化工进展 ›› 2022, Vol. 41 ›› Issue (S1): 536-544.DOI: 10.16085/j.issn.1000-6613.2022-0890
王一茹1,2(), 宋小三1,2(), 水博阳1,2, 王三反1,2
收稿日期:
2022-05-13
修回日期:
2022-06-29
出版日期:
2022-10-20
发布日期:
2022-11-10
通讯作者:
宋小三
作者简介:
王一茹(1998—),女,硕士研究生,研究方向为二氧化碳的吸附与转化。E-mail:1271625818@qq.com。
基金资助:
WANG Yiru1,2(), SONG Xiaosan1,2(), SHUI Boyang1,2, WANG Sanfan1,2
Received:
2022-05-13
Revised:
2022-06-29
Online:
2022-10-20
Published:
2022-11-10
Contact:
SONG Xiaosan
摘要:
胺功能化介孔二氧化硅因其高选择性、高吸附容量、快速的吸附动力学、良好的再生性能和循环稳定性受到广泛关注,在二氧化碳捕集技术中具有优良的应用前景。本文比较了胺改性的M41S、SBA-n、KIT-n、介孔二氧化硅泡沫、介孔二氧化硅纳米球和六方介孔二氧化硅的吸附性能,总结了MCM-41和SBA-15的结构特点。介绍了胺化合物的负载方式——湿法浸渍、化学接枝和原位聚合的胺负载原理。分析了硅源、载体内部性质、气体选择性和不同添加剂对胺功能化介孔二氧化硅材料吸附二氧化碳能力的影响。最后,点明了吸附剂未来的发展目标,对胺功能化介孔二氧化硅材料的研究方向进行了展望。指出未来可关注介孔二氧化硅微观结构和温度对胺与二氧化碳相互作用的影响,增强胺功能化介孔二氧化硅的稳定性,推进其在实际环境下的应用。
中图分类号:
王一茹, 宋小三, 水博阳, 王三反. 胺功能化介孔二氧化硅捕集CO2的研究进展[J]. 化工进展, 2022, 41(S1): 536-544.
WANG Yiru, SONG Xiaosan, SHUI Boyang, WANG Sanfan. Progress in amine-functionalized mesoporous silica for CO2 capture[J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 536-544.
介孔 SiO2 | 胺功能化 (胺类别,与载体重量比) | 吸附条件 | 吸附容量 /mmol·(gCO2)-1 | 解吸条件 | 循环能力 (吸附容量的损失率,总循环次数) | 参考文献 |
---|---|---|---|---|---|---|
MCM-41 | — | 10%CO2/N2,75℃ | 0.66 | — | — | [ |
MCM-41 | TEPA,60% | 12%CO2/N2,75℃ | 2.80 | N2,100℃ | 7.8%,5 | [ |
MCM-41 | PEI,50% | 100%CO2,25℃ | 3.53 | 真空,100℃ | 14.22%,5 | [ |
MCM-48 | — | 100%CO2,25℃ | 0.64 | — | — | [ |
MCM-48 | AEEA,30% | 100%CO2,25℃ | 3.33 | — | — | [ |
SBA-15 | PEI,70% | 20%CO2/N2,75℃ | 3.71 | — | — | [ |
SBA-15 | PEI,30%+DEA,40% | 20%CO2/N2,75℃ | 4.64 | N2,105℃ | 13.36%,15 | [ |
SBA-15 | TEPA,50% | 400ppmCO2/N2,35℃ | 2.30 | N2,110℃ | —,10 | [ |
SBA-16 | PEHA,30% | 15%CO2/He,70℃ | 2.1 | He,120℃ | 6.2%,20 | [ |
SBA-16 | TEPA,30% | 10%CO2/N2,60℃ | 0.97 | N2,110℃ | — | [ |
KIT-6 | 3N +TETA,30% | 15%CO2/N2,60℃ | 2.06 | N2,110℃ | 2.5%,20 | [ |
KIT-6 | APTES | 100%CO2,30℃ | 1.56 | He,120℃ | 0,10 | [ |
MCF | DAEAPTS,35% | 15%CO2/N2,25℃ | 2.07 | N2,110℃ | 0,50 | [ |
MSN | PEI,65% | 15%CO2/N2,80℃ | 4.07 | N2,100℃ | 19%,5 | [ |
HMS | PEI,50% | 100%CO2,45℃ | 2.40 | —,110℃ | 0,4 | [ |
表1 胺功能化介孔SiO2的吸附性能
介孔 SiO2 | 胺功能化 (胺类别,与载体重量比) | 吸附条件 | 吸附容量 /mmol·(gCO2)-1 | 解吸条件 | 循环能力 (吸附容量的损失率,总循环次数) | 参考文献 |
---|---|---|---|---|---|---|
MCM-41 | — | 10%CO2/N2,75℃ | 0.66 | — | — | [ |
MCM-41 | TEPA,60% | 12%CO2/N2,75℃ | 2.80 | N2,100℃ | 7.8%,5 | [ |
MCM-41 | PEI,50% | 100%CO2,25℃ | 3.53 | 真空,100℃ | 14.22%,5 | [ |
MCM-48 | — | 100%CO2,25℃ | 0.64 | — | — | [ |
MCM-48 | AEEA,30% | 100%CO2,25℃ | 3.33 | — | — | [ |
SBA-15 | PEI,70% | 20%CO2/N2,75℃ | 3.71 | — | — | [ |
SBA-15 | PEI,30%+DEA,40% | 20%CO2/N2,75℃ | 4.64 | N2,105℃ | 13.36%,15 | [ |
SBA-15 | TEPA,50% | 400ppmCO2/N2,35℃ | 2.30 | N2,110℃ | —,10 | [ |
SBA-16 | PEHA,30% | 15%CO2/He,70℃ | 2.1 | He,120℃ | 6.2%,20 | [ |
SBA-16 | TEPA,30% | 10%CO2/N2,60℃ | 0.97 | N2,110℃ | — | [ |
KIT-6 | 3N +TETA,30% | 15%CO2/N2,60℃ | 2.06 | N2,110℃ | 2.5%,20 | [ |
KIT-6 | APTES | 100%CO2,30℃ | 1.56 | He,120℃ | 0,10 | [ |
MCF | DAEAPTS,35% | 15%CO2/N2,25℃ | 2.07 | N2,110℃ | 0,50 | [ |
MSN | PEI,65% | 15%CO2/N2,80℃ | 4.07 | N2,100℃ | 19%,5 | [ |
HMS | PEI,50% | 100%CO2,45℃ | 2.40 | —,110℃ | 0,4 | [ |
名称 | 化学式 | 分子结构 | 分子量 |
---|---|---|---|
聚乙烯亚胺(PEI) | (C2H5N) n NH3 | 600~5000 | |
二乙烯三胺(DETA) | C4H13N3 | 103.17 | |
三乙烯四胺(TETA) | C6H18N4 | 146.23 | |
四乙烯五胺(TEPA) | C8H23N5 | 189.30 | |
五乙烯六胺(PEHA) | C10H28N6 | 232.37 | |
单乙醇胺(MEA) | C2H7NO | 61.08 | |
二乙醇胺(DEA) | C4H11NO2 | 105.14 | |
乙二胺(EDA) | C2H8N2 | 60.10 |
表2 胺化合物的性质与结构
名称 | 化学式 | 分子结构 | 分子量 |
---|---|---|---|
聚乙烯亚胺(PEI) | (C2H5N) n NH3 | 600~5000 | |
二乙烯三胺(DETA) | C4H13N3 | 103.17 | |
三乙烯四胺(TETA) | C6H18N4 | 146.23 | |
四乙烯五胺(TEPA) | C8H23N5 | 189.30 | |
五乙烯六胺(PEHA) | C10H28N6 | 232.37 | |
单乙醇胺(MEA) | C2H7NO | 61.08 | |
二乙醇胺(DEA) | C4H11NO2 | 105.14 | |
乙二胺(EDA) | C2H8N2 | 60.10 |
硅源 | 提取方法 | SiO2含量/% | 结构特征 | 参考文献 | ||
---|---|---|---|---|---|---|
表面积/m2·g-1 | 孔体积/cm3·g-1 | 孔径/nm | ||||
石英砂 | NaOH提取法 | 99.99 | 1028 | 0.907 | 3.04 | [ |
粉煤灰 | NaOH提取法 | 44.41 | 115 | 0.13 | 3 | [ |
稻壳灰 | 碳化法 | 81.72 | — | — | 40~50 | [ |
电子废物 | 酸浸法 | — | 1033 | 0.887 | 2.73 | [ |
小麦秸秆灰 | NaOH提取法 | 90.00 | 1312 | 1.053 | 3.656 | [ |
甘蔗渣 | NaOH提取法 | 81.60 | 265 | 0.425 | 6.25 | [ |
竹叶灰 | NaOH提取法 | 83.30 | 1096 | 0.51 | 2.14 | [ |
高岭土 | NaOH提取法 | 60.00~61.00 | 637 | 0.682 | 4.3 | [ |
铜尾矿 | 碱熔法 | 68.23~96.82 | 946.68 | 0.76 | 3.24 | [ |
表3 不同硅源制备介孔SiO2的提取方法、含量和结构特征
硅源 | 提取方法 | SiO2含量/% | 结构特征 | 参考文献 | ||
---|---|---|---|---|---|---|
表面积/m2·g-1 | 孔体积/cm3·g-1 | 孔径/nm | ||||
石英砂 | NaOH提取法 | 99.99 | 1028 | 0.907 | 3.04 | [ |
粉煤灰 | NaOH提取法 | 44.41 | 115 | 0.13 | 3 | [ |
稻壳灰 | 碳化法 | 81.72 | — | — | 40~50 | [ |
电子废物 | 酸浸法 | — | 1033 | 0.887 | 2.73 | [ |
小麦秸秆灰 | NaOH提取法 | 90.00 | 1312 | 1.053 | 3.656 | [ |
甘蔗渣 | NaOH提取法 | 81.60 | 265 | 0.425 | 6.25 | [ |
竹叶灰 | NaOH提取法 | 83.30 | 1096 | 0.51 | 2.14 | [ |
高岭土 | NaOH提取法 | 60.00~61.00 | 637 | 0.682 | 4.3 | [ |
铜尾矿 | 碱熔法 | 68.23~96.82 | 946.68 | 0.76 | 3.24 | [ |
1 | RIDUAN S N, ZHANG Y. Recent developments in carbon dioxide utilization under mild conditions[J]. Dalton Trans., 2010, 39(14): 3347-3357. |
2 | EDENHOFER O. Climate change 2014: Mitigation of climate change[M]. UK: Cambridge University Press, 2015. |
3 | OBERGASSEL W, ARENS C, HERMWILLE L, et al. Phoenix from the ashes—An analysis of the Paris agreement to the United Nations framework convention on climate change[J]. Wuppertal Institute for Climate, Environment and Energy, 2016, 1: 1-54. |
4 | WANG M, LAWAL A, STEPHENSON P, et al. Post-combustion CO2 capture with chemical absorption: a state-of-the-art review[J]. Chemical Engineering Research and Design, 2011, 89(9): 1609-1624. |
5 | 彭召静, 赵彦杰, 黄成德, 等. 用于燃烧后 CO2 捕集系统的胺基固态吸附材料研究进展[J]. 化工进展, 2018, 37(2): 610-620. |
PENG Zhaojing, ZHAO Yanjie, HUANG Chengde, et al. Recent advances in amine-based solid sorbents for post-combustion CO2 capture[J]. Chemical Industry and Engineering Progress, 2018, 37(2): 610-620. | |
6 | BEN-MANSOUR R, HABIB M A, BAMIDELE O E, et al. Carbon capture by physical adsorption: Materials, experimental investigations and numerical modeling and simulations—A review[J]. Applied Energy, 2016, 161: 225-255. |
7 | OSCHATZ M, ANTONIETTI M. A search for selectivity to enable CO2 capture with porous adsorbents[J]. Energy & Environmental Science, 2018, 11(1): 57-70. |
8 | XU X, SONG C, ANDRESEN J M, et al. Novel polyethylenimine-modified mesoporous molecular sieve of MCM-41 type as high-capacity adsorbent for CO2 capture[J]. Energy & Fuels, 2002, 16(6): 1463-1469. |
9 | MCCUSKER L, LIEBAU F, ENGELHARDT G. Nomenclature of structural and compositional characteristics of ordered microporous and mesoporous materials with inorganic hosts (IUPAC Recommendations 2001)[J]. Pure and Applied Chemistry, 2001, 73(2): 381-394. |
10 | RAO N, WANG M, SHANG Z, et al. CO2 adsorption by amine-functionalized MCM-41: A comparison between impregnation and grafting modification methods[J]. Energy & Fuels, 2018, 32(1): 670-677. |
11 | HU X E, LIU L, LUO X, et al. A review of N-functionalized solid adsorbents for post-combustion CO2 capture[J]. Applied Energy, 2020, 260: 114244. |
12 | COSTA J A S, PARANHOS C M. Mitigation of silica-rich wastes: An alternative to the synthesis eco-friendly silica-based mesoporous materials[J]. Microporous and Mesoporous Materials, 2020, 309: 110570. |
13 | SELVAM P, BHATIA S K, SONWANE C G. Recent advances in processing and characterization of periodic mesoporous MCM-41 silicate molecular sieves[J]. Industrial & Engineering Chemistry Research, 2001, 40(15): 3237-3261. |
14 | BECK J S, VARTULI J C, ROTH W J, et al. A new family of mesoporous molecular sieves prepared with liquid crystal templates[J]. Journal of the American Chemical Society, 1992, 114(27): 10834-10843. |
15 | 丁明月, 刘梦龙, 岳海荣, 等.TEPA/MCM-41固体胺吸附剂的制备及其CO2吸附性能研究[J]. 应用化工, 2019, 48(11): 2533-2537. |
DING Mingyue, LIU Menglong, YUE Hairong, et al. Preparation and performance of TEPA /MCM-41 solid amine adsorbents for CO2 adsorption[J]. Applied Chemical Industry, 2019, 48(11): 2533-2537. | |
16 | COSTA J A S, DE JESUS R A, SANTOS D O, et al. Synthesis, functionalization, and environmental application of silica-based mesoporous materials of the M41S and SBA-n families: A review[J]. Journal of Environmental Chemical Engineering, 2021, 9(3): 105259. |
17 | TERRAB I, OUARGLI R, BOUKOUSSA B, et al. Assessment of the intrinsic interactions of mesoporous silica with carbon dioxide[J]. Research on Chemical Intermediates, 2017, 43(7): 3775-3786. |
18 | MIAO Y, HE Z, ZHU X, et al. Operating temperatures affect direct air capture of CO2 in polyamine-loaded mesoporous silica[J]. Chemical Engineering Journal, 2021, 426: 131875. |
19 | 饶娜. 介孔MCM-41结构调控及其氨功能化对CO2吸附性能影响的研究[D]. 武汉: 武汉轻工大学, 2019. |
RAO Na. Study on structure regulation and effect of amine functionalization of mesoporous MCM-41 on CO2 adsorption performance[D]. Wuhan: Wuhan Polytechnic University, 2019. | |
20 | MUKHERJEE S, SAMANTA A N. Low to high-pressure CO2 separation using amine-functionalized mobile composite matter, isotherm modelling and heat of adsorption study[J]. Separation Science and Technology, 2021, 57(2): 209-224. |
21 | ZHAO P, ZHANG G, HAO L. A novel blended amine functionalized porous silica adsorbent for carbon dioxide capture[J]. Adsorption, 2020, 26(5): 749-764. |
22 | LIU Y, LIN X, WU X, et al. Pentaethylenehexamine loaded SBA-16 for CO2 capture from simulated flue gas[J]. Powder Technology, 2017, 318: 186-192. |
23 | 史晶金, 刘亚敏, 陈杰, 等. 氨基功能化SBA-16对CO2的动态吸附特性[J]. 物理化学学报, 2010, 26(11): 3023-3029. |
SHI Jingjin, LIU Yamin, CHEN Jie, et al. Dynamic performance of CO2 adsorption with amine-modified SBA-16[J]. Acta Physico-Chimica Sinica, 2010, 26(11): 3023-3029. | |
24 | MEI D, GENG L, LIN Z, et al. CO2 adsorption properties of mixed-amine functionalized mesoporous molecular sieve KIT-6[J]. Materials Research Express, 2018, 5(6): 065520. |
25 | KISHOR R, GHOSHAL A K. APTES grafted ordered mesoporous silica KIT-6 for CO2 adsorption[J]. Chemical Engineering Journal, 2015, 262: 882-890. |
26 | BAI F, LIU X, SANI S, et al. Amine functionalized mesocellular silica foam as highly efficient sorbents for CO2 capture[J]. Separation and Purification Technology, 2022: 121539. |
27 | LOU F, ZHANG A, ZHANG G, et al. Enhanced kinetics for CO2 sorption in amine-functionalized mesoporous silica nanosphere with inverted cone-shaped pore structure[J]. Applied Energy, 2020, 264: 11467. |
28 | SANZ-PéREZ E S, ARENCIBIA A, CALLEJA G, et al. Tuning the textural properties of HMS mesoporous silica. Functionalization towards CO2 adsorption[J]. Microporous and Mesoporous Materials, 2018, 260: 235-244. |
29 | DIDAS S A. Structural properties of aminosilica materials for CO2 capture[D]. USA: Georgia Institute of Technology, 2014. |
30 | CHAIKITTISILP W, KHUNSUPAT R, CHEN T T, et al. Poly(allylamine)-mesoporous silica composite materials for CO2 capture from simulated flue gas or ambient air[J]. Industrial & Engineering Chemistry Research, 2011, 50(24): 14203-14210. |
31 | AHMED S, RAMLI A, YUSUP S, et al. Adsorption behavior of tetraethylenepentamine-functionalized Si-MCM-41 for CO2 adsorption[J]. Chemical Engineering Research and Design, 2017, 122: 33-42. |
32 | CAPLOW M. Kinetics of carbamate formation and breakdown[J]. Journal of the American Chemical Society, 1968, 90(24): 6795-6803. |
33 | DANCKWERTS P. The reaction of CO2 with ethanolamines[J]. Chemical Engineering Science, 1979, 34(4): 443-446. |
34 | YANG Z Z, HE L N, ZHAO Y N, et al. CO2 capture and activation by superbase/polyethylene glycol and its subsequent conversion[J]. Energy & Environmental Science, 2011, 4(10): 3971-3975. |
35 | JAHANDAR LASHAKI M, SAYARI A. CO2 capture using triamine-grafted SBA-15: The impact of the support pore structure[J]. Chemical Engineering Journal, 2018, 334: 1260-1269. |
36 | HEYDARI-GORJI A, YANG Y, SAYARI A. Effect of the pore length on CO2 adsorption over amine-modified mesoporous silicas[J]. Energy & Fuels, 2011, 25(9): 4206-4210. |
37 | QI G, WANG Y, ESTEVEZ L, et al. High efficiency nanocomposite sorbents for CO2 capture based on amine-functionalized mesoporous capsules[J]. Energy Environ. Sci., 2011, 4(2): 444-452. |
38 | SAMANTA A, ZHAO A, SHIMIZU G K, et al. Post-combustion CO2 capture using solid sorbents: a review[J]. Industrial & Engineering Chemistry Research, 2012, 51(4): 1438-1463. |
39 | SAYARI A, BELMABKHOUT Y, SERNA-GUERRERO R. Flue gas treatment via CO2 adsorption[J]. Chemical Engineering Journal, 2011, 171(3): 760-774. |
40 | SERNA-GUERRERO R, BELMABKHOUT Y, SAYARI A. Modeling CO2 adsorption on amine-functionalized mesoporous silica: 1. A semi-empirical equilibrium model[J]. Chemical Engineering Journal, 2010, 161(1/2): 173-181. |
41 | SAYARI A, HEYDARI-GORJI A, YANG Y. CO2-induced degradation of amine-containing adsorbents: Reaction products and pathways[J]. Journal of the American Chemical Society, 2012, 134(33): 13834-13842. |
42 | HIYOSHI N, YOGO K, YASHIMA T. Adsorption characteristics of carbon dioxide on organically functionalized SBA-15[J]. Microporous and Mesoporous Materials, 2005, 84(1/2/3): 357-365. |
43 | HICKS J C, DRESE J H, FAUTH D J, et al. Designing adsorbents for CO2 capture from flue gas-hyperbranched aminosilicas capable of capturing CO2 reversibly[J]. Journal of the American Chemical Society, 2008, 130(10): 2902-2903. |
44 | SU Y, PENG L, SHIUE A, et al. Carbon dioxide adsorption on amine-impregnated mesoporous materials prepared from spent quartz sand[J]. J. Air. Waste Manag. Assoc., 2014, 64(7): 827-833. |
45 | LIANG G, LI Y, YANG C, et al. Production of biosilica nanoparticles from biomass power plant fly ash[J]. Waste Manag., 2020, 105: 8-17. |
46 | 何文修. 稻壳灰基SiO2纳米流体的制备及纳米颗粒强化CO2吸收的基础研究[D]. 杭州: 浙江工业大学, 2016. |
HE Wenxiu. Synthesis of rice husk ash-based silica nanofluids for reinforcement of CO2 absorption [D]. Hangzhou: Zhejiang University of Technology, 2016. | |
47 | LIOU T H, LIU S M, CHEN G W. Utilization of e-wastes as a sustainable silica source in synthesis of ordered mesostructured titania nanocomposites with high adsorption and photoactivity[J]. Journal of Environmental Chemical Engineering, 2022, 10(2): 107283. |
48 | MA Y, CHEN H, SHI Y, et al. Low cost synthesis of mesoporous molecular sieve MCM-41 from wheat straw ash using CTAB as surfactant[J]. Materials Research Bulletin, 2016, 77: 258-264. |
49 | ALVES R H, REIS T V, ROVANI S, et al. Green synthesis and characterization of biosilica produced from sugarcane waste ash[J]. Journal of Chemistry, 2017, 2017: 1-9. |
50 | ARUMUGAM A, KARUPPASAMY G, JEGADEESAN G B. Synthesis of mesoporous materials from bamboo leaf ash and catalytic properties of immobilized lipase for hydrolysis of rubber seed oil[J]. Materials Letters, 2018, 225: 113-116. |
51 | ARASI M A, SALEM A, SALEM S. Production of mesoporous and thermally stable silica powder from low grade kaolin based on eco-friendly template free route via acidification of appropriate zeolite compound for removal of cationic dye from wastewater[J]. Sustainable Chemistry and Pharmacy, 2021, 19: 100366. |
52 | FU P, YANG T, FENG J, et al. Synthesis of mesoporous silica MCM-41 using sodium silicate derived from copper ore tailings with an alkaline molted-salt method[J]. Journal of Industrial and Engineering Chemistry, 2015, 29: 338-343. |
53 | HARLICK P J, SAYARI A. Applications of pore-expanded mesoporous silica. 5. Triamine grafted material with exceptional CO2 dynamic and equilibrium adsorption performance[J]. Industrial & Engineering Chemistry Research, 2007, 46(2): 446-458. |
54 | BELMABKHOUT Y, SAYARI A. Effect of pore expansion and amine functionalization of mesoporous silica on CO2 adsorption over a wide range of conditions[J]. Adsorption, 2009, 15(3): 318-328. |
55 | LIN K Y, PETIT C, PARK A H. Effect of SO2 on CO2 capture using liquid-like nanoparticle organic hybrid materials[J]. Energy & Fuels, 2013, 27(8): 4167-4174. |
56 | BALI S, CHEN T T, CHAIKITTISILP W, et al. Oxidative stability of amino polymer–alumina hybrid adsorbents for carbon dioxide capture[J]. Energy & Fuels, 2013, 27(3): 1547-1554. |
57 | PACIA R M, MANIANGLUNG C, KO Y S. In situ IR study on effect of alkyl chain length between amines on its stability against acidic gases[J]. Catalysts, 2019, 9(11): 910. |
58 | REZAEI F, JONES C W. Stability of supported amine adsorbents to SO2 and NO x in postcombustion CO2 capture. 1. Single-component adsorption[J]. Industrial & Engineering Chemistry Research, 2013, 52(34): 12192-12201. |
59 | LI X, HAN J, LIU Y, et al. Summary of research progress on industrial flue gas desulfurization technology[J]. Separation and Purification Technology, 2022, 281: 119849. |
60 | CHEREVOTAN A, RAJ J, PETER S C. An overview of porous silica immobilized amines for direct air CO2 capture[J]. Journal of Materials Chemistry A, 2021, 9(48): 27271-27303. |
61 | WANG J, LONG D, ZHOU H, et al. Surfactant promoted solid amine sorbents for CO2 capture[J]. Energy Environ. Sci., 2012, 5(2): 5742-5749. |
62 | WANG L, AL-AUFI M, PACHECO C N, et al. Polyethylene glycol (PEG) addition to polyethylenimine (PEI)-impregnated silica increases amine accessibility during CO2 sorption[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(17): 14785-14795. |
63 | SAKWA-NOVAK M A, TAN S, JONES C W. Role of additives in composite PEI/oxide CO2 adsorbents: Enhancement in the amine efficiency of supported PEI by PEG in CO2 capture from simulated ambient air[J]. ACS Appl. Mater. Interfaces, 2015, 7(44): 24748-24759. |
64 | SRIKANTH C S, CHUANG S S. Infrared study of strongly and weakly adsorbed CO2 on fresh and oxidatively degraded amine sorbents[J]. The Journal of Physical Chemistry C, 2013, 117(18): 9196-9205. |
65 | SRIKANTH C S, CHUANG S S. Spectroscopic investigation into oxidative degradation of silica-supported amine sorbents for CO2 capture[J]. ChemSusChem, 2012, 5(8): 1435-1442. |
66 | ZHANG L, WANG X, FUJII M, et al. CO2 capture over molecular basket sorbents: Effects of SiO2 supports and PEG additive[J]. Journal of Energy Chemistry, 2017, 26(5): 1030-1038. |
67 | YUE M B, SUN L B, CAO Y, et al. Promoting the CO2 adsorption in the amine-containing SBA-15 by hydroxyl group[J]. Microporous and Mesoporous Materials, 2008, 114(1/2/3): 74-81. |
68 | 郝兰霞. 氨基修饰SBA-15原粉基吸附剂的制备及其CO2吸附性能[D]. 太原: 太原理工大学, 2017. |
HAO Lanxia. Preparation of amino -modified SBA-15(p) adsorbent and CO2 adsorption properties[D]. Taiyuan: Taiyuan University of Technology, 2017. |
[1] | 王胜岩, 邓帅, 赵睿恺. 变电吸附二氧化碳捕集技术研究进展[J]. 化工进展, 2023, 42(S1): 233-245. |
[2] | 戴欢涛, 曹苓玉, 游新秀, 徐浩亮, 汪涛, 项玮, 张学杨. 木质素浸渍柚子皮生物炭吸附CO2特性[J]. 化工进展, 2023, 42(S1): 356-363. |
[3] | 王尚彬, 欧红香, 薛洪来, 曹海珍, 王钧奇, 毕海普. 黄原胶和纳米二氧化硅对无氟泡沫性能的影响[J]. 化工进展, 2023, 42(9): 4856-4862. |
[4] | 白亚迪, 邓帅, 赵睿恺, 赵力, 杨英霞. 变温吸附碳捕集机组标准化测试方案探讨及性能实验[J]. 化工进展, 2023, 42(7): 3834-3846. |
[5] | 张雪伟, 黄亚继, 许月阳, 程好强, 朱志成, 李金壘, 丁雪宇, 王圣, 张荣初. 碱性吸附剂对燃煤烟气中SO3的吸附特性[J]. 化工进展, 2023, 42(7): 3855-3864. |
[6] | 陆洋, 周劲松, 周启昕, 王瑭, 刘壮, 李博昊, 周灵涛. CeO2/TiO2吸附剂煤气脱汞产物的浸出规律[J]. 化工进展, 2023, 42(7): 3875-3883. |
[7] | 顾诗亚, 董亚超, 刘琳琳, 张磊, 庄钰, 都健. 考虑中间节点的碳捕集管路系统设计与优化[J]. 化工进展, 2023, 42(6): 2799-2808. |
[8] | 王久衡, 荣鼐, 刘开伟, 韩龙, 水滔滔, 吴岩, 穆正勇, 廖徐情, 孟文佳. 水蒸气强化纤维素模板改性钙基吸附剂固碳性能及强度[J]. 化工进展, 2023, 42(6): 3217-3225. |
[9] | 陈少华, 王义华, 胡强飞, 胡坤, 陈立爱, 李洁. 电化学修饰电极在检测Cr(Ⅵ)中的研究进展[J]. 化工进展, 2023, 42(5): 2429-2438. |
[10] | 符乐, 杨阳, 徐文青, 耿錾卜, 朱廷钰, 郝润龙. 新型相变有机胺吸收捕集CO2技术研究进展[J]. 化工进展, 2023, 42(4): 2068-2080. |
[11] | 赵重阳, 赵磊, 石详文, 黄俊, 李治尧, 沈凯, 张亚平. O2/H2O/SO2 对改性富铁凹凸棒石高温吸附PbCl2 的影响[J]. 化工进展, 2023, 42(4): 2190-2200. |
[12] | 尚玉, 肖满, 崔秋芳, 涂特, 晏水平. CO2捕集工艺中热再生气余热的PVDF/BN-OH平板复合膜回收特性[J]. 化工进展, 2023, 42(3): 1618-1628. |
[13] | 郭帅帅, 陈锦路, 金梁程龙, 陶醉, 陈小丽, 彭国文. 基于海水提铀的多孔芳香框架材料研究进展[J]. 化工进展, 2023, 42(3): 1426-1436. |
[14] | 王胜楠, 郑旭. 空气取水用活性炭纤维复合吸附剂的研究[J]. 化工进展, 2023, 42(10): 5567-5573. |
[15] | 杨程瑞雪, 黄琪媛, 冉建速, 崔耘通, 王健健. 磷酸修饰二氧化硅负载钯催化剂用于木质素衍生物高效水相低温加氢脱氧[J]. 化工进展, 2023, 42(10): 5179-5190. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |