化工进展 ›› 2023, Vol. 42 ›› Issue (1): 226-235.DOI: 10.16085/j.issn.1000-6613.2022-0510
收稿日期:
2022-03-29
修回日期:
2022-07-07
出版日期:
2023-01-25
发布日期:
2023-02-20
通讯作者:
沈伯雄
作者简介:
李钊铭(1997—),女,硕士研究生,研究方向为大气污染控制。E-mail:450600197@qq.com。
基金资助:
LI Zhaoming1(), SHEN Boxiong1,2(), FENG Shuo1, BIAN Yao1
Received:
2022-03-29
Revised:
2022-07-07
Online:
2023-01-25
Published:
2023-02-20
Contact:
SHEN Boxiong
摘要:
锰(Mn)基催化剂在氨选择性催化还原(NH3-SCR)领域虽具有良好的低温活性,但容易受到二氧化硫和水蒸气的影响。研究发现调整催化剂的结构形貌可以有效提升催化剂的抗硫抗水性能。因此,本文综述了核壳结构、中空结构、三维有序孔道结构和二维层状结构Mn基催化剂在低温NH3-SCR抗硫抗水领域的研究进展,简要阐述了Mn基催化剂硫水中毒机理,并结合中毒机理与结构特点分析了结构在提升Mn基催化剂抗性方面起到的作用。此外,本文还总结了以上四种结构催化剂的制备方法,并指出结构催化剂未来工业化制备的发展方向。同时,对今后研究工作进行展望,提出深入研究协同中毒机理、模拟优化催化剂配方等建议,为实现Mn基催化剂的高抗性及工业化应用提供了借鉴。
中图分类号:
李钊铭, 沈伯雄, 封硕, 边瑶. 锰基催化剂结构形貌对催化剂抗硫抗水性能影响[J]. 化工进展, 2023, 42(1): 226-235.
LI Zhaoming, SHEN Boxiong, FENG Shuo, BIAN Yao. Effect of structure and morphology on manganese-based catalysts’ sulfur and water resistance[J]. Chemical Industry and Engineering Progress, 2023, 42(1): 226-235.
结构 | 示意图 | 特点 | 制备方法 | 引用文献 |
---|---|---|---|---|
核壳结构 | 比表面积大、活性位点数量多、表面酸性强;外壳具有屏蔽作用,阻止SO2、H2O与活性组分接触;金属氧化物和分子筛外壳都可促进NH4HSO4分解,阻止沉积物覆盖活性位点;金属氧化物外壳延缓SO2氧化,缓解活性组分硫化反应;金属外壳可作牺牲剂,捕集气相中SO2并优先与SO2反应,保护活性组分;分子筛外壳具有高疏水性,减少H2O在催化剂表面的吸附 | 水热法;化学沉淀法;干凝胶转换法;超声处理浸渍法;化学沉淀电偶置换法 | [ [ | |
中空结构 | 比表面积大,表面酸性强;气体扩散性好,传质效率高;具有羟基吸附位点,可锚定SO2;曲率半径大,蒸发压强,有利于NH4HSO4沉淀分解 | 硬模板法;自组装法;溶剂热法;水热法 | [ [ | |
三维有序 孔道结构 | 孔径均匀、孔道排布规律整齐,增加比表面积和酸性位点;活性组分分散性强,且镶嵌在孔壁中,保护活性组分,减少团聚现象;大孔结构减小毛细作用,降低H2O在催化剂表面吸附,提高了催化剂的耐水性 | 纳米铸造法;软 胶体晶体模板法 | [ [ | |
LDHs衍生二维层状结构 | 具有独特的阴阳离子层交错结构,增强层间电子传递,促进氧化还原循环,提高催化剂活性及抗性;具有较大的比表面积,表面酸性强;分散性好,稳定性强,活性组分在催化剂表面不易团聚 | 共沉淀法;尿素 均相沉淀法 | [ |
表1 不同结构催化剂特点及制备方法
结构 | 示意图 | 特点 | 制备方法 | 引用文献 |
---|---|---|---|---|
核壳结构 | 比表面积大、活性位点数量多、表面酸性强;外壳具有屏蔽作用,阻止SO2、H2O与活性组分接触;金属氧化物和分子筛外壳都可促进NH4HSO4分解,阻止沉积物覆盖活性位点;金属氧化物外壳延缓SO2氧化,缓解活性组分硫化反应;金属外壳可作牺牲剂,捕集气相中SO2并优先与SO2反应,保护活性组分;分子筛外壳具有高疏水性,减少H2O在催化剂表面的吸附 | 水热法;化学沉淀法;干凝胶转换法;超声处理浸渍法;化学沉淀电偶置换法 | [ [ | |
中空结构 | 比表面积大,表面酸性强;气体扩散性好,传质效率高;具有羟基吸附位点,可锚定SO2;曲率半径大,蒸发压强,有利于NH4HSO4沉淀分解 | 硬模板法;自组装法;溶剂热法;水热法 | [ [ | |
三维有序 孔道结构 | 孔径均匀、孔道排布规律整齐,增加比表面积和酸性位点;活性组分分散性强,且镶嵌在孔壁中,保护活性组分,减少团聚现象;大孔结构减小毛细作用,降低H2O在催化剂表面吸附,提高了催化剂的耐水性 | 纳米铸造法;软 胶体晶体模板法 | [ [ | |
LDHs衍生二维层状结构 | 具有独特的阴阳离子层交错结构,增强层间电子传递,促进氧化还原循环,提高催化剂活性及抗性;具有较大的比表面积,表面酸性强;分散性好,稳定性强,活性组分在催化剂表面不易团聚 | 共沉淀法;尿素 均相沉淀法 | [ |
1 | 姚程. 低温脱硝催化剂抗水性研究进展[J]. 四川化工, 2019, 22(2): 9-11. |
YAO Cheng. Research progress on water resistance of low temperature denitration catalysts[J]. Sichuan Chemical Industry, 2019, 22(2): 9-11. | |
2 | 樊改肖. 浅谈机动车尾气中氮氧化物减排技术的发展[J]. 内燃机与配件, 2019 (13): 258-259. |
FAN Gaixiao. Talking about the purification technologies of nitrogen oxides in vehicle exhaust gas[J]. Internal Combustion Engine & Parts, 2019 (13): 258-259. | |
3 | 张贺, 秘雪岳, 孙妍, 等. NH3-SCR脱硝技术的研究现状与展望[J]. 实验室科学, 2019, 22(6): 6-10. |
ZHANG He, MI Xueyue, SUN Yan, et al. Research status and prospects of NH3-SCR denitration technology[J]. Laboratory Science, 2019, 22(6): 6-10. | |
4 | 赵中昆, 陈鑫, 许志志. MnO x -基催化剂低温NH3-SCR脱硝研究进展[J]. 环境科学导刊, 2021, 40(1): 1-7. |
ZHAO Zhongkun, CHEN Xin, XU Zhizhi. Research progress of low-temperature NH3-SCR of denitration for MnO x -based catalysts[J]. Environmental Science Survey, 2021, 40(1): 1-7. | |
5 | 谭月, 张小龙, 杜媛. SCR烟气脱硝催化剂研究进展[J]. 环境保护与循环经济, 2019, 39(11): 32-34. |
TAN Yue, ZHANG Xiaolong, DU yuan. Research progress of SCR flue gas denitration catalyst[J]. Environmental Protection and Circular Economy, 2019, 39(11): 32-34. | |
6 | 陈东. 低温NH3-SCR脱硝催化剂研究进展[J]. 四川化工, 2016, 19(2): 42-44. |
CHEN Dong. Research progress in low temperature NH3-SCR of De-NO x catalysts[J]. Sichuan Chemical Industry, 2016, 19(2): 42-44. | |
7 | 李亚倩, 李建军, 李海娇. 低温NH3-SCR脱硝催化剂研究现状及进展[J]. 四川化工, 2018, 21(2): 13-15/29. |
LI Yaqian, LI Jianjun, LI Haijiao. Research status and progress of low temperature NH3-SCR denitration catalyst[J]. Sichuan Chemical Industry, 2018, 21(2): 13-15/29. | |
8 | SUN Chuanzhi, CHEN Wei, JIA Xuanxuan, et al. Comprehensive understanding of the superior performance of Sm-modified Fe2O3 catalysts with regard to NO conversion and H2O/SO2 resistance in the NH3-SCR reaction[J]. Chinese Journal of Catalysis, 2021, 42(3): 417-430. |
9 | XIONG Yan, TANG Changjin, YAO Xiaojiang, et al. Effect of metal ions doping (M=Ti4+, Sn4+) on the catalytic performance of MnO x /CeO2 catalyst for low temperature selective catalytic reduction of NO with NH3 [J]. Applied Catalysis A: General, 2015, 495: 206-216. |
10 | ZHANG Huawei, ZHANG Mingzhu, HAO Lifeng, et al. Enhanced SO2 tolerance of FeCeO x /CNTs catalyst for NO and Hg0 removal by coating shell SiO2 [J]. Fuel Processing Technology, 2020, 201: 106342. |
11 | MA Kaili, GUO Kai, LI Lulu, et al. Cavity size dependent SO2 resistance for NH3-SCR of hollow structured CeO2-TiO2 catalysts[J]. Catalysis Communications, 2019, 128: 105719. |
12 | LIU Yan, XU Jing, LI Hongrui, et al. Rational design and in situ fabrication of MnO2@NiCo2O4 nanowire arrays on Ni foam as high-performance monolith de-NO x catalysts[J]. Journal of Materials Chemistry A, 2015, 3(21): 11543-11553. |
13 | 李晨露, 唐晓龙, 易红宏, 等. Mn基低温SCR催化剂的抗H2O、抗SO2研究进展[J]. 化工进展, 2017, 36(3): 934-943. |
LI Chenlu, TANG Xiaolong, YI Honghong, et al. Review on manganese based catalysts resistant to H2O and SO2 for SCR reduction at low temperature[J]. Chemical Industry and Engineering Progress, 2017, 36(3): 934-943. | |
14 | 赵琳, 刘庆岭, 胡芝娟, 等. 提高Mn系低温脱硝催化剂抗硫抗水性能的国内外研究概述[J]. 水泥技术, 2020(2): 66-72. |
ZHAO Lin, LIU Qingling, HU Zhijuan, et al. Overview of domestic and overseas studies on improving the sulfur and water resistance performance of Mn-based low temperature SCR catalysts[J]. Cement Technology, 2020(2): 66-72. | |
15 | HU Xiaolei, SHI Qiang, ZHANG He, et al. NH3-SCR performance improvement over Mo modified Mo( x)-MnO x nanorods at low temperatures[J]. Catalysis Today, 2017, 297: 17-26. |
16 | LIU Fudong, HE Hong. Selective catalytic reduction of NO with NH3 over manganese substituted iron titanate catalyst: Reaction mechanism and H2O/SO2 inhibition mechanism study[J]. Catalysis Today, 2010, 153(3/4): 70-76. |
17 | YAN Qinghua, CHEN Sining, ZHANG Cheng, et al. Synthesis and catalytic performance of Cu1Mn0.5Ti0.5O x mixed oxide as low-temperature NH3-SCR catalyst with enhanced SO2 resistance[J]. Applied Catalysis B: Environmental, 2018, 238: 236-247. |
18 | SHI Xueke, GUO Jiaxiu, SHEN Ting, et al. Enhancement of Ce doped La-Mn oxides for the selective catalytic reduction of NO x with NH3 and SO2 and/or H2O resistance[J]. Chemical Engineering Journal, 2021, 421: 129995. |
19 | WANG Qiulin, WANG Rui, HUANG Xiaoniu, et al. Sulfur/water resistance and regeneration of MnO x -CeO2/TiO2 catalyst for low-temperature selective catalytic reduction of NO x [J]. Journal of Environmental Chemical Engineering, 2022, 10(2): 107345. |
20 | SCHILL L, PUTLURU S S R, JENSEN A D, et al. MnFe/Al2O3 catalyst synthesized by deposition precipitation for low-temperature selective catalytic reduction of NO with NH3 [J]. Catalysis Letters, 2015, 145(9): 1724-1732. |
21 | ZHANG Ningqiang, HE Hong, WANG Dingsheng, et al. Challenges and opportunities for manganese oxides in low-temperature selective catalytic reduction of NO x with NH3: H2O resistance ability[J]. Journal of Solid State Chemistry, 2020, 289: 121464. |
22 | 程姝媛. 中空核壳结构MnO x @PrO x 催化剂的合成及低温NH3-SCR催化性能研究[D]. 广州: 华南理工大学, 2020. |
CHENG Suyuan. Synthesis of hollow MnO x @PrO x core-shell catalyst and catalytic performance of low temperature NH3-SCR[D]. Guangzhou: South China University of Technology, 2020. | |
23 | GAN Lina, LI Kezhi, YANG Weinan, et al. Core-shell-like structured α-MnO2@CeO2 catalyst for selective catalytic reduction of NO: promoted activity and SO2 tolerance[J]. Chemical Engineering Journal, 2020, 391: 123473. |
24 | YU Chenglong, HOU Dan, HUANG Bichun, et al. A MnO x @Eu-CeO x nanorod catalyst with multiple protective effects: strong SO2-tolerance for low temperature DeNO x processes[J]. Journal of Hazardous Materials, 2020, 399: 123011. |
25 | CHI Bin, QU Hongxia, XING Xiang, et al. Assembly of hollow CeO2@Fe-ZSM-5 and SCR performance[J]. Journal of Alloys and Compounds, 2017, 726: 906-912. |
26 | YAN Ran, LIN Sixue, LI Yonglong, et al. Novel shielding and synergy effects of Mn-Ce oxides confined in mesoporous zeolite for low temperature selective catalytic reduction of NO x with enhanced SO2/H2O tolerance[J]. Journal of Hazardous Materials, 2020, 396: 122592. |
27 | LI Yifan, HOU Yaqin, ZHANG Yongzhao, et al. Confinement of MnO x @Fe2O3 core-shell catalyst with titania nanotubes: Enhanced N2 selectivity and SO2 tolerance in NH3-SCR process[J]. Journal of Colloid and Interface Science, 2022, 608: 2224-2234. |
28 | HUANG Xiaosheng, DONG Fang, ZHANG Guodong, et al. A strategy for constructing highly efficient yolk-shell Ce@Mn@TiO x catalyst with dual active sites for low-temperature selective catalytic reduction of NO with NH3 [J]. Chemical Engineering Journal, 2021, 419: 129572. |
29 | ZHANG Lei, WU Haobin, LOU Xiongwen. Metal-organic-frameworks-derived general formation of hollow structures with high complexity[J]. Journal of the American Chemical Society, 2013, 135(29): 10664-10672. |
30 | CHEN Xiaoping, LIU Qi, WU Qin, et al. A hollow structure WO3@CeO2 catalyst for NH3-SCR of NO x [J]. Catalysis Communications, 2021, 149: 106252. |
31 | LI Chenlu, TANG Xiaolong, YI Honghong, et al. Rational design of template-free MnO x -CeO2 hollow nanotube as de-NO x catalyst at low temperature[J]. Applied Surface Science, 2018, 428: 924-932. |
32 | LI Yi, LI Yanping, SHI Qiang, et al. Novel hollow microspheres Mn x Co3- x O4 (x=1, 2) with remarkable performance for low-temperature selective catalytic reduction of NO with NH3 [J]. Journal of Sol-Gel Science and Technology, 2017, 81(2): 576-585. |
33 | ZHANG Lei, SHI Liyi, HUANG Lei, et al. Rational design of high-performance DeNO x catalysts based on Mn x Co3- x O4 nanocages derived from metal-organic frameworks[J]. ACS Catalysis, 2014, 4(6): 1753-1763. |
34 | SHI Yiran, YI Honghong, GAO Fengyu, et al. Facile synthesis of hollow nanotube MnCoO x catalyst with superior resistance to SO2 and alkali metal poisons for NH3-SCR removal of NO x [J]. Separation and Purification Technology, 2021, 265: 118517. |
35 | QIU Mingying, ZHAN Sihui, YU Hongbing, et al. Low-temperature selective catalytic reduction of NO with NH3 over ordered mesoporous Mn x Co3- x O4 catalyst[J]. Catalysis Communications, 2015, 62: 107-111. |
36 | QIU Mingying, ZHAN Sihui, ZHU Dandan, et al. NH3-SCR performance improvement of mesoporous Sn modified Cr-MnO x catalysts at low temperatures[J]. Catalysis Today, 2015, 258: 103-111. |
37 | YU Shuohan, JIANG Ningxin, ZOU Weixin, et al. A general and inherent strategy to improve the water tolerance of low temperature NH3-SCR catalysts via trace SiO2 deposition[J]. Catalysis Communications, 2016, 84: 75-79. |
38 | QIU Mingying, ZHAN Sihui, YU Hongbing, et al. Facile preparation of ordered mesoporous MnCo2O4 for low-temperature selective catalytic reduction of NO with NH3 [J]. Nanoscale, 2015, 7(6): 2568-2577. |
39 | GAO Xin, LI Ling, SONG Lihong, et al. Highly dispersed MnO x nanoparticles supported on three-dimensionally ordered macroporous carbon: a novel nanocomposite for catalytic reduction of NO x with NH3 at low temperature[J]. RSC Advances, 2015, 5(37): 29577-29588. |
40 | YAN Qinghua, HOU Xiangting, LIU Guocheng, et al. Recent advances in layered double hydroxides (LDHs) derived catalysts for selective catalytic reduction of NO x with NH3 [J]. Journal of Hazardous Materials, 2020, 400: 123260. |
41 | WANG Ruihua, HAO Zhifei, LI Yi, et al. Relationship between structure and performance of a novel highly dispersed MnO x on Co-Al layered double oxide for low temperature NH3-SCR[J]. Applied Catalysis B: Environmental, 2019, 258: 117983. |
42 | ZHOU Xia, YU Feng, SUN Ruobing, et al. Two-dimensional MnFeCo layered double oxide as catalyst for enhanced selective catalytic reduction of NO x with NH3 at low temperature (25-150℃)[J]. Applied Catalysis A: General, 2020, 592: 117432. |
43 | NIE Yu, YAN Qinghua, CHEN Sining, et al. CuTi LDH derived NH3-SCR catalysts with highly dispersed CuO active phase and improved SO2 resistance[J]. Catalysis Communications, 2017, 97: 47-50. |
44 | CHEN Sining, YAN Qinghua, ZHANG Cheng, et al. A novel highly active and sulfur resistant catalyst from Mn-Fe-Al layered double hydroxide for low temperature NH3-SCR[J]. Catalysis Today, 2019, 327: 81-9. |
45 | LI Xiaojian, DU Yali, GUO Xingmei, et al. Synthesis of a novel NiMnTi mixed metal oxides from LDH precursor and its catalytic application for selective catalytic reduction of NO x with NH3 [J]. Catalysis Letters, 2019, 149(2): 456-464. |
46 | CAI Ziguo, ZHANG Guodong, TANG Zhicheng, et al. MnFeO x @TiO2 nanocages for selective catalytic reduction of NO with NH3 at low temperature[J]. ACS Applied Nano Materials, 2021, 4(6): 6201-6211. |
47 | ZHANG Lei, ZHANG Dengsong, ZHANG Jianping, et al. Design of meso-TiO2@MnO x -CeO x /CNTs with a core-shell structure as DeNO x catalysts: Promotion of activity, stability and SO2-tolerance[J]. Nanoscale, 2013, 5(20): 9821-9829. |
48 | CAI Sixiang, ZHANG Dengsong, ZHANG Lei, et al. Comparative study of 3D ordered macroporous Ce0.75Zr0.2M0.05O2- δ (M=Fe, Cu, Mn, Co) for selective catalytic reduction of NO with NH3 [J]. Catalysis Science & Technology, 2014, 4(1): 93-101. |
49 | LI Wei, MA Qiong, WANG Xiao, et al. Enhanced photoresponse and fast charge transfer: Three-dimensional macroporous g-C3N4/GO-TiO2 nanostructure for hydrogen evolution[J]. Journal of Materials Chemistry A, 2020, 8(37):19533-19543. |
50 | LI Yonglong, YANG Shenyou, PENG Honggen, et al. Insight into the activity and SO2 tolerance of hierarchically ordered MnFe1- δ Co δ O x ternary oxides for low-temperature selective catalytic reduction of NO x with NH3 [J]. Journal of Catalysis, 2021, 395: 195-209. |
[1] | 王胜岩, 邓帅, 赵睿恺. 变电吸附二氧化碳捕集技术研究进展[J]. 化工进展, 2023, 42(S1): 233-245. |
[2] | 胡喜, 王明珊, 李恩智, 黄思鸣, 陈俊臣, 郭秉淑, 于博, 马志远, 李星. 二硫化钨复合材料制备与储钠性能研究进展[J]. 化工进展, 2023, 42(S1): 344-355. |
[3] | 许春树, 姚庆达, 梁永贤, 周华龙. 共价有机框架材料功能化策略及其对Hg(Ⅱ)和Cr(Ⅵ)的吸附性能研究进展[J]. 化工进展, 2023, 42(S1): 461-478. |
[4] | 程涛, 崔瑞利, 宋俊男, 张天琪, 张耘赫, 梁世杰, 朴实. 渣油加氢装置杂质沉积规律与压降升高机理分析[J]. 化工进展, 2023, 42(9): 4616-4627. |
[5] | 王晋刚, 张剑波, 唐雪娇, 刘金鹏, 鞠美庭. 机动车尾气脱硝催化剂Cu-SSZ-13的改性研究进展[J]. 化工进展, 2023, 42(9): 4636-4648. |
[6] | 高彦静. 单原子催化技术国际研究态势分析[J]. 化工进展, 2023, 42(9): 4667-4676. |
[7] | 陈翔宇, 卞春林, 肖本益. 温度分级厌氧消化工艺的研究进展[J]. 化工进展, 2023, 42(9): 4872-4881. |
[8] | 吴海波, 王希仑, 方岩雄, 纪红兵. 3D打印催化材料开发与应用进展[J]. 化工进展, 2023, 42(8): 3956-3964. |
[9] | 李伯耿, 罗英武, 刘平伟. 聚合物产品工程研究内容与方法的思考[J]. 化工进展, 2023, 42(8): 3905-3909. |
[10] | 李润蕾, 王子彦, 王志苗, 李芳, 薛伟, 赵新强, 王延吉. CuO-CeO2/TiO 2 高效催化CO低温氧化反应性能[J]. 化工进展, 2023, 42(8): 4264-4274. |
[11] | 张耀杰, 张传祥, 孙悦, 曾会会, 贾建波, 蒋振东. 煤基石墨烯量子点在超级电容器中的应用[J]. 化工进展, 2023, 42(8): 4340-4350. |
[12] | 赵健, 卓泽文, 董航, 高文健. 含蜡原油及其乳状液体系微观结构观测的新方法[J]. 化工进展, 2023, 42(8): 4372-4384. |
[13] | 郭立行, 庞蔚莹, 马克遥, 杨镓涵, 孙泽辉, 张盼, 付东, 赵昆. 层序空间多孔结构TiO2实现高效光催化CO2还原[J]. 化工进展, 2023, 42(7): 3643-3651. |
[14] | 储甜甜, 刘润竹, 杜高华, 马嘉浩, 张孝阿, 王成忠, 张军营. 有机胍催化脱氢型RTV硅橡胶的制备和可降解性能[J]. 化工进展, 2023, 42(7): 3664-3673. |
[15] | 鲁少杰, 刘佳, 冀芊竹, 李萍, 韩月阳, 陶敏, 梁文俊. 硅藻土基复合填料制备及滴滤塔去除二甲苯的性能[J]. 化工进展, 2023, 42(7): 3884-3892. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |