化工进展 ›› 2022, Vol. 41 ›› Issue (S1): 524-535.DOI: 10.16085/j.issn.1000-6613.2022-0668
收稿日期:
2022-04-15
修回日期:
2022-06-21
出版日期:
2022-10-20
发布日期:
2022-11-10
通讯作者:
赵锦波
作者简介:
赵锦波(1976—),男,博士,研究方向为化工材料。E-mail:zhaojinbo@usst.edu.cn。
Received:
2022-04-15
Revised:
2022-06-21
Online:
2022-10-20
Published:
2022-11-10
Contact:
ZHAO Jinbo
摘要:
针对CO2排放这一全球性问题,我国明确2030年碳达峰、2060年碳中和的战略目标。发展高效CO2化学转化技术是推进该战略目标实现的关键。通过CO2化学利用技术可将廉价无用的温室效应气体转化为具有极高经济价值的重要化工产品,但目前仅有少数技术可以实现工业化应用。在此背景下,本文从CO2利用技术的转化方式出发,阐述了各技术的基本原理,总结了国内外相关团队在CO2化学利用技术基础与应用研究中的进展(包括CO2加氢技术、CO2甲烷重整、CO2酯化反应、CO2矿化利用),指出了目前CO2化学利用技术研究所面临的挑战。最后,本文展望了各种CO2化学利用技术的发展方向,并提出了发展建议。
中图分类号:
赵锦波, 卞凤鸣. CO2化学转化基础与应用研究进展[J]. 化工进展, 2022, 41(S1): 524-535.
ZHAO Jinbo, BIAN Fengming. Progress on basis and application of CO2 chemical conversion technologies[J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 524-535.
1 | Jörg KLAUSEN, VOLOSCIUK Claudia, TARASOVA Oksana, et al. Benefits of atmospheric composition monitoring and international data exchange[J]. Bulletin, 2021, 70: 41-46. |
2 | 高世楫, 俞敏. 中国提出“双碳”目标的历史背景、重大意义和变革路径[J]. 新经济导刊, 2021(2): 4-8. |
GAO Shiji, YU Min. Historical background, significance, and revolution pathway for the goals of carbon peaking and carbon neutrality proposed by China[J]. New Economy Leader, 2021(2): 4-8. | |
3 | LIU Zihe, WANG Kai, CHEN Yun, et al. Third-generation biorefineries as the means to produce fuels and chemicals from CO2 [J]. Nature Catalysis, 2020, 3(3): 274-288. |
4 | MOHAN S V, MODESTRA J A, AMULYA K, et al. A circular bioeconomy with biobased products from CO2 sequestration[J]. Trends in Biotechnology, 2016, 34(6): 506-519. |
5 | GONG Fuyu, ZHU Huawei, ZHANG Yanping, et al. Biological carbon fixation: From natural to synthetic[J]. Journal of CO2 Utilization, 2018, 28: 221-227. |
6 | TREMBLAY P L, ANGENENT L T, ZHANG T. Extracellular electron uptake: Among autotrophs and mediated by surfaces[J]. Trends in Biotechnology, 2017, 35(4): 360-371. |
7 | TANG Chunyu, YANG Fan, ANTONIETTI Markus. Carbon materials advancing microorganisms in driving soil organic carbon regulation[J]. Research, 2022, 2022: 9857374. |
8 | KAJLA S, KUMARI R, NAGI G K. Microbial CO2 fixation and biotechnology in reducing industrial CO2 emissions[J]. Archives of Microbiology, 2022, 204(2): 1-20. |
9 | LIU Yan, LIU Dazhuang. Study of bimetallic Cu-Ni/γ-Al2O3 catalysts for carbon dioxide hydrogenation[J]. International Journal of Hydrogen Energy, 1999, 24(4): 351-354. |
10 | STONE F, WALLER D. Cu–ZnO and Cu–ZnO/Al2O3 catalysts for the reverse water-gas shift reaction. the effect of the Cu/Zn ratio on precursor characteristics and on the activity of the derived catalysts[J]. Topics in Catalysis, 2003, 22: 305-318. |
11 | CHEN C S, CHENG W H, LIN S S. Study of reverse water gas shift reaction by TPD, TPR and CO2 hydrogenation over potassium-promoted Cu/SiO2 catalyst[J]. Applied Catalysis A: General, 2003, 238(1): 55-67. |
12 | CHEN C S, CHENG W H, LIN S S. Study of iron-promoted Cu/SiO2 catalyst on high temperature reverse water gas shift reaction[J]. Applied Catalysis A: General, 2004, 257(1): 97-106. |
13 | KITAMURA B K, SOGA K, KUNIMORI K, et al. Effect of Li additive on CO2 hydrogenation reactivity of zeolite supported Rh catalysts[J]. Applied Catalysis A: General, 1998, 175(1/2): 67-81. |
14 | CHEN Hao, LI Zihao, ZHANG Zihao, et al. Synthesis of composition-tunable syngas from efficiently electrochemical conversion of CO2 over AuCu/CNT bimetallic catalyst[J]. Industrial & Engineering Chemistry Research, 2019, 58(34): 15425-15431. |
15 | DU Guoan, Sangyun LIM, YANG Yanhui, et al. Methanation of carbon dioxide on Ni-incorporated MCM-41 catalysts: The influence of catalyst pretreatment and study of steady-state reaction[J]. Journal of Catalysis, 2007, 249(2): 370-379. |
16 | LUNDE P J, KESTER F L. Carbon dioxide methanation on a ruthenium catalyst[J]. Industrial & Engineering Chemistry Process Design and Development, 1974, 13(1): 27-33. |
17 | PRASAD P S SAI, BAE J W, JUN K W, et al. Fischer–Tropsch synthesis by carbon dioxide hydrogenation on Fe-based catalysts[J]. Catalysis Surveys from Asia, 2008, 12(3): 170-183. |
18 | DORNER R W, HARDY D R, WILLIAMS F W, et al. K and Mn doped iron-based CO2 hydrogenation catalysts: Detection of KAlH4 as part of the catalyst's active phase[J]. Applied Catalysis A: General, 2010, 373(1/2): 112-121. |
19 | QIU Xiaofeng, ZHU Haolin, HUANG Jiarun, et al. Highly selective CO2 electroreduction to C2H4 using a metal-organic framework with dual active sites[J]. Journal of the American Chemical Society, 2021, 143(19): 7242-7246. |
20 | LI Hefei, LIU Tianfu, WEI Pengfei, et al. High-rate CO2 electroreduction to C2+ products over a copper-copper iodide catalyst[J]. Angewandte Chemie (International Ed in English), 2021, 60(26): 14329-14333. |
21 | NI Youming, CHEN Zhiyang, FU Yi, et al. Selective conversion of CO2 and H2 into aromatics [J]. Nature Communications, 2018, 9: 3457. |
22 | LI Zelong, QU Yuanzhi, WANG Jijie, et al. Highly selective conversion of carbon dioxide to aromatics over tandem catalysts[J]. Joule, 2019, 3(2): 570-583. |
23 | MA Jun, SUN Nannan, ZHANG Xuelan, et al. A short review of catalysis for CO2 conversion[J]. Catalysis Today, 2009, 148(3/4): 221-231. |
24 | ARENA Francesco, BARBERA Katia, ITALIANO Giuseppe, et al. Synthesis, characterization and activity pattern of Cu-ZnO/ZrO2 catalysts in the hydrogenation of carbon dioxide to methanol[J]. Journal of Catalysis, 2007, 249(2): 185-194. |
25 | 孙楷航, 王婧, 芮宁, 等. 氧化铟系CO2加氢合成甲醇催化剂研究进展[C]//中国化学会·第一届全国二氧化碳资源化利用学术会议摘要集, 天津, 2019: 33. |
SUN Kaihang, WANG Jin, RUI Ning, et al. Progress on indium oxide based catalysts for metahnol synthesis by CO2 hydrogenation[C]//CCS·Proceedings of the 1st National Conference on CO2 Utilization, Tianjing, 2019, 33. | |
26 | KUSAMA Hitoshi, OKABE Kiyomi, SAYAMA Kazuhiro, et al. Ethanol synthesis by catalytic hydrogenation of CO2 over Rh-FeSiO2 catalysts[J]. Energy, 1997, 22(2): 343-348. |
27 | KURAKATA Hiroshi, IZUMI Yasuo, AIKA Kenichi. Ethanol synthesis from carbon dioxide on TiO2-supported[Rh10Se]catalyst[J]. Chemical Communications, 1996(3): 389-390. |
28 | HIGUCHI Katsumi, HANEDA Yoko, TABATA Kenji, et al. A study for the durability of catalysts in ethanol synthesis by hydrogenation of carbon dioxide [J]. Studies in Surface Science and Catalysis, 1998, 114: 517-520. |
29 | CHUNG W C, TSAO I Y, CHANG M B. Novel plasma photocatalysis process for syngas generation via dry reforming of methane[J]. Energy Conversion and Management, 2018, 164: 417-428. |
30 | CHOTIRACH Maslin, TUNGASMITA Sukkaneste, NUNTASRI TUNGASMITA Duangamol, et al. Titanium nitride promoted Ni-based SBA-15 catalyst for dry reforming of methane[J]. International Journal of Hydrogen Energy, 2018, 43(46): 21322-21332. |
31 | ABDULLAH B, GHANI N A ABD, VO D V N. Recent advances in dry reforming of methane over Ni-based catalysts[J]. Journal of Cleaner Production, 2017, 162: 170-185. |
32 | CAI Xiaojiao, HU Yunhang. Advances in catalytic conversion of methane and carbon dioxide to highly valuable products[J]. Energy Science & Engineering, 2019, 7(1): 4-29. |
33 | JANG W J, SHIM J O, KIM H M, et al. A review on dry reforming of methane in aspect of catalytic properties[J]. Catalysis Today, 2019, 324: 15-26. |
34 | DIETERICH Vincent, BUTTLER Alexander, HANEL Andreas, et al. Power-to-liquid via synthesis of methanol, DME or Fischer–Tropsch-fuels: A review[J]. Energy & Environmental Science, 2020, 13(10): 3207-3252. |
35 | András SÁPI, RAJKUMAR T, Marietta ÁBEL, et al. Noble-metal-free and Pt nanoparticles-loaded, mesoporous oxides as efficient catalysts for CO2 hydrogenation and dry reforming with methane[J]. Journal of CO2 Utilization, 2019, 32: 106-118. |
36 | PAKHARE Devendra, SPIVEY James. A review of dry (CO2) reforming of methane over noble metal catalysts[J]. Chemical Society Reviews, 2014, 43(22): 7813-7837. |
37 | ARBAG Huseyin, YASYERLI Sena, YASYERLI Nail, et al. Enhancement of catalytic performance of Ni based mesoporous alumina by Co incorporation in conversion of biogas to synthesis gas[J]. Applied Catalysis B: Environmental, 2016, 198: 254-265. |
38 | MARGOSSIAN T, LARMIER K, KIM S M, et al. Supported bimetallic NiFe nanoparticles through colloid synthesis for improved dry reforming performance[J]. ACS Catalysis, 2017, 7(10): 6942-6948. |
39 | THEOFANIDIS Stavros A, GALVITA V V, POELMAN H, et al. Enhanced carbon-resistant dry reforming Fe-Ni catalyst: Role of Fe[J]. ACS Catalysis, 2015, 5(5): 3028-3039. |
40 | PAWELEC B, DAMYANOVA S, ARISHTIROVA K, et al. Structural and surface features of PtNi catalysts for reforming of methane with CO2 [J]. Applied Catalysis A: General, 2007, 323: 188-201. |
41 | ARAIZA D G, ARCOS D G, GÓMEZ-CORTÉS A, et al. Dry reforming of methane over Pt-Ni/CeO2 catalysts: Effect of the metal composition on the stability[J]. Catalysis Today, 2021, 360: 46-54. |
42 | YU Mingjue, ZHU Yian, LU Yong, et al. The promoting role of Ag in Ni-CeO2 catalyzed CH4-CO2 dry reforming reaction[J]. Applied Catalysis B: Environmental, 2015, 165: 43-56. |
43 | DAMYANOVA S, PAWELEC B, ARISHTIROVA K, et al. MCM-41 supported PdNi catalysts for dry reforming of methane[J]. Applied Catalysis B: Environmental, 2009, 92(3/4): 250-261. |
44 | PENG Honggen, ZHANG Xianhua, HAN Xue, et al. Catalysts in coronas: A surface spatial confinement strategy for high-performance catalysts in methane dry reforming[J]. ACS Catalysis, 2019, 9(10): 9072-9080. |
45 | JI Shufang, CHEN Yuanjun, WANG Xiaolu, et al. Chemical synthesis of single atomic site catalysts[J]. Chemical Reviews, 2020, 120(21): 11900-11955. |
46 | KWON Y, KIM T Y, KWON G, et al. Selective activation of methane on single-atom catalyst of rhodium dispersed on zirconia for direct conversion[J]. Journal of the American Chemical Society, 2017, 139(48): 17694-17699. |
47 | AKRI Mohcin, ZHAO Shu, LI Xiaoyu, et al. Atomically dispersed nickel as coke-resistant active sites for methane dry reforming[J]. Nature Communications, 2019, 10(1): 5181. |
48 | HU Yunhang. Solid-solution catalysts for CO2 reforming of methane[J]. Catalysis Today, 2009, 148(3): 206-211. |
49 | RUCKENSTEIN Eli, HU Yunhang. Carbon dioxide reforming of methane over nickel/alkaline earth metal oxide catalysts[J]. Applied Catalysis A: General, 1995, 133(1): 149-161. |
50 | ZANGANEH Rasoul, REZAEI Mehran, ZAMANIYAN Akbar, et al. Preparation of Ni0.1Mg0.9O nanocrystalline powder and its catalytic performance in methane reforming with carbon dioxide[J]. Journal of Industrial and Engineering Chemistry, 2013, 19(1): 234-239. |
51 | PADI S P, SHELLY L, KOMARALA E P, et al. Coke-free methane dry reforming over nano-sized NiO-CeO2 solid solution after exsolution[J]. Catalysis Communications, 2020, 138: 105951. |
52 | YANG E H, NOH Y S, HONG G H, et al. Combined steam and CO2 reforming of methane over La1- x Sr x NiO3 perovskite oxides[J]. Catalysis Today, 2018, 299: 242-250. |
53 | PARK Daeil, MOON Dong Ju, KIM Taegyu. Steam-CO2 reforming of methane on Ni/γ-Al2O3-deposited metallic foam catalyst for GTL-FPSO process[J]. Fuel Processing Technology, 2013, 112: 28-34. |
54 | PHAM Xuan Huynh, ASHIK U P M, HAYASHI Jun Ichiro, et al. Review on the catalytic tri-reforming of methane - Part II: Catalyst development[J]. Applied Catalysis A: General, 2021, 623: 118286. |
55 | DELLEDONNE Daniele, RIVETTI Franco, ROMANO Ugo. Developments in the production and application of dimethylcarbonate[J]. Applied Catalysis A: General, 2001, 221(1/2): 241-251. |
56 | 王旭慧, 赵金仙, 裴永丽, 等. 金属氧化物催化CO2与甲醇合成碳酸二甲酯的研究进展[J]. 化工进展, 2019, 38(11): 4956-4964. |
WANG Xuhui, ZHAO Jinxian, PEI Yongli, et al. Research progress in dimethyl carbonate synthesis from carbon dioxide and methanol catalyzed by metal oxides[J]. Chemical Industry and Engineering Progress, 2019, 38(11): 4956-4964. | |
57 | 陈红萍, 梁英华, 郑小满, 等. 铁锆复合氧化物催化甲醇与CO2直接合成DMC反应性能[J]. 分子催化, 2013, 27(6): 556-565. |
CHEN Hongping, LIANG Yinghua, ZHENG Xiaoman, et al. Direct synthesis of dimethyl carbonate from methanol and carbon dioxide over Fe-Zr-O catalyst[J]. Journal of Molecular Catalysis, 2013, 27(6): 556-565. | |
58 | 殷芳喜, 吕翠英. 非光气法聚碳酸酯的合成方法[J]. 广州化工, 2017, 45(19) : 4-6, 28. |
YIN Fangxi, Cuiying LYU. Non-phosgene synthesis method of polycarbonate[J]. Guangzhou Chemical Industry, 2017, 45(19): 4-6, 28. | |
59 | 张桂华, 牛建洲, 郭兴田. 我国聚碳酸酯生产及市场应用前景分析[J]. 化学工业, 2018, 36(5): 45-51, 56. |
ZHANG Guihua, NIU Jianzhou, GUO Xingtian. Analysis of polycarbonate production and market application prospect in China[J]. Chemical Industry, 2018, 36(5): 45-51, 56. | |
60 | FUKUOKA Shinsuke, FUKAWA Isaburo, TOJO Masahiro, et al. A novel non-phosgene process for polycarbonate production from CO2: Green and sustainable chemistry in practice[J]. Catalysis Surveys from Asia, 2010, 14(3/4): 146-163. |
61 | WU Wei, QIN Yusheng, WANG Xianhong, et al. New bifunctional catalyst based on cobalt-porphyrin complex for the copolymerization of propylene oxide and CO2 [J]. Journal of Polymer Science Part A: Polymer Chemistry, 2013, 51(3): 493-498. |
62 | 吴伟, 秦玉升, 王献红, 等. 双官能卟啉铝配合物催化二氧化碳与环氧化合物的共聚合[J]. 高分子学报, 2014(7): 1017-1022. |
WU Wei, QIN Yusheng, WANG Xianhong, et al. Bifunctional aluminum porphyrin catalysts for copolymerization of CO2 and epoxides[J]. Acta Polymerica Sinica, 2014(7): 1017-1022. | |
63 | REINA T R, ODRIOZOLA J A, ARELLANO-GARCIA H. Engineering solutions for CO2 conversion [M]. Wiley Online Library, 2021. |
64 | WILSON S A, HARRISON A L, DIPPLE G M, et al. Offsetting of CO2 emissions by air capture in mine tailings at the Mount Keith Nickel Mine, Western Australia: Rates, controls and prospects for carbon neutral mining[J]. International Journal of Greenhouse Gas Control, 2014, 25: 121-140. |
65 | 何民宇, 刘维燥, 刘清才, 等. CO2矿物封存技术研究进展[J]. 化工进展, 2022, 41(4): 1825-1833. |
HE Minyu, LIU Weizao, LIU Qingcai, et al. Research progress in CO2 mineral sequestration technology[J]. Chemical Industry and Engineering Progress, 2022, 41(4): 1825-1833. | |
66 | SNÆBJÖRNSDÓTTIR S Ó, SIGFÚSSON B, MARIENI C, et al. Carbon dioxide storage through mineral carbonation[J]. Nature Reviews Earth & Environment, 2020, 1(2): 90-102. |
67 | 谢和平, 刘涛, 吴一凡, 等. CO2的能源化利用技术进展与展望[J]. 工程科学与技术, 2022, 54(1): 145-156. |
XIE Heping, LIU Tao, WU Yifan, et al. Progress and prospect of CO2 energy utilization technology[J]. Advanced Engineering Sciences, 2022, 54(1): 145-156. | |
68 | 刘项, 孙国超. 二氧化碳矿化磷石膏制硫酸铵和碳酸钙技术[J]. 硫酸工业, 2015(2): 52-53. |
LIU Xiang, SUN Guochao. Technology of ammonium sulphate and calcium carbonate produced by low concentrations of carbon dioxide mineralized by phosphogypsum[J]. Sulphuric Acid Industry, 2015(2): 52-53. | |
69 | POWER I M, KENWARD P A, DIPPLE G M, et al. Room temperature magnesite precipitation[J]. Crystal Growth & Design, 2017, 17(11): 5652-5659. |
70 | WANG Wenlong, WANG Man, LIU Xin, et al. Experiment and optimization for simultaneous carbonation of Ca2+ and Mg2+ in a two-phase system of insoluble diisobutylamine and aqueous solution[J]. Scientific Reports, 2015, 5: 10862. |
71 | 赵颖颖, 庄欣明, 王秉钧, 等. 碱渣烟道气固碳海水/卤水脱钙法的研究[J]. 无机盐工业, 2017, 49(5): 48-51. |
ZHAO Yingying, ZHUANG Xinming, WANG Bingjun, et al. Research of brine decalcification and carbon sequestration from flue gas using white clay as alkali source[J]. Inorganic Chemicals Industry, 2017, 49(5): 48-51. | |
72 | ZHAO Yingying, WANG Jianhang, JI Zhiyong, et al. A novel technology of carbon dioxide adsorption and mineralization via seawater decalcification by bipolar membrane electrodialysis system with a crystallizer[J]. Chemical Engineering Journal, 2020, 381: 122542. |
[1] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[2] | 郑谦, 官修帅, 靳山彪, 张长明, 张小超. 铈锆固溶体Ce0.25Zr0.75O2光热协同催化CO2与甲醇合成DMC[J]. 化工进展, 2023, 42(S1): 319-327. |
[3] | 戴欢涛, 曹苓玉, 游新秀, 徐浩亮, 汪涛, 项玮, 张学杨. 木质素浸渍柚子皮生物炭吸附CO2特性[J]. 化工进展, 2023, 42(S1): 356-363. |
[4] | 孙玉玉, 蔡鑫磊, 汤吉海, 黄晶晶, 黄益平, 刘杰. 反应精馏合成甲基丙烯酸甲酯工艺优化及节能[J]. 化工进展, 2023, 42(S1): 56-63. |
[5] | 杨寒月, 孔令真, 陈家庆, 孙欢, 宋家恺, 王思诚, 孔标. 微气泡型下向流管式气液接触器脱碳性能[J]. 化工进展, 2023, 42(S1): 197-204. |
[6] | 王胜岩, 邓帅, 赵睿恺. 变电吸附二氧化碳捕集技术研究进展[J]. 化工进展, 2023, 42(S1): 233-245. |
[7] | 程涛, 崔瑞利, 宋俊男, 张天琪, 张耘赫, 梁世杰, 朴实. 渣油加氢装置杂质沉积规律与压降升高机理分析[J]. 化工进展, 2023, 42(9): 4616-4627. |
[8] | 毛善俊, 王哲, 王勇. 基团辨识加氢:从概念到应用[J]. 化工进展, 2023, 42(8): 3917-3922. |
[9] | 王耀刚, 韩子姗, 高嘉辰, 王新宇, 李思琪, 杨全红, 翁哲. 铜基催化剂电还原二氧化碳选择性的调控策略[J]. 化工进展, 2023, 42(8): 4043-4057. |
[10] | 刘毅, 房强, 钟达忠, 赵强, 李晋平. Ag/Cu耦合催化剂的Cu晶面调控用于电催化二氧化碳还原[J]. 化工进展, 2023, 42(8): 4136-4142. |
[11] | 王兰江, 梁瑜, 汤琼, 唐明兴, 李学宽, 刘雷, 董晋湘. 快速热解铂前体合成高分散的Pt/HY催化剂及其萘深度加氢性能[J]. 化工进展, 2023, 42(8): 4159-4166. |
[12] | 黄玉飞, 李子怡, 黄杨强, 金波, 罗潇, 梁志武. 光催化CO2和CH4重整催化剂研究进展[J]. 化工进展, 2023, 42(8): 4247-4263. |
[13] | 王晓晗, 周亚松, 于志庆, 魏强, 孙劲晓, 姜鹏. 不同晶粒尺寸Y分子筛的合成及其加氢裂化反应性能[J]. 化工进展, 2023, 42(8): 4283-4295. |
[14] | 娄宝辉, 吴贤豪, 张驰, 陈臻, 冯向东. 纳米流体用于二氧化碳吸收分离研究进展[J]. 化工进展, 2023, 42(7): 3802-3815. |
[15] | 丁文金, 刘卓齐, 卢海臣, 孙红娟, 彭同江. CH3COONa-NH4OH-H2O体系下磷石膏矿化CO2-联产高纯CaCO3[J]. 化工进展, 2023, 42(7): 3824-3833. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |