, 2020, 12(2): 2892-2902. |
31 | HUANG Taoqing, LI Yongwei, CHEN Min, et al. Bi-directional high thermal conductive epoxy composites with radially aligned boron nitride nanosheets lamellae[J]. Composites Science and Technology, 2020, 198: 108322. |
32 | HE Shan, ZHANG Yongsheng, ZHANG Nan, et al. Multi-directionally thermal conductive epoxy/boron nitride composites based on circinate vane type network[J]. Composites Communications, 2021, 25: 100744. |
33 | HAN Jingkai, DU Gaolai, GAO Weiwei, et al. An anisotropically high thermal conductive boron nitride/epoxy composite based on nacre-mimetic 3D network[J]. Advanced Functional Materials, 2019, 29(13): 1900412. |
34 | PAN Duo, DONG Jingwen, YANG Gui, et al. Ice template method assists in obtaining carbonized cellulose/boron nitride aerogel with 3D spatial network structure to enhance the thermal conductivity and flame retardancy of epoxy-based composites[J]. Advanced Composites and Hybrid Materials, 2022, 5(1): 58-70. |
35 | AN Dong, CHENG Shuaishuai, ZHANG Zhiyi, et al. A polymer-based thermal management material with enhanced thermal conductivity by introducing three-dimensional networks and covalent bond connections[J]. Carbon, 2019, 155: 258-267. |
36 | WANG Jin, REN Penggang, CHEN Zhengyan, et al. Highly thermally conductive and electrical insulating epoxy-based composites containing oriented ternary carbon/graphene/MgO hybrid network[J]. Ceramics International, 2022, 48(9): 13115-13124. |
37 | LIU Li, XIANG Daoping, WU Liangqing. Improved thermal conductivity of ceramic-epoxy composites by constructing vertically aligned nanoflower-like AlN network[J]. Ceramics International, 2022, 48(8): 10438-10446. |
38 | LI Haitong, FU Chenjie, CHEN Nan, et al. Ice-templated assembly strategy to construct three-dimensional thermally conductive networks of BN nanosheets and silver nanowires in polymer composites[J]. Composites Communications, 2021, 25: 100601. |
39 | CHEN Xuelong, Jacob Song Kiat LIM, YAN Weili, et al. Salt template assisted BN scaffold fabrication toward highly thermally conductive epoxy composites[J]. ACS Applied Materials & Interfaces, 2020, 12(14): 16987-16996. |
40 | PAN Duo, LI Qianming, ZHANG Wei, et al. Highly thermal conductive epoxy nanocomposites filled with 3D BN/C spatial network prepared by salt template assisted method[J]. Composites Part B: Engineering, 2021, 209: 108609. |
41 | HOSSAIN Saddam, CHUN Doo-Man. ZnO decorated polydimethylsiloxane sponges as photocatalysts for effective removal of methylene blue dye[J]. Materials Chemistry and Physics, 2020, 255: 123589. |
42 | LIN Qiuhao, HE Shan, LIU Qingqing, et al. Construction of a 3D interconnected boron nitride nanosheets in a PDMS matrix for high thermal conductivity and high deformability[J]. Composites Science and Technology, 2022, 226: 109528. |
43 | PAN Wu, HE Miaomiao, ZHANG Li, et al. Interfacial engineering of graphene nanosheets at MgO particles for thermal conductivity enhancement of polymer composites[J]. Nanomaterials, 2019, 9(5): 798. |
44 | CHEN Qiming, WU Wei, WANG Yi, et al. Polyurethane-templated 3D BN network for enhanced thermally conductive property of epoxy composites[J]. Polymer, 2021, 235: 124239. |
45 | CHEN Jin, HUANG Xingyi, ZHU Yingke, et al. Cellulose nanofiber supported 3D interconnected BN nanosheets for epoxy nanocomposites with ultrahigh thermal management capability[J]. Advanced Functional Materials, 2017, 27(5): 1604754. |
46 | YOU Jiangan, XING Haiping, XUE Jian, et al. Preparation of rigid cross-linked PVC foam with excellent thermal insulation through adding high-reflectivity IR opacifier[J]. Composites Science and Technology, 2021, 203: 108566. |
47 | ZHOU Wenying, ZHANG Yong, WANG Jianjun, et al. Lightweight porous polystyrene with high thermal conductivity by constructing 3D interconnected network of boron nitride nanosheets[J]. ACS Applied Materials & Interfaces, 2020, 12(41): 46767-46778. |
48 | XIAO Chao, CHEN Lu, TANG Yunlu, et al. Three dimensional porous alumina network for polymer composites with enhanced thermal conductivity[J]. Composites Part A: Applied Science and Manufacturing, 2019, 124: 105511. |
49 | TIAN Zhilin, SUN Jiajia, WANG Shaogang, et al. A thermal interface material based on foam-templated three-dimensional hierarchical porous boron nitride[J]. Journal of Materials Chemistry A, 2018, 6(36): 17540-17547. |
50 | LEE Jooyoung, KIM Jooheon. Improved through-plane thermal conductivity of 3D structured composites via BN alignment and AlN surface modification[J]. Composites Communications, 2021, 28: 100935. |
51 | XU Xinwei, HU Renchao, CHEN Meiyu, et al. 3D boron nitride foam filled epoxy composites with significantly enhanced thermal conductivity by a facial and scalable approach[J]. Chemical Engineering Journal, 2020, 397: 125447. |
52 | AHSAN Hafiz Muhammad, PEI Ying, LUO Xiaogang, et al. Novel stable Pickering emulsion based solid foams efficiently stabilized by microcrystalline cellulose/chitosan complex particles[J]. Food Hydrocolloids, 2020, 108: 106044. |
53 | QUILL Tyler J, SMITH Matthew K, ZHOU Tony, et al. Thermal and mechanical properties of 3D printed boron nitride-ABS composites[J]. Applied Composite Materials, 2018, 25(5): 1205-1217. |
54 | ZHENG Yanling, HUANG Xu, CHEN Jialiang, et al. A review of conductive carbon materials for 3D printing: Materials, technologies, properties, and applications[J]. Materials, 2021, 14(14): 3911. |
55 | CHEN Minhang, YIN Tingting, FU Peng, et al. Construction and mechanism of 3D printed polyamide 12/boron nitride template composites with localized and unidirectional thermally conductive property[J]. Composites Part B: Engineering, 2021, 225: 109267. |
56 | WANG Haohuan, HUANG Zhengyong, LI Jian, et al. Design of 3D printed bioinspired nacre-like structured materials with significantly enhanced thermal conductivity[J]. Applied Physics Letters, 2021, 118(13): 131903. |
57 | LIU Mengjing, CHIANG Sunwai, CHU Xiaodong, et al. Polymer composites with enhanced thermal conductivity via oriented boron nitride and alumina hybrid fillers assisted by 3-D printing[J]. Ceramics International, 2020, 46(13): 20810-20818. |
58 | JI Jiacheng, CHIANG Sum-Wai, LIU Mengjing, et al. Enhanced thermal conductivity of alumina and carbon fibre filled composites by 3-D printing[J]. Thermochimica Acta, 2020, 690: 178649. |
59 | DONG Jie, CAO Lei, LI Yun, et al. Largely improved thermal conductivity of PI/BNNS nanocomposites obtained by constructing a 3D BNNS network and filling it with AgNW as the thermally conductive bridges[J]. Composites Science and Technology, 2020, 196: 108242. |
60 | 冯东, 王博, 刘琦, 等. 高分子基功能复合材料的熔融沉积成型研究进展[J]. 复合材料学报, 2021, 38(5): 1371-1386. |
FENG Dong, WANG Bo, LIU Qi, et al. Research progress in manufacturing multifunctional polymer composite materials based on fused deposition modeling technology[J]. Acta Materiae Compositae Sinica, 2021, 38(5): 1371-1386. | |
61 | GARCIA-TAORMINA Alina R, ADIE Alwen, RUTH Schwaiger, et al. A review of coated nano- and micro-lattice materials[J]. Journal of Materials Research, 2021, 36(18): 3607-3627. |
62 | WANG Xiongwei, WU Peiyi. Preparation of highly thermally conductive polymer composite at low filler content via a self-assembly process between polystyrene microspheres and boron nitride nanosheets[J]. ACS Applied Materials & Interfaces, 2017, 9(23): 19934-19944. |
63 | WANG Xiao, LU Hui, FENG Changping, et al. Facile method to fabricate highly thermally conductive UHMWPE/BN composites with the segregated structure for thermal management[J]. Plastics, Rubber and Composites, 2020, 49(5): 196-203. |
64 | YUAN Hao, WANG Yang, LI Ting, et al. Fabrication of thermally conductive and electrically insulating polymer composites with isotropic thermal conductivity by constructing a three-dimensional interconnected network[J]. Nanoscale, 2019, 11(23): 11360-11368. |
65 | SHEN Wanting, WU Wei, LIU Chao, et al. Achieving a high thermal conductivity for segregated BN/PLA composites via hydrogen bonding regulation through cellulose network[J]. Polymers for Advanced Technologies, 2020, 31(9): 1911-1920. |
66 | YE Xinli, CHEN Zhaofeng, AI Sufen, et al. Mechanical and thermal properties of reticulated SiC aerogel composite prepared by template method[J]. Journal of Composite Materials, 2019, 53(28/29/30): 4117-4124. |
[1] | 李梦圆, 郭凡, 李群生. 聚乙烯醇生产中回收工段第三、第四精馏塔的模拟与优化[J]. 化工进展, 2023, 42(S1): 113-123. |
[2] | 张瑞杰, 刘志林, 王俊文, 张玮, 韩德求, 李婷, 邹雄. 水冷式复叠制冷系统的在线动态模拟与优化[J]. 化工进展, 2023, 42(S1): 124-132. |
[3] | 王太, 苏硕, 李晟瑞, 马小龙, 刘春涛. 交流电场中贴壁气泡的动力学行为[J]. 化工进展, 2023, 42(S1): 133-141. |
[4] | 孙继鹏, 韩靖, 唐杨超, 闫汉博, 张杰瑶, 肖苹, 吴峰. 硫黄湿法成型过程数值模拟与操作参数优化[J]. 化工进展, 2023, 42(S1): 189-196. |
[5] | 陈匡胤, 李蕊兰, 童杨, 沈建华. 质子交换膜燃料电池气体扩散层结构与设计研究进展[J]. 化工进展, 2023, 42(S1): 246-259. |
[6] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[7] | 胡喜, 王明珊, 李恩智, 黄思鸣, 陈俊臣, 郭秉淑, 于博, 马志远, 李星. 二硫化钨复合材料制备与储钠性能研究进展[J]. 化工进展, 2023, 42(S1): 344-355. |
[8] | 崔守成, 徐洪波, 彭楠. 两种MOFs材料用于O2/He吸附分离的模拟分析[J]. 化工进展, 2023, 42(S1): 382-390. |
[9] | 徐若思, 谭蔚. C形管池沸腾两相流流场模拟与流固耦合分析[J]. 化工进展, 2023, 42(S1): 47-55. |
[10] | 张凤岐, 崔成东, 鲍学伟, 朱炜玄, 董宏光. 胺液吸收-分步解吸脱硫工艺的设计与评价[J]. 化工进展, 2023, 42(S1): 518-528. |
[11] | 郭强, 赵文凯, 肖永厚. 增强流体扰动强化变压吸附甲硫醚/氮气分离的数值模拟[J]. 化工进展, 2023, 42(S1): 64-72. |
[12] | 邵博识, 谭宏博. 锯齿波纹板对挥发性有机物低温脱除过程强化模拟分析[J]. 化工进展, 2023, 42(S1): 84-93. |
[13] | 许友好, 王维, 鲁波娜, 徐惠, 何鸣元. 中国炼油创新技术MIP的开发策略及启示[J]. 化工进展, 2023, 42(9): 4465-4470. |
[14] | 刘炫麟, 王驿凯, 戴苏洲, 殷勇高. 热泵中氨基甲酸铵分解反应特性及反应器结构优化[J]. 化工进展, 2023, 42(9): 4522-4530. |
[15] | 罗成, 范晓勇, 朱永红, 田丰, 崔楼伟, 杜崇鹏, 王飞利, 李冬, 郑化安. 中低温煤焦油加氢反应器不同分配器中液体分布的CFD模拟[J]. 化工进展, 2023, 42(9): 4538-4549. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |