化工进展 ›› 2022, Vol. 41 ›› Issue (S1): 97-107.DOI: 10.16085/j.issn.1000-6613.2022-0640
肖周荣1(), 李国柱2, 王涖2, 张香文2, 谷建民1, 王德松1,3
收稿日期:
2022-04-13
修回日期:
2022-05-11
出版日期:
2022-10-20
发布日期:
2022-11-10
通讯作者:
肖周荣
作者简介:
肖周荣(1989—),男,博士,讲师,研究方向为工业催化、能源催化。E-mail:xiaozhourong1234@163.com。
基金资助:
XIAO Zhourong1(), LI Guozhu2, WANG Li2, ZHANG Xiangwen2, GU Jianmin1, WANG Desong1,3
Received:
2022-04-13
Revised:
2022-05-11
Online:
2022-10-20
Published:
2022-11-10
Contact:
XIAO Zhourong
摘要:
液体碳氢燃料具有能量密度高、氢含量大及便于储存和运输的特点,以其为原料经重整制氢并应用到移动式的燃料电池/加氢站对民用设备及国防武器等具有现实意义。本文首先对液体碳氢燃料蒸汽重整机理进行概述,明确当前催化剂面临的积炭、硫中毒等主要问题,从而指导高性能催化剂的设计和开发;其次,总结了几种典型液体碳氢燃料(汽油、煤油、柴油、焦油、含硫碳氢燃料等)蒸汽重整催化剂的相关进展,对比了不同催化剂在相应工艺条件下的活性及稳定性;最后,归纳了几类蒸汽重整过程强化技术包括等离子体重整、化学链重整、吸附增强重整及反应与分离耦合重整,说明了各类强化技术的优点及存在的不足,提出通过构建高效催化剂与蒸汽重整强化技术耦合有望实现液体碳氢燃料的高效转化制氢。希望本综述能为进一步研究液体碳氢燃料重整制氢提供相关指导。
中图分类号:
肖周荣, 李国柱, 王涖, 张香文, 谷建民, 王德松. 液体碳氢燃料蒸汽重整制氢催化剂研究进展[J]. 化工进展, 2022, 41(S1): 97-107.
XIAO Zhourong, LI Guozhu, WANG Li, ZHANG Xiangwen, GU Jianmin, WANG Desong. Research progress of the catalysts for hydrogen production via liquid hydrocarbon fuels steam reforming[J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 97-107.
催化剂 | 金属质量分数/% | 反应原料 | 反应条件 | 初始 转化率/% | 失活率(%)/反应时间(h) | 参考文献 |
---|---|---|---|---|---|---|
Ni/La/Al2O3 | 50 | 汽油 | T = 763K,P = 0.5MPa,S/C = 2.7,空速120L/(g·h) | 99.95 | 0/100 | [ |
Ni-Re/Al2O3 | 5 | 甲烷环己烷 | T = 853K,P = 0.1MPa,S/C = 1,空速4.1h-1 | 62.4 | — | [ |
Ni-Re/Al2O3 | 10 | 汽油 | T = 953K,P = 0.1MPa,S/C = 1.7,空速3h-1 | 100 | 12/32 | [ |
Ni-W-Ce/Al2O3 | 10 | 汽油 | T = 953K,P = 0.1MPa,S/C = 1.7,空速3h-1 | 100 | 7/26 | [ |
Ni/Al2O3 | <1.5 | 异辛烷 | T = 1073K,P = 0.1MPa,S/C = 3.6,空速1.44h-1 | 100 | 0/300 | [ |
NiSr/ZrO2 | 10 | 甲基环己烷 | T = 973K,P = 0.1MPa,S/C = 1.67 | 100 | 0/100 | [ |
Pt/CeGdO-800 | 1.5 | 异辛烷 | T = 1023K,P = 0.1MPa,S/C = 3,空速1h-1 | 100 | 0/100 | [ |
表1 汽油蒸汽重整制氢催化剂及在相应反应条件下性能对比
催化剂 | 金属质量分数/% | 反应原料 | 反应条件 | 初始 转化率/% | 失活率(%)/反应时间(h) | 参考文献 |
---|---|---|---|---|---|---|
Ni/La/Al2O3 | 50 | 汽油 | T = 763K,P = 0.5MPa,S/C = 2.7,空速120L/(g·h) | 99.95 | 0/100 | [ |
Ni-Re/Al2O3 | 5 | 甲烷环己烷 | T = 853K,P = 0.1MPa,S/C = 1,空速4.1h-1 | 62.4 | — | [ |
Ni-Re/Al2O3 | 10 | 汽油 | T = 953K,P = 0.1MPa,S/C = 1.7,空速3h-1 | 100 | 12/32 | [ |
Ni-W-Ce/Al2O3 | 10 | 汽油 | T = 953K,P = 0.1MPa,S/C = 1.7,空速3h-1 | 100 | 7/26 | [ |
Ni/Al2O3 | <1.5 | 异辛烷 | T = 1073K,P = 0.1MPa,S/C = 3.6,空速1.44h-1 | 100 | 0/300 | [ |
NiSr/ZrO2 | 10 | 甲基环己烷 | T = 973K,P = 0.1MPa,S/C = 1.67 | 100 | 0/100 | [ |
Pt/CeGdO-800 | 1.5 | 异辛烷 | T = 1023K,P = 0.1MPa,S/C = 3,空速1h-1 | 100 | 0/100 | [ |
催化剂 | 反应原料 | 反应条件 | 转化率/% | 反应6h后转化率/% | 参考文献 |
---|---|---|---|---|---|
Ni-La-K/cordierite | 煤油 | T = 773K,S/C比为3.5,空速20mL/(gcat·h) | 100 | 57 | [ |
Ni/La-Al2O3 | 正十二烷 | T = 773K,S/C比为3.5,空速20mL/(gcat·h) | <40 | 32 | [ |
Ni/ Al2O3 | 煤油 | T = 1023K,S/C比为3,空速40mL/(gcat·h) | 25 | 25 | [ |
Ni-Co/Al2O3 | 正十二烷 | T = 973K,S/C比为4,空速20mL/(gcat·h) | 89 | 63.1 | [ |
Ni-CePr2-600 | 正十二烷 | T = 873K,S/C比为2,空速15mL/(gcat·h) | 100 | 100 | [ |
8Ni/SBA-15 | JP-10 | T = 953K,S/C比为5,空速10mL/(gcat·h) | 90 | 90 | [ |
8Ni-2Ce/SBA-15 | JP-10 | T = 953K,S/C比为5,空速10mL/(gcat·h) | 99 | 99 | [ |
RuNi/ Al2O3 | 煤油 | T = 1023K,S/C比为3,空速40mL/(gcat·h) | 100 | 85 | [ |
Ru/CeO2/Al2O3 | 煤油 | T = 873K,S/C比为4,空速0.378mL/(gcat·h) | 100 | 94 | [ |
Ru/Ce0.75Zr0.25O2 | 正十二烷 | T = 923K,S/C比为4,空速12mL/(gcat·h) | 71 | 50 | [ |
Ni-Pt/SBA-15 | 正十二烷 | T = 923K,S/C比为3,空速15mL/(gcat·h) | 80 | — | [ |
NiPt1/Al2O3 | 正十二烷 | T = 973K,S/C = 4 | 97 | 97 | [ |
Ni-Rh/Ce0.75Zr0.2O | 正十二烷 | T = 923K,S/C比为4,空速9mL/(gcat·h) | 75 | 68 | [ |
Pt/CeO2 | 正十二烷 | T = 1073K,S/C比为2.5,空速3mL/(gcat·h) | 100 | 100 | [ |
表2 煤油蒸汽重整制氢催化剂及在相应反应条件下性能对比
催化剂 | 反应原料 | 反应条件 | 转化率/% | 反应6h后转化率/% | 参考文献 |
---|---|---|---|---|---|
Ni-La-K/cordierite | 煤油 | T = 773K,S/C比为3.5,空速20mL/(gcat·h) | 100 | 57 | [ |
Ni/La-Al2O3 | 正十二烷 | T = 773K,S/C比为3.5,空速20mL/(gcat·h) | <40 | 32 | [ |
Ni/ Al2O3 | 煤油 | T = 1023K,S/C比为3,空速40mL/(gcat·h) | 25 | 25 | [ |
Ni-Co/Al2O3 | 正十二烷 | T = 973K,S/C比为4,空速20mL/(gcat·h) | 89 | 63.1 | [ |
Ni-CePr2-600 | 正十二烷 | T = 873K,S/C比为2,空速15mL/(gcat·h) | 100 | 100 | [ |
8Ni/SBA-15 | JP-10 | T = 953K,S/C比为5,空速10mL/(gcat·h) | 90 | 90 | [ |
8Ni-2Ce/SBA-15 | JP-10 | T = 953K,S/C比为5,空速10mL/(gcat·h) | 99 | 99 | [ |
RuNi/ Al2O3 | 煤油 | T = 1023K,S/C比为3,空速40mL/(gcat·h) | 100 | 85 | [ |
Ru/CeO2/Al2O3 | 煤油 | T = 873K,S/C比为4,空速0.378mL/(gcat·h) | 100 | 94 | [ |
Ru/Ce0.75Zr0.25O2 | 正十二烷 | T = 923K,S/C比为4,空速12mL/(gcat·h) | 71 | 50 | [ |
Ni-Pt/SBA-15 | 正十二烷 | T = 923K,S/C比为3,空速15mL/(gcat·h) | 80 | — | [ |
NiPt1/Al2O3 | 正十二烷 | T = 973K,S/C = 4 | 97 | 97 | [ |
Ni-Rh/Ce0.75Zr0.2O | 正十二烷 | T = 923K,S/C比为4,空速9mL/(gcat·h) | 75 | 68 | [ |
Pt/CeO2 | 正十二烷 | T = 1073K,S/C比为2.5,空速3mL/(gcat·h) | 100 | 100 | [ |
催化剂 | 金属 负载量/% | 反应原料 | 反应条件 | 转化率/% | 积炭量(%)/ 反应时间(h) | 参考文献 |
---|---|---|---|---|---|---|
Ni/CeO2-ZrO2 | 15 | 苯 | T = 973K,S/C比为2.4,空速19.6g·h/mol | 87.2 | 0.1/5 | [ |
Ni/LaAlO3 | 10 | 苯 | T = 873K,S/C比为3,空速13.5g·h/mol | 81 | — | [ |
Ru/SrO-Al2O3 | 2 | 苯 | T = 873K,S/C比为2,空速14g·h/mol | 55.9 | —/0.5 | [ |
NiMg/HZSM-5 | 3 | 甲苯 | T = 973K,S/C比为3,空速26.86g·h/mol | 92.8 | 0.46/2 | [ |
NiCo@Phy@CeO2 | 14.3 | 甲苯 | T = 973K,S/C比为1.75,空速7.68g·h/mol | 80 | 6.2/45 | [ |
LaNi0.8Fe0.2O3 | 20 | 甲苯 | T = 923K,S/C比为3.4,空速3g·h/mol | 53.1 | — | [ |
NiMgAl | 12 | 甲苯 | T = 773K,S/C比为1.7,空速0.19g·h/mol | 84 | 15/5 | [ |
Ni-Fe/Mg/Al | 12 | 甲苯 | T = 873K,S/C比为1.7,空速0.05g·h/mol | 83.2 | —/0.5 | [ |
Ni/CeZr-MnO x | 15 | 萘 | T = 973K,S/C = 2 | 100 | 0.12/6 | [ |
Ni/Mg/Al | 12 | 甲基萘 | T = 1123K,S/C比为1.4,空速0.055g·h/mol | 41.7 | —/0.5 | [ |
NiCu/Mg/Al | 12 | 甲基萘 | T = 1123K,S/C比为1.4,空速0.055g·h/mol | 54.9 | —/0.5 | [ |
Ni/MgO/Al2O3 | 10 | 甲基萘 | T= 1048K,S/C比为0.7,空速0.055g·h/mol | 100 | 22/30 | [ |
表3 焦油蒸汽重整制氢催化剂及在相应反应条件下性能对比
催化剂 | 金属 负载量/% | 反应原料 | 反应条件 | 转化率/% | 积炭量(%)/ 反应时间(h) | 参考文献 |
---|---|---|---|---|---|---|
Ni/CeO2-ZrO2 | 15 | 苯 | T = 973K,S/C比为2.4,空速19.6g·h/mol | 87.2 | 0.1/5 | [ |
Ni/LaAlO3 | 10 | 苯 | T = 873K,S/C比为3,空速13.5g·h/mol | 81 | — | [ |
Ru/SrO-Al2O3 | 2 | 苯 | T = 873K,S/C比为2,空速14g·h/mol | 55.9 | —/0.5 | [ |
NiMg/HZSM-5 | 3 | 甲苯 | T = 973K,S/C比为3,空速26.86g·h/mol | 92.8 | 0.46/2 | [ |
NiCo@Phy@CeO2 | 14.3 | 甲苯 | T = 973K,S/C比为1.75,空速7.68g·h/mol | 80 | 6.2/45 | [ |
LaNi0.8Fe0.2O3 | 20 | 甲苯 | T = 923K,S/C比为3.4,空速3g·h/mol | 53.1 | — | [ |
NiMgAl | 12 | 甲苯 | T = 773K,S/C比为1.7,空速0.19g·h/mol | 84 | 15/5 | [ |
Ni-Fe/Mg/Al | 12 | 甲苯 | T = 873K,S/C比为1.7,空速0.05g·h/mol | 83.2 | —/0.5 | [ |
Ni/CeZr-MnO x | 15 | 萘 | T = 973K,S/C = 2 | 100 | 0.12/6 | [ |
Ni/Mg/Al | 12 | 甲基萘 | T = 1123K,S/C比为1.4,空速0.055g·h/mol | 41.7 | —/0.5 | [ |
NiCu/Mg/Al | 12 | 甲基萘 | T = 1123K,S/C比为1.4,空速0.055g·h/mol | 54.9 | —/0.5 | [ |
Ni/MgO/Al2O3 | 10 | 甲基萘 | T= 1048K,S/C比为0.7,空速0.055g·h/mol | 100 | 22/30 | [ |
1 | KREUER K D, PADDISON S J, SPOHR E, et al. Transport in proton conductors for fuel-cell applications: simulations, elementary reactions, and phenomenology[J]. Chemical Reviews, 2004, 104(10): 4637-4678. |
2 | NIKOLAIDIS Pavlos, POULLIKKAS Andreas. A comparative overview of hydrogen production processes[J]. Renewable and Sustainable Energy Reviews, 2017, 67: 597-611. |
3 | Joongmyeon BAE, KIM Sunyoung, Jiwoo OH, et al. Liquid fuel processing for hydrogen production: a renew[J]. International Journal of Hydrogen Energy, 2016, 41: 19990-20022. |
4 | BENGAARD H S, NØRSKOV J K, SEHESTED J, et al. Steam reforming and graphite formation on Ni catalysts[J]. Journal of Catalysis, 2002, 209(2): 365-384. |
5 | JOENSEN F, ROSTRUP-NIELSEN J R. Conversion of hydrocarbons and alcohols for fuel cells[J]. Journal of Power Sources, 2002, 105(2): 195-201. |
6 | LUSTEMBERG P G, MAO Z T, SALCEDO A, et al. Nature of the active sites on Ni/CeO2 catalysts for methane conversions[J]. ACS Catalysis, 2021, 11(16): 10604-10613. |
7 | 陈亚中, 徐恒泳, 王玉忠, 等. 汽油低温水蒸气重整催化剂的研究[J]. 石油化工, 2005, 34(S1): 492-494. |
CHEN Yazhong, XU Hengyong, WANG Yuzhong, et al. Study on catalyst for low temperature steam reforming of gasoline [J]. Petrochemical Technology, 2005, 34(S1): 492-494. | |
8 | WANG Linsheng, MURATA Kazuhisa, INABA Megumu. Development of novel highly active and sulphur-tolerant catalysts for steam reforming of liquid hydrocarbons to produce hydrogen[J]. Applied Catalysis A: General, 2004, 257(1): 43-47. |
9 | WANG Linsheng, MURATA Kazuhisa, MATSUMURA Yasuyuki, et al. Lower-temperature catalytic performance of bimetallic Ni-Re/Al2O3 catalyst for gasoline reforming to produce hydrogen with the inhibition of methane formation[J]. Energy & Fuels, 2006, 20(4): 1377-1381. |
10 | WANG Linsheng, MURATA Kazuhisa, INABA Megumu. Highly efficient conversion of gasoline into hydrogen on Al2O3-supported Ni-based catalysts: catalyst stability enhancement by modification with W[J]. Applied Catalysis A: General, 2009, 358(2): 264-268. |
11 | MURATA Kazuhisa, WANG Linsheng, SAITO Masahiro, et al. Hydrogen production from steam reforming of hydrocarbons over alkaline-earth metal-modified Fe- or Ni-based catalysts[J]. Energy & Fuels, 2004, 18(1): 122-126. |
12 | LU Yong, CHEN Jinchun, LIU Ye, et al. Highly sulfur-tolerant Pt/Ce0.8Gd0.2O1.9 catalyst for steam reforming of liquid hydrocarbons in fuel cell applications[J]. Journal of Catalysis, 2008, 254(1): 39-48. |
13 | MING Qimin, HEALEY Todd, ALLEN Lloyd, et al. Steam reforming of hydrocarbon fuels[J]. Catalysis Today, 2002, 77(1/2): 51-64. |
14 | 邓福山, 纪常伟, 何洪. 车载燃料重整技术的研究与展望[J]. 小型内燃机与摩托车, 2008, 37(6): 87-91. |
DENG Fushan, JI Changwei, HE Hong. Research and prospect of onboard fuel reforming technology[J]. Small Internal Combustion Engine and Motorcycle, 2008, 37(6): 87-91. | |
15 | HOU Lingyun, ZHANG Xiaoxiong, REN Zhuyin. Coke suppression of kerosene by wall catalytic steam reforming[J]. Fuel Processing Technology, 2016, 154: 117-122. |
16 | SUZUKI Takashi, IWANAMI Hikoichi, YOSHINARI Tomohiro. Steam reforming of kerosene on Ru/Al2O3 catalyst to yield hydrogen[J]. International Journal of Hydrogen Energy, 2000, 25(2): 119-126. |
17 | IIDA Hajime, ONUKI Naoto, NUMA Takashi, et al. Steam reforming of dodecane and toluene over Ru/12SrO-7Al2O3 (S12A7) catalysts[J]. Fuel Processing Technology, 2016, 142: 397-402. |
18 | JI Shuang, XIAO Zhourong, ZHANG Haocui, et al. Catalytic steam reforming of n-dodecane over high surface area Ce0.75Zr0.25O2 supported Ru catalysts[J]. International Journal of Hydrogen Energy, 2017, 42(49): 29484-29497. |
19 | GUGGILLA V S, AKYURTLU J, AKYURTLU A, et al. Steam reforming of n-dodecane over Ru-Ni-based catalysts[J]. Industrial & Engineering Chemistry Research, 2010, 49(17): 8164-8173. |
20 | 刘军瑜, 肖周荣, 张香文. Pt和CeO2助剂协同改性Ni/SBA-15催化剂用于正十二烷水蒸气重整制氢研究[J]. 化学工业与工程, 2019, 36(5): 1-10. |
LIU Junyu, XIAO Zhourong, ZHANG Xiangwen. Pt and ceria promoted Ni/SBA-15 for n-dodecane steam reforming for hydrogen production[J]. Chemical Industry and Engineering, 2019, 36(5): 1-10. | |
21 | LI Ling, ZUO Shouwei, AN Pengfei, et al. Hydrogen production via steam reforming of n-dodecane over NiPt alloy catalysts[J]. Fuel, 2020, 262: 116469. |
22 | XUE Qiangqiang, LI Zhengwen, CHEN Meng, et al. Co-precipitation continuous synthesis of the Ni-Rh-Ce0.75Zr0.25O2- δ catalyst in the membrane dispersion microreactor system for n-dodecane steam reforming to hydrogen[J]. Fuel, 2021, 297: 120785. |
23 | XIAO Zhourong, JI Shuang, HOU Fang, et al. N-Dodecane steam reforming catalyzed by Ni-Ce-Pr catalysts. Part 1: catalyst preparation and Pr doping[J]. Catalysis Today, 2018, 316: 78-90. |
24 | XIAO Zhourong, LI Ling, WU Chan, et al. Ceria-promoted Ni-Co/Al2O3 catalysts for n-dodecane steam reforming[J]. Catalysis Letters, 2016, 146(9): 1780-1791. |
25 | XIAO Zhourong, WANG Li, ZHANG Xiangwen, et al. Effect of ceria amount on promoting Ni-Co/SBA-15 catalyst for n-dodecane steam reforming[J]. ChemistrySelect, 2016, 1(20): 6460-6468. |
26 | XIAO Zhourong, WU Chan, LI Ling, et al. Pursuing complete and stable steam reforming of n-dodecane over nickel catalysts at low temperature and high LHSV[J]. International Journal of Hydrogen Energy, 2017, 42(8): 5606-5618. |
27 | XIAO Zhourong, ZHANG Xiangwen, HOU Fang, et al. Tuning metal-support interaction and oxygen vacancies of ceria supported nickel catalysts by Tb doping for n-dodecane steam reforming[J]. Applied Surface Science, 2020, 503: 144319. |
28 | XIAO Zhourong, ZHANG Xiangwen, WANG Li, et al. Optimizing the preparation of Ni-Ce-Pr catalysts for efficient hydrogen production by n-dodecane steam reforming[J]. International Journal of Energy Research, 2019, 44: 1828-1842. |
29 | ZHANG Haocui, XIAO Zhourong, YANG Mei, et al. Highly dispersible cerium-oxide modified Ni/SBA-15 for steam reforming of bio-mass based JP10[J]. Chinese Journal of Chemical Engineering, 2022, 43: 255-265. |
30 | ZHANG Haocui, XIAO Zhourong, YANG Mei, et al. Catalytic steam reforming of JP-10 over Ni/SBA-15[J]. International Journal of Hydrogen Energy, 2020, 45(7): 4284-4296. |
31 | 肖周荣, 郑前程, 张香文, 等. 花球状镁铝复合氧化物负载Ni-Co催化剂的合成及正十二烷水蒸气重整制氢[J]. 无机化学学报, 2021, 37(4): 629-637. |
XIAO Zhourong, ZHENG Qiancheng, ZHANG Xiangwen, et al. Synthesis of Ni-Co catalysts supported on flower-like MgAl composite oxide for hydrogen production by n-dodecane steam reforming[J]. Chinese Journal of Inorganic Chemistry, 2021, 37(4): 629-637. | |
32 | KIM Taewook, SONG Kihun, YOON Heechul, et al. Steam reforming of n-dodecane over K2Ti2O5-added Ni-alumina and Ni-zirconia (YSZ) catalysts[J]. International Journal of Hydrogen Energy, 2016, 41(40): 17922-17932. |
33 | KIM T, CHUNG Y S, SUNG J G, et al. n-Dodecane steam reforming over Ni catalysts supported on ZrO2-KNbO3 [J]. Journal of Power Sources, 2020, 479: 228834. |
34 | YU Xinghe, ZHANG Shouchen, WANG Liqiu, et al. Hydrogen production from steam reforming of kerosene over Ni-La and Ni-La-K/cordierite catalysts[J]. Fuel, 2006, 85(12/13): 1708-1713. |
35 | SUGISAWA Masanori, TAKANABE Kazuhiro, HARADA Makoto, et al. Effects of La addition to Ni/Al2O3 catalysts on rates and carbon deposition during steam reforming of n-dodecane[J]. Fuel Processing Technology, 2011, 92(1): 21-25. |
36 | GUO Yu, LI Huabo, JIA Lu, et al. Trace Ru-doped anodic alumina-supported Ni catalysts for steam reforming of kerosene: Activity performance and electrical-heating possibility[J]. Fuel Processing Technology, 2011, 92(12): 2341-2347. |
37 | MIYAMOTO Manabu, ARAKAWA Masami, OUMI Yasunori, et al. Influence of metal cation doping on Ru/CeO2/Al2O3 catalyst for steam reforming of desulfurized kerosene[J]. International Journal of Hydrogen Energy, 2015, 40(6): 2657-2662. |
38 | VITA Antonio, ITALIANO Cristina, FABIANO Concetto, et al. Hydrogen-rich gas production by steam reforming of n-dodecane: part Ⅰ: Catalytic activity of Pt/CeO2 catalysts in optimized bed configuration[J]. Applied Catalysis B: Environmental, 2016, 199: 350-360. |
39 | 李夺, 钟和香, 张晶, 等. 柴油蒸汽重整制氢贵金属催化剂的研究进展[J]. 石油化工, 2021, 50(6): 598-603. |
LI Duo, ZHONG Hexiang, ZHANG Jing, et al. Research progress of noble metal catalysts for diesel steam reforming to produce hydrogen[J]. Petrochemical Technology, 2021, 50(6): 598-603. | |
40 | Clémence FAUTEUX-LEFEBVRE, ABATZOGLOU Nicolas, BRAIDY Nadi, et al. Diesel steam reforming with a nickel-alumina spinel catalyst for solid oxide fuel cell application[J]. Journal of Power Sources, 2011, 196(18): 7673-7680. |
41 | KIM D H, KANG J S, LEE Y J, et al. Steam reforming of n-hexadecane over noble metal-modified Ni-based catalysts[J]. Catalysis Today, 2008, 136(3/4): 228-234. |
42 | TRIBALIS Antonios, PANAGIOTOU George, BOURIKAS Kyriakos, et al. Ni catalysts supported on modified alumina for diesel steam reforming[J]. Catalysts, 2016, 6(1): 11. |
43 | YOUNIS M N, MALAIBARI Z O, AHMAD W, et al. Hydrogen production through steam reforming of diesel over highly efficient promoted Ni/γ-Al2O3 catalysts containing lanthanide series (La, Ce, Eu, Pr, and Gd) promoters[J]. Energy & Fuels, 2018, 32(6): 7054-7065. |
44 | SHOYNKHOROVA T B, SIMONOV P A, POTEMKIN D I, et al. Highly dispersed Rh-, Pt-, Ru/Ce0.75Zr0.25O2- δ catalysts prepared by sorption-hydrolytic deposition for diesel fuel reforming to syngas[J]. Applied Catalysis B: Environmental, 2018, 237: 237-244. |
45 | MOTA N, ÁLVAREZ-GALVÁN M C, VILLORIA J A, et al. Reforming of diesel fuel for hydrogen production over catalysts derived from LaCo1- x M x O3 (M=Ru, Fe)[J]. Topics in Catalysis, 2009, 52: 1995-2000. |
46 | HAYNES D J, CAMPOS A, BERRY D A, et al. Catalytic partial oxidation of a diesel surrogate fuel using an Ru-substituted pyrochlore[J]. Catalysis Today, 2010, 155(1/2): 84-91. |
47 | LI Dalin, TAMURA Masazumi, NAKAGAWA Yoshinao, et al. Metal catalysts for steam reforming of tar derived from the gasification of lignocellulosic biomass[J]. Bioresource Technology, 2015, 178: 53-64. |
48 | 刘嘉辉, 孙道安, 杜咏梅, 等. 芳烃蒸汽催化重整制氢研究进展[J]. 化工进展, 2021, 40(9): 4782-4790. |
LIU Jiahui, SUN Daoan, DU Yongmei, et al. Progress on hydrogen production from catalytic steam reforming of aromatic hydrocarbons[J]. Chemical Industry and Engineering Progress, 2021, 40(9): 4782-4790. | |
49 | PARK Hyun Ju, PARK Sung Hoon, SOHN Jung Min, et al. Steam reforming of biomass gasification tar using benzene as a model compound over various Ni supported metal oxide catalysts[J]. Bioresource Technology, 2010, 101(1): S101-S103. |
50 | COLBY J L, WANG T, SCHMIDT L D. Steam reforming of benzene as a model for biomass-derived syngas tars over Rh-based catalysts[J]. Energy & Fuels, 2010, 24(2): 1341-1346. |
51 | SEKINE Yasushi, MUKAI Daiki, MURAI Yuki, et al. Steam reforming of toluene over perovskite-supported Ni catalysts[J]. Applied Catalysis A: General, 2013, 451: 160-167. |
52 | ZHANG Zhonghui, Zhiliang OU, QIN Changlei, et al. Roles of alkali/alkaline earth metals in steam reforming of biomass tar for hydrogen production over perovskite supported Ni catalysts[J]. Fuel, 2019, 257: 116032. |
53 | WU Wei, FAN Qizhou, YI Baojun, et al. Catalytic characteristics of a Ni-MgO/HZSM-5 catalyst for steam reforming of toluene[J]. RSC Advances, 2020, 10(35): 20872-20881. |
54 | LI Ziwei, LI Min, ASHOK Jangam, et al. NiCo@NiCo phyllosilicate@CeO2 hollow core shell catalysts for steam reforming of toluene as biomass tar model compound[J]. Energy Conversion and Management, 2019, 180: 822-830. |
55 | OEMAR U, ANG P S, HIDAJAT K, et al. Promotional effect of Fe on perovskite LaNi x Fe1- x O3 catalyst for hydrogen production via steam reforming of toluene[J]. International Journal of Hydrogen Energy, 2013, 38(14): 5525-5534. |
56 | BETCHAKU Mii, NAKAGAWA Yoshinao, TAMURA Masazumi, et al. Catalytic performance of hydrotalcite-like-compound-derived Ni-metal alloy catalyst for toluene reforming with gasoline engine exhaust model gas as reforming agent[J]. Fuel Processing Technology, 2021, 218: 106837. |
57 | KOIKE Mitsuru, LI Dalin, NAKAGAWA Yoshinao, et al. A highly active and coke-resistant steam reforming catalyst comprising uniform nickel-iron alloy nanoparticles[J]. ChemSusChem, 2012, 5(12): 2312-2314. |
58 | BAMPENRAT Asawin, MEEYOO Vissanu, KITIYANAN Boonyarach, et al. Naphthalene steam reforming over Mn-doped CeO2-ZrO2 supported nickel catalysts[J]. Applied Catalysis A: General, 2010, 373(1/2): 154-159. |
59 | LI Dalin, LU Miaomiao, ARAGAKI Kosuke, et al. Characterization and catalytic performance of hydrotalcite-derived Ni-Cu alloy nanoparticles catalysts for steam reforming of 1-methylnaphthalene[J]. Applied Catalysis B: Environmental, 2016, 192: 171-181. |
60 | YANG Jun, WANG Xueguang, LI Lin, et al. Catalytic conversion of tar from hot coke oven gas using 1-methylnaphthalene as a tar model compound[J]. Applied Catalysis B: Environmental, 2010, 96(1/2): 232-237. |
61 | MCCOY A C, DURAN M J, AZAD A M, et al. Performance of sulfur tolerant reforming catalysts for production of hydrogen from jet fuel simulants[J]. Energy & Fuels, 2007, 21(6): 3513-3519. |
62 | XIE Chao, CHEN Yongsheng, LI Yan, et al. Influence of sulfur on the carbon deposition in steam reforming of liquid hydrocarbons over CeO2-Al2O3 supported Ni and Rh catalysts[J]. Applied Catalysis A: General, 2011, 394(1/2): 32-40. |
63 | XIE C, CHEN Y S, ENGELHARD M H, et al. Comparative study on the sulfur tolerance and carbon resistance of supported noble metal catalysts in steam reforming of liquid hydrocarbon fuel[J]. ACS Catalysis, 2012, 2(6): 1127-1137. |
64 | VITA A, ITALIANO C, PINO L, et al. Hydrogen-rich gas production by steam reforming of n-dodecane. Part Ⅱ: Stability, regenerability and sulfur poisoning of low loading Rh-based catalyst[J]. Applied Catalysis B: Environmental, 2017, 218: 317-326. |
65 | 丁天英, 刘景林, 赵天亮, 等. 非热等离子体烃类燃料氧化重整反应器的研究进展[J]. 化工学报, 2015, 66(3): 872-879. |
DING Tianying, LIU Jinglin, ZHAO Tianliang, et al. Progress of non-thermal plasma reactors for oxidative reforming of hydrocarbon fuel[J]. CIESC Journal, 2015, 66(3): 872-879. | |
66 | PETITPAS G, ROLLIER J D, DARMON A, et al. A comparative study of non-thermal plasma assisted reforming technologies[J]. International Journal of Hydrogen Energy, 2007, 32(14): 2848-2867. |
67 | 鲁娜, 刘孟杰, 刘一荻, 等. 旋转滑动弧等离子体重整制氢研究进展[J]. 高电压技术, 2021, 47(8): 3001-3011. |
LU Na, LIU Mengjie, LIU Yidi, et al. Research progress of hydrogen production by rotating gliding arc plasma reforming[J]. High Voltage Engineering, 2021, 47(8): 3001-3011. | |
68 | LEE D H, KIM K T, CHA M S, et al. Effect of excess oxygen in plasma reforming of diesel fuel[J]. International Journal of Hydrogen Energy, 2010, 35(10): 4668-4675. |
69 | 曾亮, 巩金龙. 化学链重整直接制氢技术进展[J]. 化工学报, 2015, 66(8): 2854-2862. |
ZENG Liang, GONG Jinlong. Advances in chemical looping reforming for direct hydrogen production[J]. CIESC Journal, 2015, 66(8): 2854-2862. | |
70 | CERQUEIRA P, SORIA M A, MADEIRA L M. Hydrogen production through chemical looping and sorption-enhanced reforming of olive mill wastewater: Thermodynamic and energy efficiency analysis[J]. Energy Conversion and Management, 2021, 238: 114146. |
71 | WU Gaowei, ZHANG Chengxi, LI Shuirong, et al. Sorption enhanced steam reforming of ethanol on Ni-CaO-Al2O3 multifunctional catalysts derived from hydrotalcite-like compounds[J]. Energy & Environmental Science, 2012, 5(10): 8942-8949. |
72 | DANG Chengxiong, LI Hanke, YANG Guangxing, et al. High-purity hydrogen production by sorption-enhanced steam reforming of iso-octane over a Pd-promoted Ni-Ca-Al-O bi-functional catalyst[J]. Fuel, 2021, 293: 120430. |
73 | 王云珠, 泮子恒, 赵燚, 等. 吸附强化蒸汽重整制氢中CO2固体吸附剂的研究进展[J]. 化工进展, 2019, 38(11): 5103-5113. |
WANG Yunzhu, PAN Ziheng, ZHAO Yi, et al. Research progress in CO2 solid sorbents for hydrogen production by sorption-enhanced steam reforming: a review[J]. Chemical Industry and Engineering Progress, 2019, 38(11): 5103-5113. | |
74 | TONG Jianhua, MATSUMURA Yasuyuki. Pure hydrogen production by methane steam reforming with hydrogen-permeable membrane reactor[J]. Catalysis Today, 2006, 111(3/4): 147-152. |
75 | CHEN Yazhong, WANG Yuzhong, XU Hengyong, et al. Efficient production of hydrogen from natural gas steam reforming in palladium membrane reactor[J]. Applied Catalysis B: Environmental, 2008, 81(3/4): 283-294. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[3] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[4] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[5] | 王乐乐, 杨万荣, 姚燕, 刘涛, 何川, 刘逍, 苏胜, 孔凡海, 朱仓海, 向军. SCR脱硝催化剂掺废特性及性能影响[J]. 化工进展, 2023, 42(S1): 489-497. |
[6] | 邓丽萍, 时好雨, 刘霄龙, 陈瑶姬, 严晶颖. 非贵金属改性钒钛基催化剂NH3-SCR脱硝协同控制VOCs[J]. 化工进展, 2023, 42(S1): 542-548. |
[7] | 程涛, 崔瑞利, 宋俊男, 张天琪, 张耘赫, 梁世杰, 朴实. 渣油加氢装置杂质沉积规律与压降升高机理分析[J]. 化工进展, 2023, 42(9): 4616-4627. |
[8] | 王鹏, 史会兵, 赵德明, 冯保林, 陈倩, 杨妲. 过渡金属催化氯代物的羰基化反应研究进展[J]. 化工进展, 2023, 42(9): 4649-4666. |
[9] | 张启, 赵红, 荣峻峰. 质子交换膜燃料电池中氧还原反应抗毒性电催化剂研究进展[J]. 化工进展, 2023, 42(9): 4677-4691. |
[10] | 王伟涛, 鲍婷玉, 姜旭禄, 何珍红, 王宽, 杨阳, 刘昭铁. 醛酮树脂基非金属催化剂催化氧气氧化苯制备苯酚[J]. 化工进展, 2023, 42(9): 4706-4715. |
[11] | 葛亚粉, 孙宇, 肖鹏, 刘琦, 刘波, 孙成蓥, 巩雁军. 分子筛去除VOCs的研究进展[J]. 化工进展, 2023, 42(9): 4716-4730. |
[12] | 吴海波, 王希仑, 方岩雄, 纪红兵. 3D打印催化材料开发与应用进展[J]. 化工进展, 2023, 42(8): 3956-3964. |
[13] | 向阳, 黄寻, 魏子栋. 电催化有机合成反应的活性和选择性调控研究进展[J]. 化工进展, 2023, 42(8): 4005-4014. |
[14] | 王耀刚, 韩子姗, 高嘉辰, 王新宇, 李思琪, 杨全红, 翁哲. 铜基催化剂电还原二氧化碳选择性的调控策略[J]. 化工进展, 2023, 42(8): 4043-4057. |
[15] | 刘毅, 房强, 钟达忠, 赵强, 李晋平. Ag/Cu耦合催化剂的Cu晶面调控用于电催化二氧化碳还原[J]. 化工进展, 2023, 42(8): 4136-4142. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |