化工进展 ›› 2023, Vol. 42 ›› Issue (11): 5776-5785.DOI: 10.16085/j.issn.1000-6613.2022-2306
• 材料科学与技术 •
华国燕1,2(), 徐晓明1,2, 陈宇轩1,2, 张艳红3, 刘福强1,2()
收稿日期:
2022-12-12
修回日期:
2023-02-09
出版日期:
2023-11-20
发布日期:
2023-12-15
通讯作者:
刘福强
作者简介:
华国燕(1997—),女,硕士研究生,研究方向为新型膜材料的制备与应用。E-mail:hgy03172020@163.com。
基金资助:
HUA Guoyan1,2(), XU Xiaoming1,2, CHEN Yuxuan1,2, ZHANG Yanhong3, LIU Fuqiang1,2()
Received:
2022-12-12
Revised:
2023-02-09
Online:
2023-11-20
Published:
2023-12-15
Contact:
LIU Fuqiang
摘要:
随着锂电池、航空航天等工业的迅速发展,锂资源的高效开发利用尤为关键。膜分离技术因能耗低、操作简便等优势,被广泛应用于镁锂分离领域。金属有机框架(MOFs)具有丰富的拓扑结构、较大的比表面积及稳定的孔隙率等特性,可用于开发适于镁锂分离的理想膜材料。本文着重概述了MOFs基膜的主要类型及制备策略,重点比较了MOFs多晶膜、MOFs聚酰胺膜及MOFs通道膜三类MOFs基膜的镁锂分离选择性,并分析了其关键机制(主要包括尺寸筛分效应、离子-基团相互作用、脱水-再水合机制与Donnan理论)。进一步展望了面向镁锂分离的MOFs基膜的改良方向,主要分为MOFs选择与改性、基膜制备方法优化以及基底改性,有望进一步提升镁锂分离选择性以及MOFs基膜稳定性,为其应用推广提供新的研发思路。
中图分类号:
华国燕, 徐晓明, 陈宇轩, 张艳红, 刘福强. 面向镁锂分离的MOFs基膜研究进展[J]. 化工进展, 2023, 42(11): 5776-5785.
HUA Guoyan, XU Xiaoming, CHEN Yuxuan, ZHANG Yanhong, LIU Fuqiang. Progress and prospects of MOFs-based membranes for Mg-Li separation[J]. Chemical Industry and Engineering Progress, 2023, 42(11): 5776-5785.
金属 中心 | MOFs | 有机配体 | 孔径 /nm | 结构示意图 | 参考 文献 |
---|---|---|---|---|---|
Zn | ZIF-7 | 苯并咪唑 | 0.3 | [ | |
ZIF-8 | 2-甲基咪唑 | 0.34 | [ | ||
Cu | HKUST-1 | 均苯三甲酸 | 0.9 | [ | |
MOF-808 | 均苯三甲酸 | 0.48 | [ | ||
Zr | UiO-66 | 1,4-苯二甲酸 | 0.6 | [ | |
UiO-67 | 4,4-联苯二甲酸 | 1/13 | [ |
表1 适于镁锂分离的MOFs特性
金属 中心 | MOFs | 有机配体 | 孔径 /nm | 结构示意图 | 参考 文献 |
---|---|---|---|---|---|
Zn | ZIF-7 | 苯并咪唑 | 0.3 | [ | |
ZIF-8 | 2-甲基咪唑 | 0.34 | [ | ||
Cu | HKUST-1 | 均苯三甲酸 | 0.9 | [ | |
MOF-808 | 均苯三甲酸 | 0.48 | [ | ||
Zr | UiO-66 | 1,4-苯二甲酸 | 0.6 | [ | |
UiO-67 | 4,4-联苯二甲酸 | 1/13 | [ |
类别 | 膜材料 | MOFs | 料液浓度 | 操作条件 | Li+/Mg2+系数 | 参考文献 |
---|---|---|---|---|---|---|
MOFs多晶膜 | PSS@HKUST-1-6.7 | HKUST-1 | 0.5mol/L | 0.4V | 1815 | [ |
PIM@ZIF-8 | ZIF-8 | 0.1mol/L | — | 893.75 | [ | |
U-SM(25) | UiO-66-SO3H | 0.1mol/L | 5mA/cm2 | 776 | [ | |
UiO-67/AAO | UiO-67 | 0.5mol/L | -1.0V | 159.4 | [ | |
LLM-4 | UiO-66-NH2 | 0.1mol/L | 5mA/cm2 | 65 | [ | |
PM-Cx | polyMOF | 0.1mol/L | 2mA/cm2 | 12.3 | [ | |
UiO-66-SO3H@PVC | UiO-66-SO3H | 1.0mol/L | — | 4.79 | [ | |
PP/TA-Fe Ⅲ/ZIF-8 | ZIF-8 | 1.0mol/L | 0.3V | 3.87 | [ | |
MOFs聚酰胺膜 | TFN/PEI-3 | UiO-66-NH2 | 2g/L | 0.4MPa | 36.9 | [ |
TFN-(Zr)-2 | UiO-66(Zr)-NH2 | 0.1mol/L | 10mA/cm2 | 约12 | [ | |
TFN-(Zr/Ti)-2 | UiO-66(Zr/Ti)-NH2 | 0.1mol/L | 10mA/cm2 | 11.38 | [ | |
MOFs通道膜 | SSP@ZIF-8-10% | ZIF-8 | 0.5mol/L | 0.5V | 4913 | [ |
Asy-MOFSNC | UiO-66-(COOH)2 | 1.0mol/L | -1V | 1590.1 | [ | |
1.0mol/L | +1V | 562.4 | [ | |||
Uni-MOFSNC | UiO-66-(COOH)2 | 1.0mol/L | -1V | 235.1 | [ | |
UiO-66-COOH-SNC | UiO-66-COOH | 0.1mol/L | 1V | 约200 | [ | |
UiO-66(PSS)/ZIF-8(PVP) | UiO-66、ZIF-8 | 0.01mol/L | 1V | 29 | [ | |
UiO-66/ZIF-8(PVP) | UiO-66、ZIF-8 | 0.01mol/L | 1V | 约10 | [ | |
UiO-66-NH2-SNC | UiO-66-NH2 | 0.1mol/L | 1V | 1.3 | [ | |
其他膜 | 磺化GO | — | 0.1mol/L | 0.2MPa | 8.46 | [ |
rGO@SAPS-1 | — | 0.05mol/L | 12.73mA/cm2 | 3.8 | [ | |
MXene | — | 0.2mol/L | — | 2 | [ |
表2 三类镁锂分离膜的组成及性能
类别 | 膜材料 | MOFs | 料液浓度 | 操作条件 | Li+/Mg2+系数 | 参考文献 |
---|---|---|---|---|---|---|
MOFs多晶膜 | PSS@HKUST-1-6.7 | HKUST-1 | 0.5mol/L | 0.4V | 1815 | [ |
PIM@ZIF-8 | ZIF-8 | 0.1mol/L | — | 893.75 | [ | |
U-SM(25) | UiO-66-SO3H | 0.1mol/L | 5mA/cm2 | 776 | [ | |
UiO-67/AAO | UiO-67 | 0.5mol/L | -1.0V | 159.4 | [ | |
LLM-4 | UiO-66-NH2 | 0.1mol/L | 5mA/cm2 | 65 | [ | |
PM-Cx | polyMOF | 0.1mol/L | 2mA/cm2 | 12.3 | [ | |
UiO-66-SO3H@PVC | UiO-66-SO3H | 1.0mol/L | — | 4.79 | [ | |
PP/TA-Fe Ⅲ/ZIF-8 | ZIF-8 | 1.0mol/L | 0.3V | 3.87 | [ | |
MOFs聚酰胺膜 | TFN/PEI-3 | UiO-66-NH2 | 2g/L | 0.4MPa | 36.9 | [ |
TFN-(Zr)-2 | UiO-66(Zr)-NH2 | 0.1mol/L | 10mA/cm2 | 约12 | [ | |
TFN-(Zr/Ti)-2 | UiO-66(Zr/Ti)-NH2 | 0.1mol/L | 10mA/cm2 | 11.38 | [ | |
MOFs通道膜 | SSP@ZIF-8-10% | ZIF-8 | 0.5mol/L | 0.5V | 4913 | [ |
Asy-MOFSNC | UiO-66-(COOH)2 | 1.0mol/L | -1V | 1590.1 | [ | |
1.0mol/L | +1V | 562.4 | [ | |||
Uni-MOFSNC | UiO-66-(COOH)2 | 1.0mol/L | -1V | 235.1 | [ | |
UiO-66-COOH-SNC | UiO-66-COOH | 0.1mol/L | 1V | 约200 | [ | |
UiO-66(PSS)/ZIF-8(PVP) | UiO-66、ZIF-8 | 0.01mol/L | 1V | 29 | [ | |
UiO-66/ZIF-8(PVP) | UiO-66、ZIF-8 | 0.01mol/L | 1V | 约10 | [ | |
UiO-66-NH2-SNC | UiO-66-NH2 | 0.1mol/L | 1V | 1.3 | [ | |
其他膜 | 磺化GO | — | 0.1mol/L | 0.2MPa | 8.46 | [ |
rGO@SAPS-1 | — | 0.05mol/L | 12.73mA/cm2 | 3.8 | [ | |
MXene | — | 0.2mol/L | — | 2 | [ |
1 | LIU Gui, ZHAO Zhongwei, GHAHREMAN Ahmad. Novel approaches for lithium extraction from salt-lake brines: A review[J]. Hydrometallurgy, 2019, 187: 81-100. |
2 | 蒋晨啸, 陈秉伦, 张东钰, 等. 我国盐湖锂资源分离提取进展[J]. 化工学报, 2022, 73(2): 481-503. |
JIANG Chenxiao, CHEN Binglun, ZHANG Dongyu, et al. Progress in isolating lithium resources from China salt lake brine[J]. CIESC Journal, 2022, 73(2): 481-503. | |
3 | WANG Huaiyou, ZHONG Yuan, DU Baoqiang, et al. Recovery of both magnesium and lithium from high Mg/Li ratio brines using a novel process[J]. Hydrometallurgy, 2018, 175: 102-108. |
4 | KESLER S E, GRUBER P W, MEDINA P A, et al. Global lithium resources: Relative importance of pegmatite, brine and other deposits[J]. Ore Geology Reviews, 2012, 48: 55-69. |
5 | GONG Lingyan, OUYANG Wei, LI Zirui, et al. Direct numerical simulation of continuous lithium extraction from high Mg2+/Li+ ratio brines using microfluidic channels with ion concentration polarization[J]. Journal of Membrane Science, 2018, 556: 34-41. |
6 | 韩继龙, 曾祥杰, 王奎虎, 等. 复合膜材料在盐湖提锂中的研究进展和展望[J]. 复合材料学报, 2022, 39(5): 2106-2120. |
HAN Jilong, ZENG Xiangjie, WANG Kuihu, et al. Research progress and prospect of membrane method in seawater/brine extraction of lithium[J]. Acta Materiae Compositae Sinica, 2022, 39(5): 2106-2120. | |
7 | 王琪, 赵有璟, 刘洋, 等. 高镁锂比盐湖镁锂分离与锂提取技术研究进展[J]. 化工学报, 2021, 72(6): 2905-2921, 3433. |
WANG Qi, ZHAO Youjing, LIU Yang, et al. Recent advances in magnesium/lithium separation and lithium extraction technologies from salt lake brine with high magnesium/lithium ratio[J]. CIESC Journal, 2021, 72(6): 2905-2921, 3433. | |
8 | LI Xianhui, MO Yinghui, QING Weihua, et al. Membrane-based technologies for lithium recovery from water lithium resources: A review[J]. Journal of Membrane Science, 2019, 591: 117317. |
9 | 李志录, 王敏, 赵有璟, 等. 膜特征对锂资源提取过程的影响[J]. 化工进展, 2021, 40(9): 5061-5072. |
LI Zhilu, WANG Min, ZHAO Youjing, et al. Effects of membrane characteristics for lithium extraction[J]. Chemical Industry and Engineering Progress, 2021, 40(9): 5061-5072. | |
10 | ZHANG Huacheng, HOU Jue, HU Yaoxin, et al. Ultrafast selective transport of alkali metal ions in metal organic frameworks with subnanometer pores[J]. Science Advances, 2018, 4(2): eaaq0066. |
11 | ZHANG Shenxiang, CIORA Richard, SENGUPTA Bratin, et al. Ultrathin microporous metal-organic network membranes for molecular separation[J]. Journal of Materials Chemistry A, 2021, 9(45): 25531-25538. |
12 | HOU J, ZHANG H C, THORNTON A W, et al. Lithium extraction by emerging metal-organic framework-based membranes[J]. Advanced Functional Materials, 2021, 31(46): 2105991. |
13 | ZHANG Ye, WANG Li, SUN Wei, et al. Membrane technologies for Li+/Mg2+ separation from salt-lake brines and seawater: A comprehensive review[J]. Journal of Industrial and Engineering Chemistry, 2020, 81: 7-23. |
14 | LIN R, VILLACORTA H B, GE L, et al. Metal organic framework based mixed matrix membranes: An overview on filler/polymer interfaces[J]. Journal of Materials Chemistry A, 2018, 6(2): 293-312. |
15 | ZHANG Yushu, JIA Hongge, WANG Qingji, et al. Optimization of a MOF blended with modified polyimide membrane for high-performance gas separation[J]. Membranes, 2021, 12(1): 34. |
16 | JIA Shuyue, JI Dongxiao, WANG Liming, et al. Metal-organic framework membranes: Advances, fabrication, and applications[J]. Small Structures, 2022, 3(4): 2100222. |
17 | MA Xixi, WU Xiaocao, Caro Jürgen, et al. Polymer composite membrane with penetrating ZIF-7 sheets displays high hydrogen permselectivity[J]. Angewandte Chemie International Edition, 2019, 58(45): 16156-16160. |
18 | PHAN A, DOONAN C J, URIBE-ROMO F J, et al. Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks[J]. Accounts of Chemical Research, 2010, 43(1): 58-67. |
19 | JANG Suin, Seohyeon JEE, KIM Raekyung, et al. Heterojunction of pores in Granola-type crystals of two different metal-organic frameworks for enhanced formaldehyde removal[J]. Bulletin of the Korean Chemical Society, 2021, 42(2): 315-321. |
20 | MAUTSCHKE H H, DRACHE F, SENKOVSKA I, et al. Catalytic properties of pristine and defect-engineered Zr-MOF-808 metal organic frameworks[J]. Catalysis Science & Technology, 2018, 8(14): 3610-3616. |
21 | DHAKSHINAMOORTHY A, SANTIAGO-PORTILLO A, ASIRI A M, et al. Engineering UiO-66 metal organic framework for heterogeneous catalysis[J]. ChemCatChem, 2019, 11(3): 899-923. |
22 | SUN Shujian, LIAO Peisen, ZENG Lihua, et al. UiO-67 metal-organic gel material deposited on photonic crystal matrix for photoelectrocatalytic hydrogen production[J]. RSC Advances, 2020, 10(25): 14778-14784. |
23 | ZHAO Jing, HE Guangwei, LIU Guanhua, et al. Manipulation of interactions at membrane interfaces for energy and environmental applications[J]. Progress in Polymer Science, 2018, 80: 125-152. |
24 | YU Shujun, PANG Hongwei, HUANG Shuyi, et al. Recent advances in metal-organic framework membranes for water treatment: A review[J]. The Science of the Total Environment, 2021, 800: 149662. |
25 | KNEBEL Alexander, BAVYKINA Anastasiya, DATTA Shuvo Jit, et al. Solution processable metal-organic frameworks for mixed matrix membranes using porous liquids[J]. Nature Materials, 2020, 19(12): 1346-1353. |
26 | DECHNIK J, GASCON J, DOONAN C J, et al. Mixed-matrix membranes[J]. Angewandte Chemie International Edition, 2017, 56(32): 9292-9310. |
27 | GUO Yi, YING Yulong, MAO Yiyin, et al. Polystyrene sulfonate threaded through a metal-organic framework membrane for fast and selective lithium-ion separation[J]. Angewandte Chemie (International Ed in English), 2016, 55(48): 15120-15124. |
28 | KAZEMZADEH H, KARIMI-SABET J, TOWFIGHI D J, et al. Evaluation of polymer inclusion membrane efficiency in selective separation of lithium ion from aqueous solution[J]. Separation and Purification Technology, 2020, 251: 117298. |
29 | XU Tingting, MUHAMMAD Aamir Shehzad, WANG Xin, et al. Engineering leaf-like UiO-66-SO3H membranes for selective transport of cations[J]. Nano-Micro Letters, 2020, 12(1): 51. |
30 | XU Rongming, KANG Yuan, ZHANG Weiming, et al. Oriented UiO-67 metal-organic framework membrane with fast and selective lithium-ion transport[J]. Angewandte Chemie International Edition, 2022, 61(3): e202115443. |
31 | XU T, SHEHZAD M A, YU D, et al. Highly cation permselective metal-organic framework membranes with leaf-like morphology[J]. ChemSusChem, 2019, 12(12): 2593-2597. |
32 | WANG X, WU B, AFSAR N U, et al. Soluble polymeric metal-organic frameworks toward crystalline membranes for efficient cation separation[J]. Journal of Membrane Science, 2021, 639: 119757. |
33 | ZHANG Chengyi, MU Yingxin, ZHANG Wen, et al. PVC-based hybrid membranes containing metal-organic frameworks for Li+/Mg2+ separation[J]. Journal of Membrane Science, 2020, 596: 117724. |
34 | MOHAMMAD Munirah, LISIECKI Manon, LIANG Kang, et al. Metal-Phenolic network and metal-organic framework composite membrane for lithium ion extraction[J]. Applied Materials Today, 2020, 21: 100884. |
35 | AGHILI F, ASGHAR G, BRUGGEN B, et al. A highly permeable UiO-66-NH2/polyethyleneimine thin-film nanocomposite membrane for recovery of valuable metal ions from brackish water[J]. Process Safety and Environmental Protection, 2021, 151: 244-256. |
36 | XU Tingting, SHENG Fangmeng, WU Bin, et al. Ti-exchanged UiO-66-NH2-containing polyamide membranes with remarkable cation permselectivity[J]. Journal of Membrane Science, 2020, 615: 118608. |
37 | LIANG Hongqing, GUO Yi, PENG Xinsheng, et al. Light-gated cation-selective transport in metal-organic framework membranes[J]. Journal of Materials Chemistry A, 2020, 8(22): 11399-11405. |
38 | LU Jun, ZHANG Huacheng, HOU Jue, et al. Efficient metal ion sieving in rectifying subnanochannels enabled by metal-organic frameworks[J]. Nature Materials, 2020, 19(7): 767-774. |
39 | LU Jun, ZHANG Huacheng, HU Xiaoyi, et al. Ultraselective monovalent metal ion conduction in a three-dimensional sub-1 nm nanofluidic device constructed by metal-organic frameworks[J]. ACS Nano, 2021, 15(1): 1240-1249. |
40 | ABDOLLAHZADEH Mojtaba, CHAI Milton, HOSSEINI Ehsan, et al. Designing angstrom-scale asymmetric MOF-on-MOF cavities for high monovalent ion selectivity[J]. Advanced Materials, 2022, 34(9): 2107878. |
41 | ZHANG Mengchen, ZHAO Pengxiang, LI Peishan, et al. Designing biomimic two-dimensional ionic transport channels for efficient ion sieving[J]. ACS Nano, 2021, 15(3): 5209-5220. |
42 | ZHAO Yan, ZHOU Chen, WANG Jiaqian, et al. Formation of morphologically confined nanospaces via self-assembly of graphene and nanospheres for selective separation of lithium[J]. Journal of Materials Chemistry A, 2018, 6(39): 18859-18864. |
43 | DENG Junjie, LU Zong, DING Li, et al. Fast electrophoretic preparation of large-area two-dimensional titanium carbide membranes for ion sieving[J]. Chemical Engineering Journal, 2021, 408: 127806. |
44 | LI Wanbin. Metal-organic framework membranes: Production, modification, and applications[J]. Progress in Materials Science, 2019, 100: 21-63. |
45 | ZHAO Yan, WU Mengyao, GUO Yi, et al. Metal-organic framework based membranes for selective separation of target ions[J]. Journal of Membrane Science, 2021, 634: 119407. |
46 | HAN Bo, SUN Zhiqiang, JIANG Haicheng, et al. Thin and defect-free ZIF-8 layer assisted enhancement of the monovalent perm-selectivity for cation exchange membrane[J]. Desalination, 2022, 529: 115637. |
47 | VALERIYA C, OSAMA S, MOHAMED E. Advanced fabrication method for the preparation of MOF thin films: Liquid-phase epitaxy approach meets spin coating method[J]. ACS Applied Materials & Interfaces, 2016, 8(31): 20459-20464. |
48 | LI Wanbin, ZHANG Yufan, LI Qingbiao, et al. Metal-organic framework composite membranes: Synthesis and separation applications[J]. Chemical Engineering Science, 2015, 135: 232-257. |
49 | CHENG Y D, SHUVO J D, ZHOU S, et al. Advances in metal-organic framework-based membranes[J]. Chemical Society Reviews, 2022, 51(19): 8300-8350. |
50 | XIAO Yirong, ZHANG Wentian, JIAO Yang, et al. Metal-phenolic network as precursor for fabrication of metal-organic framework (MOF) nanofiltration membrane for efficient desalination[J]. Journal of Membrane Science, 2021, 624: 119101. |
51 | ZHANG Chenhan, YAN Jiahui, JI Taotao, et al. Fabrication of highly (110)-oriented ZIF-8 membrane at low temperature using nanosheet seed layer[J]. Journal of Membrane Science, 2022, 641: 119915. |
52 | MA D C, SHING B P, HAN G, et al. Thin-film nanocomposite (TFN) membranes incorporated with super-hydrophilic metal-organic framework (MOF) UiO-66: Toward enhancement of water flux and salt rejection[J]. ACS Applied Materials & Interfaces, 2017, 9(8): 7523-7534. |
53 | WU Dihua, HUANG Yifeng, YU Sanchuan, et al. Thin film composite nanofiltration membranes assembled layer-by-layer via interfacial polymerization from polyethylenimine and trimesoyl chloride[J]. Journal of Membrane Science, 2014, 472: 141-153. |
54 | XU Daliang, ZHU Xuewu, LUO Xinsheng, et al. MXene nanosheet templated nanofiltration membranes toward ultrahigh water transport[J]. Environmental Science & Technology, 2021, 55(2): 1270-1278. |
55 | ARUN K S, JAVED A, MANSOUR S A, et al. Thin-film nanocomposite membrane incorporated with porous Zn-based metal-organic frameworks: Toward enhancement of desalination performance and chlorine resistance[J]. ACS Applied Materials & Interfaces, 2021, 13(24): 28818-28831. |
56 | LI Xin, LIU Yuxin, WANG Jing, et al. Metal-organic frameworks based membranes for liquid separation[J]. Chemical Society Reviews, 2017, 46(23): 7124-7144. |
57 | LIN Yuqing, WU Haochen, SHEN Qin, et al. Custom-tailoring metal-organic framework in thin-film nanocomposite nanofiltration membrane with enhanced internal polarity and amplified surface crosslinking for elevated separation property[J]. Desalination, 2020, 493: 114649. |
58 | LIU Hengrao, GAO Jing, LIU Guanhua, et al. Enhancing permeability of thin film nanocomposite membranes via covalent linking of polyamide with the incorporated metal-organic frameworks[J]. Industrial & Engineering Chemistry Research, 2019, 58(20): 8772-8783. |
59 | JIANG Xiaojia, WANG Liang, LIU Shengda, et al. Bioinspired artificial nanochannels: Construction and application[J]. Materials Chemistry Frontiers, 2021, 5(4): 1610-1631. |
60 | TU Yuming, SAMINENI Laxmicharan, REN Tingwei, et al. Prospective applications of nanometer-scale pore size biomimetic and bioinspired membranes[J]. Journal of Membrane Science, 2021, 620: 118968. |
61 | QIAN Tianyue, ZHAO Chen, WANG Ruoxin, et al. Synthetic azobenzene-containing metal-organic framework ion channels toward efficient light-gated ion transport at the subnanoscale[J]. Nanoscale, 2021, 13(41): 17396-17403. |
62 | WANG Jian, ZHOU Yahong, JIANG Lei. Bio-inspired track-etched polymeric nanochannels: Steady-state biosensors for detection of analytes[J]. ACS Nano, 2021, 15(12): 18974-19013. |
63 | QIAN Tianyue, ZHANG Huacheng, LI Xingya, et al. Efficient gating of ion transport in three-dimensional metal-organic framework sub-nanochannels with confined light-responsive azobenzene molecules[J]. Angewandte Chemie International Edition, 2020, 59(31): 13051-13056. |
64 | MUHAMMAD U, MUBARAK A, AL-MAYTHALONY B A, et al. Highly efficient permeation and separation of gases with metal-organic frameworks confined in polymeric nanochannels[J]. ACS Applied Materials & Interfaces, 2020, 12(44): 49992-50001. |
65 | LU Jun, XU Hengyu, YU Hao, et al. Ultrafast rectifying counter-directional transport of proton and metal ions in metal-organic framework-based nanochannels[J]. Science Advances, 2022, 8(14): eabl5070. |
66 | LU J, HU X Y, UNG K M, et al. Metal-organic frameworks as a subnanometer platform for ion-ion selectivity[J]. Accounts of Materials Research, 2022, 3(7): 735-747. |
67 | KAN Xiaonan, WU Chenyu, WEN Liping, et al. Biomimetic nanochannels: From fabrication principles to theoretical insights[J]. Small Methods, 2022, 6(4): e2101255. |
68 | HE Rongrong, DONG Chenjun, XU Shanshan, et al. Unprecedented Mg2+/Li+ separation using layer-by-layer based nanofiltration hollow fiber membranes[J]. Desalination, 2022, 525: 115492. |
69 | RAZI E, DUCHANOIS R M, RITT C L, et al. Towards single-species selectivity of membranes with subnanometre pores[J]. Nature Nanotechnology, 2020, 15(6): 426-436. |
70 | LEGRAND Alexandre, FURUKAWA Shuhei. A selective ionic rectifier[J]. Nature Materials, 2020, 19(7): 701-702. |
71 | LU C H, HU C Z, RITT C L, et al. In situ characterization of dehydration during ion transport in polymeric nanochannels[J]. Journal of the American Chemical Society, 2021, 143(35): 14242-14252. |
72 | 高晓琪, 俞开昌, 王小 . 疏松型纳滤膜对饮用水中无机阳离子的截留特性及分离选择性[J]. 环境科学学报, 2020, 40(8): 2700-2707.. |
GAO Xiaoqi, YU Kaichang, WANG Xiaomao. Rejection behaviors and separation selectivity of loose nanofiltration membranes for mineral ions in drinking water[J]. Acta Scientiae Circumstantiae, 2020, 40(8): 2700-2707. | |
73 | QIU Zelin, FANG Lifeng, SHEN Yujie, et al. Ionic dendrimer based polyamide membranes for ion separation[J]. ACS Nano, 2021, 15(4): 7522-7535. |
74 | XU Ping, WANG Wei, QIAN Xiaoming, et al. Positive charged PEI-TMC composite nanofiltration membrane for separation of Li+ and Mg2+ from brine with high Mg2+/Li+ ratio[J]. Desalination, 2019, 449: 57-68. |
[1] | 葛全倩, 徐迈, 梁铣, 王凤武. MOFs材料在光电催化领域应用的研究进展[J]. 化工进展, 2023, 42(9): 4692-4705. |
[2] | 蒋博龙, 崔艳艳, 史顺杰, 常嘉城, 姜楠, 谭伟强. 过渡金属Co3O4/ZnO-ZIF氧还原催化剂Co/Zn-ZIF模板法制备及其产电性能[J]. 化工进展, 2023, 42(6): 3066-3076. |
[3] | 朱雅静, 徐岩, 简美鹏, 李海燕, 王崇臣. 金属有机框架材料用于海水提铀的研究进展[J]. 化工进展, 2023, 42(6): 3029-3048. |
[4] | 毛梦雷, 孟令玎, 高蕊, 孟子晖, 刘文芳. 多孔框架材料固定化酶研究进展[J]. 化工进展, 2023, 42(5): 2516-2535. |
[5] | 叶海星, 陈宇昊, 陈仪, 孙海翔, 牛青山. 镁锂分离复合纳滤膜研究进展[J]. 化工进展, 2023, 42(4): 1934-1943. |
[6] | 高帷韬, 殷屺男, 涂自强, 龚繁, 李阳, 徐宏, 王诚, 毛宗强. 金属有机框架材料中的质子传导及其在质子交换膜中的应用[J]. 化工进展, 2022, 41(S1): 260-268. |
[7] | 方龙龙, 郑文姬, 宁梦佳, 张明扬, 杨雨晴, 代岩, 贺高红. 功能化Zr-MOF强化混合基质膜CO2分离[J]. 化工进展, 2022, 41(9): 4954-4962. |
[8] | 张雨珂, 刘倩, 段媛媛, 赵英杰, 崔阳, 史利娟, 李向远, 李剑川, 范海明, 易群. 基于MOFs材料的低碳烃(C1~C3)分离研究进展[J]. 化工进展, 2022, 41(8): 4288-4302. |
[9] | 祖梅, 许海涛, 谢炜, 程海峰. 金属有机框架材料的水稳定性及吸水应用进展[J]. 化工进展, 2022, 41(8): 4254-4267. |
[10] | 唐朝春, 王顺藤, 黄从新, 冯文涛, 阮以宣, 史纯菁. 介孔金属有机框架材料吸附水中重金属离子研究进展[J]. 化工进展, 2022, 41(6): 3263-3278. |
[11] | 高逸飞, 易群, 齐凯, 高丽丽, 李雪莲. MOFs基膜材料的研究现状及其在H2/CH4分离中的应用[J]. 化工进展, 2022, 41(12): 6395-6407. |
[12] | 张珂, 屈小虎, 朱元军, 林建英, 赵志换, 樊惠玲. 研磨法制备金属有机框架材料的新进展[J]. 化工进展, 2022, 41(10): 5465-5473. |
[13] | 熊鑫坤, 宋华, 苑彬彬, 王园园, 张浩瀚, 陈彦广, 苑丹丹. 多孔液体:合成与应用[J]. 化工进展, 2021, 40(8): 4346-4359. |
[14] | 高豪, 陆家声, 章文明, 董维亮, 方艳, 余子夷, 信丰学, 姜岷. 材料介导细胞固定化技术在生物发酵中的应用[J]. 化工进展, 2021, 40(7): 3923-3931. |
[15] | 蔡诗怡, 李津瑜, 吴丽霞, 谢湘娟, 伍丽卿, 高兴远, 杨乃涛. 金属有机框架材料在锂硫电池的应用前沿进展[J]. 化工进展, 2021, 40(6): 3046-3057. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |