化工进展 ›› 2023, Vol. 42 ›› Issue (12): 6301-6309.DOI: 10.16085/j.issn.1000-6613.2023-0075
• 工业催化 • 上一篇
收稿日期:
2023-01-15
修回日期:
2023-03-22
出版日期:
2023-12-25
发布日期:
2024-01-08
通讯作者:
齐随涛
作者简介:
陈宇晴(1999—),女,硕士研究生,研究方向为环境友好催化反应及催化剂设计。E-mail:1037528785@qq.com。
基金资助:
CHEN Yuqing(), QI Suitao(), YANG Bolun
Received:
2023-01-15
Revised:
2023-03-22
Online:
2023-12-25
Published:
2024-01-08
Contact:
QI Suitao
摘要:
生物柴油的发展对实现碳减排、推进能源替补具有重要科学意义,将生物柴油副产粗甘油进行绿色处理及高值转化,有利于促进生物柴油产业链的延伸发展。甘油氢解制备1,3-丙二醇已成为目前粗甘油高值化利用的研究热点,设计开发高活性、高选择性的催化剂是该过程的关键。本文首先阐述了Pt-WO x 系催化剂上甘油氢解制备1,3-丙二醇的脱水加氢机理、直接氢解机理以及氧化还原机理,明确了Pt-WO x 系催化剂中Pt分散度、WO x 状态和Pt-WO x 界面接触等是影响催化性能的主要因素,并对其进行综述;进一步分析Pt分散度、WO x 状态和Pt-WO x 界面接触的影响机制。Pt分散度会影响H2的活化及反应中间体的氢化;WO x 状态与催化剂Brönsted酸性位点密不可分,还可促进活性金属的分散;Pt-WO x 界面则影响催化剂氢溢流以及原位Brönsted酸的生成。最后,提出今后应从这三方面构筑新型Pt-WO x 系催化剂;探究各活性组分对甘油氢解反应的影响规律及组分间相互作用的本质特征,完善反应机理;考察加氢方式对甘油选择性氢解的影响机制,以促进甘油选择性氢解制1,3-丙二醇技术路线的规模化发展。
中图分类号:
陈宇晴, 齐随涛, 杨伯伦. Pt-WO x 系催化剂上甘油氢解制1,3-丙二醇的研究进展[J]. 化工进展, 2023, 42(12): 6301-6309.
CHEN Yuqing, QI Suitao, YANG Bolun. Research progress of hydrogenolysis of glycerol to 1,3-propanediol over supported Pt-WO x catalysts[J]. Chemical Industry and Engineering Progress, 2023, 42(12): 6301-6309.
1 | 刘锐宇. 生物柴油的研究现状及展望[J]. 石化技术, 2022, 29(1): 186-187. |
LIU Ruiyu. Research status and prospect of biodiesel[J]. Petrochemical Industry Technology, 2022, 29(1): 186-187. | |
2 | NANDA M R, YUAN Z S, QIN W S, et al. Thermodynamic and kinetic studies of a catalytic process to convert glycerol into solketal as an oxygenated fuel additive[J]. Fuel, 2014, 117: 470-477. |
3 | WANG Yuan, XIAO Yang, XIAO Guomin. Sustainable value-added C3 chemicals from glycerol transformations: A mini review for heterogeneous catalytic processes[J]. Chinese Journal of Chemical Engineering, 2019, 27(7): 1536-1542. |
4 | SUN D, YAMADA Y, SATO S, et al. Glycerol hydrogenolysis into useful C3 chemicals[J]. Applied Catalysis B: Environmental, 2016, 193: 75-92. |
5 | 王冬祥, 王晨, 王世杰, 等. 粗甘油高值化利用研究现状及发展趋势[J]. 化工进展, 2020, 39(8): 3041-3048. |
WANG Dongxiang, WANG Chen, WANG Shijie, et al. Research status and development trend of high-value utilization of crude glycerol[J]. Chemical Industry and Engineering Progress, 2020, 39(8): 3041-3048. | |
6 | BAGHERI S, JULKAPLI N M, YEHYE W A. Catalytic conversion of biodiesel derived raw glycerol to value added products[J]. Renewable and Sustainable Energy Reviews, 2015, 41: 113-127. |
7 | ZHAO Huaiyuan, ZHENG Liping, LI Xuewen, et al. Hydrogenolysis of glycerol to 1,2-propanediol over Cu-based catalysts: A short review[J]. Catalysis Today, 2020, 355: 84-95. |
8 | ANITHA M, KAMARUDIN S K, KOFLI N T. The potential of glycerol as a value-added commodity[J]. Chemical Engineering Journal, 2016, 295: 119-130. |
9 | LIU Xi, YIN Bin, ZHANG Wenxiang, et al. Catalytic transfer hydrogenolysis of glycerol over heterogeneous catalysts: a short review on mechanistic studies[J]. Chemical Record, 2021, 21(7): 1792-1810. |
10 | MANE R, JEON Y, RODE C. A review on non-noble metal catalysts for glycerol hydrodeoxygenation to 1,2-propanediol with and without external hydrogen[J]. Green Chemistry, 2022, 24: 6751-6781. |
11 | 余晓鹏, 张付宝. 甘油氢解制备1,2-丙二醇铜基催化剂研究进展[J]. 应用化工, 2022, 51(6): 1719-1723. |
YU Xiaopeng, ZHANG Fubao. Advance in hydrogenolysis of glycerol to 1,2-propanediol over Cu-based catalysts[J]. Applied Chemical Industry, 2022, 51(6): 1719-1723. | |
12 | 王辉国, 汪宏宇, 罗国华, 等. 甘油氢解制备1,2-丙二醇催化剂的研究进展[J]. 化工进展, 2018, 37(6): 2214-2221. |
WANG Huiguo, WANG Hongyu, LUO Guohua, et al. Research progress of catalyst in catalytic hydrogenolysis of glycerol to 1,2-propanediol[J]. Chemical Industry and Engineering Progress, 2018, 37(6): 2214-2221. | |
13 | 李烁, 李靖. 国内1,3-丙二醇市场现状和发展建议[J]. 精细与专用化学品, 2022, 30(3): 12-15. |
LI Shuo, LI Jing. Domestic market situation and development suggestions of 1,3-propanediol[J]. Fine and Specialty Chemicals, 2022, 30(3): 12-15. | |
14 | 方伟国, 姚小兰, 杨继东, 等. 生物基甘油氢解合成1,3-丙二醇催化剂的研究进展[J]. 分子催化, 2018, 32(6): 581-593. |
FANG Weiguo, YAO Xiaolan, YANG Jidong, et al. Research progress of catalysts in hydrogenolysis of bioglycerol to 1,3-propanediol [J]. Journal of Molecular Catalysis, 2018, 32(6): 581-593. | |
15 | 王佳. 钨基催化剂氢解甘油制备1,3-丙二醇的研究进展[J]. 中国钨业, 2018, 33(06): 22-29, 35. |
WANG Jia. Research progress in selective hydrogenolysis of glycerol to 1,3-propanediol over tungsten-based catalysts[J]. China Tungsten Industry, 2018, 33(06): 22-29, 35. | |
16 | SILVA RUY A D DA, DE BRITO ALVES R M, HEWER T L R, et al. Catalysts for glycerol hydrogenolysis to 1,3-propanediol: A review of chemical routes and market[J]. Catalysis Today, 2021, 381: 243-253. |
17 | WANG Jia, YANG Man, WANG Aiqin. Selective hydrogenolysis of glycerol to 1,3-propanediol over Pt-W based catalysts[J]. Chinese Journal of Catalysis, 2020, 41(9): 1311-1319. |
18 | NAKAGAWA Y, TAMURA M, TOMISHIGE K. Catalytic materials for the hydrogenolysis of glycerol to 1,3-propanediol[J]. Journal of Materials Chemistry A, 2014, 2(19): 6688-6702. |
19 | GARCÍA-FERNÁNDEZ S, GANDARIAS I, REQUIES J, et al. New approaches to the Pt/WO x /Al2O3 catalytic system behavior for the selective glycerol hydrogenolysis to 1,3-propanediol[J]. Journal of Catalysis, 2015, 323: 65-75. |
20 | ZHOU Wei, LUO Juan, WANG Yue, et al. WO x domain size, acid properties and mechanistic aspects of glycerol hydrogenolysis over Pt/WO x /ZrO2 [J]. Applied Catalysis B: Environmental, 2019, 242: 410-421. |
21 | FENG Shanghua, ZHAO Binbin, LIANG Yu, et al. Improving selectivity to 1,3-propanediol for glycerol hydrogenolysis using W- and Al-incorporated SBA-15 as support for Pt nanoparticles[J]. Industrial & Engineering Chemistry Research, 2019, 58(8): 2661-2671. |
22 | FENG Shanghua, ZHAO Binbin, LIU Lei, et al. Platinum supported on WO3-doped aluminosilicate: A highly efficient catalyst for selective hydrogenolysis of glycerol to 1,3-propanediol[J]. Industrial & Engineering Chemistry Research, 2017, 56(39): 11065-11074. |
23 | MAI C T Q, NG F T T. Effect of metals on the hydrogenolysis of glycerol to higher value sustainable and green chemicals using a supported HSiW catalyst[J]. Organic Process Research & Development, 2016, 20(10): 1774-1780. |
24 | COLL D, DELBECQ F, ARAY Y, et al. Stability of intermediates in the glycerol hydrogenolysis on transition metal catalysts from first principles[J]. Physical Chemistry Chemical Physics, 2011, 13(4): 1448-1456. |
25 | GONG Leifeng, LU Yuan, DING Yunjie, et al. Selective hydrogenolysis of glycerol to 1,3-propanediol over a Pt/WO3/TiO2/SiO2 catalyst in aqueous media[J]. Applied Catalysis A: General, 2010, 390(1/2): 119-126. |
26 | PRIYA S S, KUMAR V P, KANTAM M L, et al. High efficiency conversion of glycerol to 1,3-propanediol using a novel platinum-tungsten catalyst supported on SBA-15[J]. Industrial & Engineering Chemistry Research, 2015, 54(37): 9104-9115. |
27 | ZHU Shanhui, GAO Xiaoqing, ZHU Yulei, et al. Promoting effect of WO x on selective hydrogenolysis of glycerol to 1,3-propanediol over bifunctional Pt-WO x /Al2O3 catalysts[J]. Journal of Molecular Catalysis A: Chemical, 2015, 398: 391-398. |
28 | ZHOU Wei, LI Ying, WANG Xiaofei, et al. Insight into the nature of Brönsted acidity of Pt-(WO x ) n -H model catalysts in glycerol hydrogenolysis[J]. Journal of Catalysis, 2020, 388: 154-163. |
29 | GARCÍA-FERNÁNDEZ S, GANDARIAS I, REQUIES J, et al. The role of tungsten oxide in the selective hydrogenolysis of glycerol to 1,3-propanediol over Pt/WO x /Al2O3 [J]. Applied Catalysis B: Environmental, 2017, 204: 260-272. |
30 | FAN Yiqiu, CHENG Shijie, WANG Hao, et al. Nanoparticulate Pt on mesoporous SBA-15 doped with extremely low amount of W as a highly selective catalyst for glycerol hydrogenolysis to 1,3-propanediol[J]. Green Chemistry, 2017, 19(9): 2174-2183. |
31 | WANG Jia, ZHAO Xiaochen, LEI Nian, et al. Hydrogenolysis of glycerol to 1,3-propanediol under low hydrogen pressure over WO x -supported single/pseudo-single atom Pt catalyst[J]. ChemSusChem, 2016, 9(8): 784-790. |
32 | WEN Yinglin, SHEN Weihua, LI Yang, et al. Promoting effect of Ru in the Pt-Ru/WO x /Al2O3 catalyst for the selective hydrogenolysis of glycerol to 1,3-propanediol[J]. Reaction Kinetics, Mechanisms and Catalysis, 2021, 132(1): 219-233. |
33 | 张威, 陈长林. 偏硼酸镁修饰的铂钨铝复合氧化物催化甘油氢解[J]. 工业催化, 2021, 29(5): 47-53. |
ZHANG Wei, CHEN Changlin. Hydrogenolysis of glycerol catalyzed by magnesium metaborate modified Pt-W-Al composite oxide[J]. Industrial Catalysis, 2021, 29(5): 47-53. | |
34 | ZHU Min, CHEN Changlin. Hydrogenolysis of glycerol to 1,3-propanediol over Li2B4O7-modified tungsten-zirconium composite oxides supported platinum catalyst[J]. Reaction Kinetics, Mechanisms and Catalysis, 2018, 124(2): 683-699. |
35 | LIANG Yuxin, SHI Guojun, JIN Kai. Promotion effect of Al2O3 on Pt-WO x /SiO2 catalysts for selective hydrogenolysis of bioglycerol to 1,3-propanediol in liquid phase[J]. Catalysis Letters, 2020, 150(8): 2365-2376. |
36 | FAN Yiqiu, CHENG Shijie, WANG Hao, et al. Pt-WO x on monoclinic or tetrahedral ZrO2: Crystal phase effect of zirconia on glycerol hydrogenolysis to 1,3-propanediol[J]. Applied Catalysis B: Environmental, 2017, 217: 331-341. |
37 | ZENG Yang, JIANG Lan, ZHANG Xiaoxin, et al. Effect of titania polymorphs on the structure and catalytic performance of the Pt-WO x /TiO2 catalyst in glycerol hydrogenolysis to 1,3-propanediol[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(29): 9532-9545. |
38 | 曾杨, 姜兰, 张晓昕, 等. W掺杂多级孔SiO2 纳米球负载Pt用于催化甘油氢解制1,3-丙二醇[J]. 化学学报, 2022, 80(7): 903-912. |
ZENG Yang, JIANG Lan, ZHANG Xiaoxin, et al. W-doped hierarchically porous silica nanosphere supported platinum for catalytic glycerol hydrogenolysis to 1,3-propanediol[J]. Acta Chimica Sinica, 2022, 80(7): 903-912. | |
39 | LIU Longjie, ZHANG Yanhua, WANG Aiqin, et al. Mesoporous WO3 supported Pt catalyst for hydrogenolysis of glycerol to 1,3-propanediol[J]. Chinese Journal of Catalysis, 2012, 33(7/8): 1257-1261. |
40 | ZHAO Binbin, LIANG Yu, LIU Lei, et al. Discovering positively charged Pt for enhanced hydrogenolysis of glycerol to 1,3-propanediol[J]. Green Chemistry, 2020, 22(23): 8254-8259. |
41 | SHI Guojun, XU Jinyang, SONG Zhigang, et al. Selective hydrogenolysis of glycerol to 1,3-propanediol over Pt-WO x /SAPO-34 catalysts[J]. Molecular Catalysis, 2018, 456: 22-30. |
42 | SHI Guojun, CAO Zhen, XU Jinyang, et al. Effect of WO x doping into Pt/SiO2 catalysts for glycerol hydrogenolysis to 1,3-propanediol in liquid phase[J]. Catalysis Letters, 2018, 148(8): 2304-2314. |
43 | BHOWMIK S, ENJAMURI N, DARBHA S. Hydrogenolysis of glycerol in an aqueous medium over Pt-WO3 /zirconium phosphate catalysts studied by 1H NMR spectroscopy[J]. New Journal of Chemistry, 2021, 45(11): 5013-5022. |
44 | BHOWMIK S, ENJAMURI N, SETHIA G, et al. Insights into active tungsten species on Pt/W/SBA-15 catalysts for selective hydrodeoxygenation of glycerol to 1,3-propanediol[J]. Molecular Catalysis, 2022, 531: 112704. |
45 | LI Yuming, LIU Haichao. Selective hydrogenolysis of glycerol to 1,3-propanediol over supported platinum-tungsten oxide catalysts[J]. Acta Physico-Chimica Sinica, 2022, 38(10): 2207014-2207010. |
46 | GARCÍA-FERNÁNDEZ S, GANDARIAS I, TEJIDO-NÚÑEZ Y, et al. Influence of the support of bimetallic platinum tungstate catalysts on 1,3-propanediol formation from glycerol[J]. ChemCatChem, 2017, 9(24): 4508-4519. |
47 | AIHARA T, KOBAYASHI H, FENG Shixiang, et al. Effect of WO3 loading on the activity of Pt/WO3/Al2O3 catalysts in selective hydrogenolysis of glycerol to 1,3-propanediol[J]. Chemistry Letters, 2017, 46(10): 1497-1500. |
48 | LEI Nian, ZHAO Xiaochen, HOU Baolin, et al. Effective hydrogenolysis of glycerol to 1,3-propanediol over metal-acid concerted Pt/WO x /Al2O3 catalysts[J]. ChemCatChem, 2019, 11(16): 3903-3912. |
49 | WANG Chao, CHEN Changlin. Stabilized hydrogenolysis of glycerol to 1,3-propanediol over Mg modified Pt/WO x -ZrO2 catalysts[J]. Reaction Kinetics, Mechanisms and Catalysis, 2019, 128(1): 461-477. |
50 | ZHU Shanhui, GAO Xiaoqing, ZHU Yulei, et al. SiO2 promoted Pt/WO x /ZrO2 catalysts for the selective hydrogenolysis of glycerol to 1,3-propanediol[J]. Applied Catalysis B: Environmental, 2014, 158/159: 391-399. |
51 | ZHAO Junxiu, HOU Bo, GUO Heqin, et al. Insight into the influence of WO x -support interaction over Pt /W/SiZr catalysts on 1,3-propanediol synthesis from glycerol[J]. ChemCatChem, 2022, 14(14): e202200341. |
52 | ZHAO Binbin, LIANG Yu, YAN Wenjun, et al. A facile approach to tune WOx species combining Pt catalyst for enhanced catalytic performance in glycerol hydrogenolysis[J]. Industrial & Engineering Chemistry Research, 2021, 60(34): 12534-12544. |
53 | ZHAO Binbin, LIANG Yu, LIU Lei, et al. Facilitating Pt-WO x species interaction for efficient glycerol hydrogenolysis to 1,3-propanediol[J]. ChemCatChem, 2021, 13(16): 3695-3705. |
54 | ZHOU Maoxiang, YANG Man, YANG Xiaofeng, et al. On the mechanism of H2 activation over single-atom catalyst: An understanding of Pt1/WO x in the hydrogenolysis reaction[J]. Chinese Journal of Catalysis, 2020, 41(3): 524-532. |
55 | NIU Yufeng, ZHAO Binbin, LIANG Yu, et al. Promoting role of oxygen deficiency on a WO3-supported Pt catalyst for glycerol hydrogenolysis to 1,3-propanediol[J]. Industrial & Engineering Chemistry Research, 2020, 59(16): 7389-7397. |
56 | CHEN Chen, LIANG Yu, TANG Qiong, et al. In situ growth of tungsten oxide on alumina to boost the catalytic performance of platinum for glycerol hydrogenolysis[J]. Industrial & Engineering Chemistry Research, 2022, 61(34): 12504-12512. |
57 | YANG Man, WU Keying, SUN Shaodong, et al. Regulating oxygen defects via atomically dispersed alumina on Pt/WO x catalyst for enhanced hydrogenolysis of glycerol to 1,3-propanediol[J]. Applied Catalysis B: Environmental, 2022, 307: 121207. |
58 | ZHAO Xiaochen, WANG Jia, YANG Man, et al. Selective hydrogenolysis of glycerol to 1,3-propanediol: Manipulating the frustrated Lewis pairs by introducing gold to Pt/WO x [J]. ChemSusChem, 2017, 10(5): 819-824. |
59 | MIAO Gai, SHI Lei, ZHOU Zhimin, et al. Catalyst design for selective hydrodeoxygenation of glycerol to 1,3-propanediol[J]. ACS Catalysis, 2020, 10(24): 15217-15226. |
60 | LEI Nian, MIAO Zhili, LIU Fei, et al. Understanding the deactivation behavior of Pt/WO3/Al2O3 catalyst in the glycerol hydrogenolysis reaction[J]. Chinese Journal of Catalysis, 2020, 41(8): 1261-1267. |
61 | WANG Ben, LIU Fei, GUAN Weixiang, et al. Promoting the effect of Au on the selective hydrogenolysis of glycerol to 1,3-propanediol over the Pt/WOx/Al2O3 catalyst[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(16): 5705-5715. |
62 | ZHOU Wei, ZHAO Yujun, WANG Yue, et al. Glycerol hydrogenolysis to 1,3-propanediol on tungstate/zirconia-supported platinum: hydrogen spillover facilitated by Pt(111) formation[J]. ChemCatChem, 2016, 8(23): 3663-3671. |
63 | 徐文峰, 牛鹏宇, 郭荷芹, 等. Al2O3载体负载的铂和钨双功能催化剂在甘油氢解制1,3-丙二醇中的性能研究[J]. 燃料化学学报, 2021, 49(9): 1270-1280. |
XU Wenfeng, NIU Pengyu, GUO Heqin, et al. Study on the performance of platinum and tungsten bifunctional catalyst supported on Al2O3 in the hydrogenolysis of glycerol to 1,3-propanediol[J]. Journal of Fuel Chemistry and Technology, 2021, 49(9): 1270-1280. | |
64 | 尹艳艳, 赵余龙, 孙齐磊, 等. 铂/氧化钨/硅铝氧化物催化甘油氢解性能研究[J]. 金属功能材料, 2021, 28(6): 44-51. |
YIN Yanyan, ZHAO Yulong, SUN Qilei, et al. The platinum/tungsten oxide/amorphous silicon aluminum oxide catalysts for catalytic hydrogenolysis of glycerol[J]. Metallic Functional Materials, 2021, 28(6): 44-51. | |
65 | WANG Yaju, ZHOU Zhiming, WANG Chao, et al. Hydrogenolysis of glycerol over TiO2-supported Pt-WO x catalysts: Effects of the TiO2 crystal phase and WO x loading[J]. Frontiers in Chemistry, 2022, 10: 1004925-1004925. |
66 | KUROSAKA T, MARUYAMA H, NARIBAYASHI I, et al. Production of 1,3-propanediol by hydrogenolysis of glycerol catalyzed by Pt/WO3/ZrO2 [J]. Catalysis Communications, 2008, 9(6): 1360-1363. |
67 | QIN Lizhen, SONG Minjie, CHEN Changlin. Aqueous-phase deoxygenation of glycerol to 1,3-propanediol over Pt/WO3/ZrO2 catalysts in a fixed-bed reactor[J]. Green Chemistry, 2010, 12(8): 1466-1472. |
68 | GONG Leifeng, Yuan LYU, DING Yunjie, et al. Solvent effect on selective dehydroxylation of glycerol to 1,3-propanediol over a Pt/WO3/ZrO2 catalyst[J]. Chinese Journal of Catalysis, 2009, 30(12): 1189-1191. |
69 | NUMPILAI T, CHENG C K, SEUBSAI A, et al. Sustainable utilization of waste glycerol for 1,3-propanediol production over Pt/WO x /Al2O3 catalysts: Effects of catalyst pore sizes and optimization of synthesis conditions[J]. Environmental Pollution, 2021, 272: 116029. |
70 | XU Wenfeng, NIU Pengyu, GUO Heqin, et al. Hydrogenolysis of glycerol to 1,3-propanediol over a Al2O3-supported platinum tungsten catalyst with two-dimensional open structure[J]. Reaction Kinetics, Mechanisms and Catalysis, 2021, 133(1): 173-189. |
71 | CHENG Shijie, FAN Yiqiu, ZHANG Xiaoxin, et al. Tungsten-doped siliceous mesocellular foams-supported platinum catalyst for glycerol hydrogenolysis to 1,3-propanediol[J]. Applied Catalysis B: Environmental, 2021, 297: 120428. |
[1] | 金鑫, 李玉姗, 解青青, 王梦雨, 夏星帆, 杨朝合. 多孔材料催化丙酮缩甘油合成研究进展[J]. 化工进展, 2023, 42(2): 731-743. |
[2] | 张广宇, 赵健, 孙峰, 姜杰, 孙冰, 徐伟. CO2催化转化制碳酸丙烯酯研究进展:催化剂设计、性能与反应机理[J]. 化工进展, 2022, 41(S1): 177-189. |
[3] | 胡文德, 王仰东, 王传明. 合成气直接催化转化制低碳烯烃研究进展[J]. 化工进展, 2022, 41(9): 4754-4766. |
[4] | 岳瑶, 蒲梦凡, 王文瑞, 赵俭波, 曹辉. 聚天冬氨酸凝胶的制备及生物降解性[J]. 化工进展, 2022, 41(8): 4491-4497. |
[5] | 李艳平, 严大洲, 杨涛, 温国胜, 韩治成. 硅基电子气去除甲基氯硅烷的分子动力学模拟[J]. 化工进展, 2022, 41(8): 4375-4385. |
[6] | 常耀萍, 官修帅, 郑谦, 靳山彪, 张长明, 张小超. 水热法制备3D花球状Bi2SiO5及其光催化油酸酯化反应[J]. 化工进展, 2022, 41(8): 4181-4191. |
[7] | 陈丹阳, 朱建宇, 吴勤, 王自庆, 张金利. KF/MgO催化甘油和碳酸二甲酯酯交换合成甘油碳酸酯[J]. 化工进展, 2022, 41(4): 2082-2089. |
[8] | 陈欢, 万坤, 牛波, 张亚运, 龙东辉. 废弃塑料化学回收及升级再造研究进展[J]. 化工进展, 2022, 41(3): 1453-1469. |
[9] | 纪子柯, 包成. CO选择性甲烷化的研究进展[J]. 化工进展, 2022, 41(1): 120-132. |
[10] | 张雯惠, 华睿, 齐随涛. 低温费托合成蜡油加氢裂化精制技术的研究进展[J]. 化工进展, 2021, 40(S1): 81-87. |
[11] | 田原宇, 乔英云. 石油热解过程中自由基调控反应机理的构建与应用[J]. 化工进展, 2021, 40(5): 2928-2932. |
[12] | 柯义虎, 李景云, 刘春玲, 董文生, 刘海. Zn(Al)O复合氧化物负载Au催化剂催化氧化甘油制备1,3-二羟基丙酮[J]. 化工进展, 2021, 40(5): 2581-2592. |
[13] | 王彤, 安华良, 李芳, 薛伟, 王延吉. 非均相催化剂催化5-羟甲基糠醛氢解制备2,5-二甲基呋喃研究进展[J]. 化工进展, 2021, 40(2): 824-834. |
[14] | 刘义涛, 朱明辉, 杨子旭, 孟博, 涂维峰, 韩一帆. 煤制化学品:合成气直接制低碳烯烃催化剂研究进展[J]. 化工进展, 2021, 40(2): 594-604. |
[15] | 陈惠超, 李雪, 梁潇, 王梦. 机械化学方法在环境污染控制领域的应用研究进展[J]. 化工进展, 2021, 40(11): 6332-6346. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |