化工进展 ›› 2022, Vol. 41 ›› Issue (9): 4813-4830.DOI: 10.16085/j.issn.1000-6613.2021-2347
收稿日期:
2021-11-25
修回日期:
2022-03-09
出版日期:
2022-09-25
发布日期:
2022-09-27
通讯作者:
胡明忠
作者简介:
孙凌波(1996—),男,硕士研究生,研究方向为水污染处理。E-mail:2056068867@qq.com。
SUN Lingbo(), HU Mingzhong(), LIANG Mingming, WU Yongjuan, LIU Liying
Received:
2021-11-25
Revised:
2022-03-09
Online:
2022-09-25
Published:
2022-09-27
Contact:
HU Mingzhong
摘要:
铋系半导体材料具有特殊的层状结构以及合适的带隙,具有良好的可见光响应能力以及稳定的光化学特性,作为一类新型的环境友好型光催化剂在环境修复与解决能源危机等领域受到广泛关注,已成为近年来的研究热点。然而,铋系半导体光催化剂距离实际大规模应用仍存在一些亟需解决的问题,如光生载流子复合率高、对可见光谱的响应范围有限、光催化活性较差、还原能力较弱等。本文首先介绍了铋系半导体材料的典型特征、制备方法与反应机理,在此基础上着重阐述了铋系半导体光催化在形貌调控、构建异质结、离子掺杂、碳质材料掺杂、贵金属沉积、染料敏化等改性手段的研究进展以及在降解水体污染物、杀菌消毒、空气净化、制氢、还原CO2、有机合成等领域的应用成果。最后对铋系半导体光催化剂的未来前景做出展望,指出其未来的研究方向应致力于从多手段耦合改性、拓展其应用领域以及深入探究反应机理等方面开展。
中图分类号:
孙凌波, 胡明忠, 梁明明, 吴永娟, 刘立影. 铋系半导体光催化剂研究进展[J]. 化工进展, 2022, 41(9): 4813-4830.
SUN Lingbo, HU Mingzhong, LIANG Mingming, WU Yongjuan, LIU Liying. Research progress of bismuth-based semiconductor photocatalysts[J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4813-4830.
制备方法 | 特点 |
---|---|
固相合成法[ | 可分为高温煅烧法和低温机械研磨法,操作简单,反应时间较短,无须消耗有机溶剂,降低反应成本,不会产生二次污染,可制备具有缺陷的材料,能够实现工业大规模应用;难以调节光催化剂的微观结构或形态,产品易发生团聚 |
水热法/溶剂热法[ | 设备简单,成本低廉,产物形貌、粒径与化学计量比易控制,具有较高的结晶度和纯度,分散性好。反应时间较长、需要高温高压条件、生产率低且具有批次特性、对反应设备要求较高 |
超声合成法[ | 利用超声波发生器的高频振动,反应简单快速、绿色高效、条件温和,产物纯度高、粒径易于调控且分布均匀 |
溶胶凝胶法[ | 产物纯度高、粒度分散均匀、尺寸形貌可实现灵活控制;反应周期较长,反应原料需要使用有机物,成本较高,可能产生有毒物质造成污染,产物易发生团聚 |
沉淀法[ | 反应条件温和,在常温或水浴条件下即可进行,产物纯度高,可实现大规模制备,但形貌较难控制且团聚现象较严重 |
燃烧法[ | 工艺简单,反应迅速,反应的进行依赖自身放热反应,无须外界能量供应,产物形貌可控且粒度均匀,能实现大规模批量制备 |
微乳液法[ | 可分为水包油和油包水两种类型,产物分散性好,能够有效避免团聚,粒度均匀、形貌及粒径可控,适用于纳米颗粒的制备;反应过程需要大量有机溶剂和表面活性剂参与,成本较高,同时产物易携带有机残留物,规模化生产难度大 |
微波辅助法[ | 加热迅速,显著缩短反应时间,降低能量成本、绿色无污染,能够形成结晶度较高的均质产物;无法实现工业化的规模制备 |
表1 铋系半导体光催化剂常用制备方法比较分析
制备方法 | 特点 |
---|---|
固相合成法[ | 可分为高温煅烧法和低温机械研磨法,操作简单,反应时间较短,无须消耗有机溶剂,降低反应成本,不会产生二次污染,可制备具有缺陷的材料,能够实现工业大规模应用;难以调节光催化剂的微观结构或形态,产品易发生团聚 |
水热法/溶剂热法[ | 设备简单,成本低廉,产物形貌、粒径与化学计量比易控制,具有较高的结晶度和纯度,分散性好。反应时间较长、需要高温高压条件、生产率低且具有批次特性、对反应设备要求较高 |
超声合成法[ | 利用超声波发生器的高频振动,反应简单快速、绿色高效、条件温和,产物纯度高、粒径易于调控且分布均匀 |
溶胶凝胶法[ | 产物纯度高、粒度分散均匀、尺寸形貌可实现灵活控制;反应周期较长,反应原料需要使用有机物,成本较高,可能产生有毒物质造成污染,产物易发生团聚 |
沉淀法[ | 反应条件温和,在常温或水浴条件下即可进行,产物纯度高,可实现大规模制备,但形貌较难控制且团聚现象较严重 |
燃烧法[ | 工艺简单,反应迅速,反应的进行依赖自身放热反应,无须外界能量供应,产物形貌可控且粒度均匀,能实现大规模批量制备 |
微乳液法[ | 可分为水包油和油包水两种类型,产物分散性好,能够有效避免团聚,粒度均匀、形貌及粒径可控,适用于纳米颗粒的制备;反应过程需要大量有机溶剂和表面活性剂参与,成本较高,同时产物易携带有机残留物,规模化生产难度大 |
微波辅助法[ | 加热迅速,显著缩短反应时间,降低能量成本、绿色无污染,能够形成结晶度较高的均质产物;无法实现工业化的规模制备 |
光催化材料 | 制备方法 | 形貌 | 光催化活性 | 主要机理 | 文献 |
---|---|---|---|---|---|
BiVO4 | 水热法 | 飞镖状 | 光催化降解罗丹明B活性是棒状BiVO4的2.3倍 | 高度暴露的{010}晶面 | [ |
Bi2WO6 | 水热法 | 线团状、花状、盘状 | 盘状Bi2WO6表现出最强的罗丹明B光降解能力 | 较大的比表面积和光生载流子的低重组率 | [ |
BiOCl | 水热法 | 十八面体 | 光催化产H2和·OH性能分别为四方状BiOCl的2.1倍和17.67倍 | {001}/{102}/{112}形成三元晶面结,促进电荷高效传递 | [ |
Bi2O2(OH)(NO3) | 水热法 | 花状 | 光催化降解罗丹明B和结晶紫性能远高于球状、片状材料以及TiO2 | 分层结构、固有极性、高比表面积、对染料的强吸附性以及高可见光利用率 | [ |
Bi2WO6 | 溶剂热法 | 三维中空结构 | CO2光催化还原活性比块状Bi2WO6高 约11倍 | 量子尺寸效应以及对CO2吸附能力的提高 | [ |
BiOIO3 | 固相合成法 | 多孔结构 | C-200具有最高的光催化烟气脱汞效率,强于Bi5O7I和Bi2O3 | 高浓度的氧空位有利于电子-空穴对的分离 | [ |
BiOCl | 水热法 | 正方形 | 紫外光催化降解甲基橙速率比TiO2提 高34.5倍 | 高度暴露的{001}晶面 | [ |
Bi2MoO6 | 溶剂热法 | 纳米片 | 环丙沙星光降解速率是原始Bi2MoO6的8.4倍 | 氧空位赋予更宽的光谱响应范围、更快的光生载流子迁移速率以及更多的表面氧吸收位点 | [ |
表2 铋系半导体光催化剂形貌调控
光催化材料 | 制备方法 | 形貌 | 光催化活性 | 主要机理 | 文献 |
---|---|---|---|---|---|
BiVO4 | 水热法 | 飞镖状 | 光催化降解罗丹明B活性是棒状BiVO4的2.3倍 | 高度暴露的{010}晶面 | [ |
Bi2WO6 | 水热法 | 线团状、花状、盘状 | 盘状Bi2WO6表现出最强的罗丹明B光降解能力 | 较大的比表面积和光生载流子的低重组率 | [ |
BiOCl | 水热法 | 十八面体 | 光催化产H2和·OH性能分别为四方状BiOCl的2.1倍和17.67倍 | {001}/{102}/{112}形成三元晶面结,促进电荷高效传递 | [ |
Bi2O2(OH)(NO3) | 水热法 | 花状 | 光催化降解罗丹明B和结晶紫性能远高于球状、片状材料以及TiO2 | 分层结构、固有极性、高比表面积、对染料的强吸附性以及高可见光利用率 | [ |
Bi2WO6 | 溶剂热法 | 三维中空结构 | CO2光催化还原活性比块状Bi2WO6高 约11倍 | 量子尺寸效应以及对CO2吸附能力的提高 | [ |
BiOIO3 | 固相合成法 | 多孔结构 | C-200具有最高的光催化烟气脱汞效率,强于Bi5O7I和Bi2O3 | 高浓度的氧空位有利于电子-空穴对的分离 | [ |
BiOCl | 水热法 | 正方形 | 紫外光催化降解甲基橙速率比TiO2提 高34.5倍 | 高度暴露的{001}晶面 | [ |
Bi2MoO6 | 溶剂热法 | 纳米片 | 环丙沙星光降解速率是原始Bi2MoO6的8.4倍 | 氧空位赋予更宽的光谱响应范围、更快的光生载流子迁移速率以及更多的表面氧吸收位点 | [ |
光催化材料 | 制备方法 | 光催化活性 | 主要机理 | 文献 |
---|---|---|---|---|
BiO(HCOO)0.57I0.43 | 固相合成法 | 光催化降解罗丹明B、亚甲基蓝和双酚A能力远高于BiOHCOO | 更窄的带隙、最佳能级结构和更高的表面积 | [ |
Mn-Bi2O3/Nb-Bi2O3 | 回流+煅烧法 | 光催化降解罗丹明B、亚甲基蓝性能显著提升 | 禁带变窄,可见光区吸收强度提升,光生载流子寿命延长 | [ |
Yb-Er-Tm/BiVO4 | 水热法 | 在红外光和可见光照射下降解亚甲基蓝效率分别是BiVO4的9.2倍和1.44倍 | 上转换过程促进光生载流子迁移,中空结构提高了光利用率 | [ |
I-Bi2O2CO3 | 水热法 | 光催化降解罗丹明B以及光催化还原Cr(Ⅵ)能力大幅提升 | 带隙缩小,光生载流子的分离和迁移效率提升 | [ |
Cr-Bi4Ti3O12 | 溶胶凝胶+水热法 | 光催化析氢速率是Bi4Ti3O12纳米片的2.85倍 | 可见光的强吸收,纳米片的小尺寸,暴露的{001}面以及光生电子-空穴对的低复合率和高分离效率 | [ |
I‑Bi2WO6 | 水热法 | 光催化降解罗丹明B和一氧化氮性能与Bi2WO6相比提升显著 | 可见光吸收明显增强,光生电子-空穴对分离速率提升 | [ |
Bi4O5Br0.6I1.4 | 沉淀法 | 光催化降解酚类污染物性能分别比Bi4O5Br2和Bi4O5I2高约2.77倍和1.80倍 | 强烈的可见光吸收,高光生电荷分离效率和适当的能带电位 | [ |
Ni-Bi2WO6 | 水热法 | 吸附性能和光催化性能与Bi2WO6相比均有所提高 | 引入电子陷阱抑制光生载流子复合,比表面积和表面电学性能增强 | [ |
Sm-BiFeO3 | 溶胶凝胶法 | 光催化降解甲基橙效率是BiFeO3的1.5倍 | 带隙减小,可见光区吸收增强;产生晶格缺陷 | [ |
表3 铋系半导体光催化剂离子掺杂
光催化材料 | 制备方法 | 光催化活性 | 主要机理 | 文献 |
---|---|---|---|---|
BiO(HCOO)0.57I0.43 | 固相合成法 | 光催化降解罗丹明B、亚甲基蓝和双酚A能力远高于BiOHCOO | 更窄的带隙、最佳能级结构和更高的表面积 | [ |
Mn-Bi2O3/Nb-Bi2O3 | 回流+煅烧法 | 光催化降解罗丹明B、亚甲基蓝性能显著提升 | 禁带变窄,可见光区吸收强度提升,光生载流子寿命延长 | [ |
Yb-Er-Tm/BiVO4 | 水热法 | 在红外光和可见光照射下降解亚甲基蓝效率分别是BiVO4的9.2倍和1.44倍 | 上转换过程促进光生载流子迁移,中空结构提高了光利用率 | [ |
I-Bi2O2CO3 | 水热法 | 光催化降解罗丹明B以及光催化还原Cr(Ⅵ)能力大幅提升 | 带隙缩小,光生载流子的分离和迁移效率提升 | [ |
Cr-Bi4Ti3O12 | 溶胶凝胶+水热法 | 光催化析氢速率是Bi4Ti3O12纳米片的2.85倍 | 可见光的强吸收,纳米片的小尺寸,暴露的{001}面以及光生电子-空穴对的低复合率和高分离效率 | [ |
I‑Bi2WO6 | 水热法 | 光催化降解罗丹明B和一氧化氮性能与Bi2WO6相比提升显著 | 可见光吸收明显增强,光生电子-空穴对分离速率提升 | [ |
Bi4O5Br0.6I1.4 | 沉淀法 | 光催化降解酚类污染物性能分别比Bi4O5Br2和Bi4O5I2高约2.77倍和1.80倍 | 强烈的可见光吸收,高光生电荷分离效率和适当的能带电位 | [ |
Ni-Bi2WO6 | 水热法 | 吸附性能和光催化性能与Bi2WO6相比均有所提高 | 引入电子陷阱抑制光生载流子复合,比表面积和表面电学性能增强 | [ |
Sm-BiFeO3 | 溶胶凝胶法 | 光催化降解甲基橙效率是BiFeO3的1.5倍 | 带隙减小,可见光区吸收增强;产生晶格缺陷 | [ |
光催化材料 | 有机污染物 | 降解率/% | 降解时间/min | 光照条件 | 主要活性物质 | 参考文献 |
---|---|---|---|---|---|---|
BiVO4 | 亚甲基蓝 | 96.97 | 180 | 500W氙灯 | ·OH | [ |
Pd/BiFeO3 | 孔雀石绿 | 95.7 | 240 | 105W一体式荧光灯 | h+、·OH、H2O2 | [ |
苯酚 | 100 | 240 | ||||
Bi/BiOCl | 罗丹明B | 100 | 2 | 300W氙灯 | ·O2-、h+ | [ |
苯乙酮 | 100 | 120~180 | ||||
对氯苯甲醛 | 100 | 120~180 | ||||
BiOBr/Bi12O17Cl2 | 四氯苯酚 | 100 | 120 | 300W氙灯(>420nm) | ·O2-、h+ | [ |
Ag/AgBr/BiVO4 | 环丙沙星 | 91.4 | 120 | 300W氙灯(>420nm) | h+、·O2-、·OH | [ |
Cr(Ⅵ) | 91.72 | 60 | ·O2-、e- | |||
Ag-Ag2O/Bi24O31Br10 | 酸性橙7 | 96.5 | 120 | 400W卤素灯 | h+、·O2-、H2O2 | [ |
Bi24O31Br10 | 双酚A | 100 | 360 | 500W氙灯 | ·O2-、h+ | [ |
Bi6O5(OH)3(NO3)5·3H2O | 孔雀石绿 | 100 | 14 | 500W汞灯 | ·O2-、h+ | [ |
甲基紫 | 93.5 | 14 | ||||
Bi2S3/GO/BiOI | 四环素 | 98 | 120 | 300W氙灯 | h+、e- | [ |
CaBi2B2O7 | 盐酸四环素 | 70 | 4 | 300W高压汞灯 | ·OH、·O2- | [ |
CdS/Bi12GeO20 | 巯基苯并噻唑 | 99 | 120 | 250W氙灯(>420nm) | ·O2-、h+、·OH | [ |
Cr(Ⅵ) | 99 | 30 | ||||
CdS/BiOBr/Bi2O2CO3 | 阿特拉津 | 95 | 30 | 250W氙灯(>400nm) | ·OH、·O2- | [ |
Bi2S3 | Cr(Ⅵ) | 100 | 90 | 可见光源 | ·O2-、e- | [ |
I-Bi4O5Br2 | 对羟基苯甲酸丙酯 | 94.5 | 60 | 1000W氙灯(>420nm) | ·O2-、h+ | [ |
Bi2S3-BiVO4石墨烯气凝胶 | Cr(Ⅵ) | 100 | 120 | 300W氙灯(>420nm) | e- | [ |
Bi4MoO9 | 刚果红 | 100 | 30 | 自然光 | ·OH、h+ | [ |
Bi12O17Cl2/MIL-100(Fe) | Cr(Ⅵ) | 100 | 20 | 300W氙灯 | ·O2-、e- | [ |
表4 铋系半导体光催化剂降解水体污染物
光催化材料 | 有机污染物 | 降解率/% | 降解时间/min | 光照条件 | 主要活性物质 | 参考文献 |
---|---|---|---|---|---|---|
BiVO4 | 亚甲基蓝 | 96.97 | 180 | 500W氙灯 | ·OH | [ |
Pd/BiFeO3 | 孔雀石绿 | 95.7 | 240 | 105W一体式荧光灯 | h+、·OH、H2O2 | [ |
苯酚 | 100 | 240 | ||||
Bi/BiOCl | 罗丹明B | 100 | 2 | 300W氙灯 | ·O2-、h+ | [ |
苯乙酮 | 100 | 120~180 | ||||
对氯苯甲醛 | 100 | 120~180 | ||||
BiOBr/Bi12O17Cl2 | 四氯苯酚 | 100 | 120 | 300W氙灯(>420nm) | ·O2-、h+ | [ |
Ag/AgBr/BiVO4 | 环丙沙星 | 91.4 | 120 | 300W氙灯(>420nm) | h+、·O2-、·OH | [ |
Cr(Ⅵ) | 91.72 | 60 | ·O2-、e- | |||
Ag-Ag2O/Bi24O31Br10 | 酸性橙7 | 96.5 | 120 | 400W卤素灯 | h+、·O2-、H2O2 | [ |
Bi24O31Br10 | 双酚A | 100 | 360 | 500W氙灯 | ·O2-、h+ | [ |
Bi6O5(OH)3(NO3)5·3H2O | 孔雀石绿 | 100 | 14 | 500W汞灯 | ·O2-、h+ | [ |
甲基紫 | 93.5 | 14 | ||||
Bi2S3/GO/BiOI | 四环素 | 98 | 120 | 300W氙灯 | h+、e- | [ |
CaBi2B2O7 | 盐酸四环素 | 70 | 4 | 300W高压汞灯 | ·OH、·O2- | [ |
CdS/Bi12GeO20 | 巯基苯并噻唑 | 99 | 120 | 250W氙灯(>420nm) | ·O2-、h+、·OH | [ |
Cr(Ⅵ) | 99 | 30 | ||||
CdS/BiOBr/Bi2O2CO3 | 阿特拉津 | 95 | 30 | 250W氙灯(>400nm) | ·OH、·O2- | [ |
Bi2S3 | Cr(Ⅵ) | 100 | 90 | 可见光源 | ·O2-、e- | [ |
I-Bi4O5Br2 | 对羟基苯甲酸丙酯 | 94.5 | 60 | 1000W氙灯(>420nm) | ·O2-、h+ | [ |
Bi2S3-BiVO4石墨烯气凝胶 | Cr(Ⅵ) | 100 | 120 | 300W氙灯(>420nm) | e- | [ |
Bi4MoO9 | 刚果红 | 100 | 30 | 自然光 | ·OH、h+ | [ |
Bi12O17Cl2/MIL-100(Fe) | Cr(Ⅵ) | 100 | 20 | 300W氙灯 | ·O2-、e- | [ |
光催化材料 | 病原微生物 | 灭活率/% | 灭活时间/min | 光照条件 | 主要活性物质 | 参考文献 |
---|---|---|---|---|---|---|
Bi2S3/CdS | 大肠杆菌 | 100 | 60 | 300W氙灯(>420nm) | ·O2- | [ |
金黄色葡萄球菌 | 93.85 | 100 | ||||
Pd/BiFeO3 | 大肠杆菌 | 100 | 180 | 105W一体式荧光灯 | h+、·OH、H2O2 | [ |
粪肠球菌 | ||||||
金黄色葡萄球菌 | ||||||
黑曲霉 | ||||||
Bi2S3/SnIn4S8 | 大肠杆菌 | 100 | 300 | 300W氙灯(>420nm) | ·O2-、h+ | [ |
Ni-BiVO4 | 大肠杆菌 | 100 | 60 | 自然光 | ·OH、·O2- | [ |
AgBiO3 | 大肠杆菌 | 100 | 60 | 金卤灯 | ·OH、·O2-、Ag+ | [ |
β-AgVO3/BiVO4 | 绿脓杆菌 | 100 | 30 | 500W氙灯(>420nm) | ·O2-、h+ | [ |
表5 铋系半导体光催化剂灭菌
光催化材料 | 病原微生物 | 灭活率/% | 灭活时间/min | 光照条件 | 主要活性物质 | 参考文献 |
---|---|---|---|---|---|---|
Bi2S3/CdS | 大肠杆菌 | 100 | 60 | 300W氙灯(>420nm) | ·O2- | [ |
金黄色葡萄球菌 | 93.85 | 100 | ||||
Pd/BiFeO3 | 大肠杆菌 | 100 | 180 | 105W一体式荧光灯 | h+、·OH、H2O2 | [ |
粪肠球菌 | ||||||
金黄色葡萄球菌 | ||||||
黑曲霉 | ||||||
Bi2S3/SnIn4S8 | 大肠杆菌 | 100 | 300 | 300W氙灯(>420nm) | ·O2-、h+ | [ |
Ni-BiVO4 | 大肠杆菌 | 100 | 60 | 自然光 | ·OH、·O2- | [ |
AgBiO3 | 大肠杆菌 | 100 | 60 | 金卤灯 | ·OH、·O2-、Ag+ | [ |
β-AgVO3/BiVO4 | 绿脓杆菌 | 100 | 30 | 500W氙灯(>420nm) | ·O2-、h+ | [ |
光催化材料 | 空气污染物 | 降解效率/% | 光照条件 | 主要活性物质 | 参考文献 |
---|---|---|---|---|---|
BiOBr0.5I0.5 | 一氧化氮 | 30 | 300W氙灯 | 1O2、·O2- | [ |
BiOIO3 | 气相汞 | 76.3 | 18W LED灯(400~450nm) | ·OH | [ |
CQDs/Bi2WO6 | 气态甲苯 | 96.9 | 1000W氙灯 | ·O2-、h+ | [ |
气态甲醛 | 97.1 | ||||
Ag/WO3/Bi2WO6 | 气态氯苯 | 80 | 300W氙灯 | ·O2-、h+ | [ |
Pt/Bi-Bi2WO6 | 气态甲苯 | 90 | 300W氙灯(>420nm) | ·O2-、·OH | [ |
Bi-(BiO)2CO3 | 一氧化氮 | 58 | 100W卤钨灯(>420nm) | ·OH | [ |
Bi4O5I2/Bi5O7I | 气相汞 | 79 | 9W LED灯 | ·OH、h+ | [ |
Ag-Bi2S3 | 一氧化氮 | 31.12 | 300W太阳灯(>300nm) | ·HO2 | [ |
I-BiOCOOH | 一氧化氮 | 49.7 | 150W卤钨灯 | ·OH | [ |
TiO2/BiOIO3 | 气相汞 | 91.12 | 9W LED灯 | ·O2-、·OH | [ |
CdS/BiOI | 气相汞 | 82 | 24W LED灯 | ·O2-、·OH | [ |
Bi/Bi2WO6/Bi2O3 | 一氧化氮 | 55.4 | 150W卤钨灯(>420nm) | ·O2-、·OH、h+ | [ |
Bi2WO6/NH2-UiO-66 | 一氧化氮 | 79 | 500W氙灯(>420nm) | ·O2-、·OH | [ |
表6 铋系半导体光催化剂净化空气
光催化材料 | 空气污染物 | 降解效率/% | 光照条件 | 主要活性物质 | 参考文献 |
---|---|---|---|---|---|
BiOBr0.5I0.5 | 一氧化氮 | 30 | 300W氙灯 | 1O2、·O2- | [ |
BiOIO3 | 气相汞 | 76.3 | 18W LED灯(400~450nm) | ·OH | [ |
CQDs/Bi2WO6 | 气态甲苯 | 96.9 | 1000W氙灯 | ·O2-、h+ | [ |
气态甲醛 | 97.1 | ||||
Ag/WO3/Bi2WO6 | 气态氯苯 | 80 | 300W氙灯 | ·O2-、h+ | [ |
Pt/Bi-Bi2WO6 | 气态甲苯 | 90 | 300W氙灯(>420nm) | ·O2-、·OH | [ |
Bi-(BiO)2CO3 | 一氧化氮 | 58 | 100W卤钨灯(>420nm) | ·OH | [ |
Bi4O5I2/Bi5O7I | 气相汞 | 79 | 9W LED灯 | ·OH、h+ | [ |
Ag-Bi2S3 | 一氧化氮 | 31.12 | 300W太阳灯(>300nm) | ·HO2 | [ |
I-BiOCOOH | 一氧化氮 | 49.7 | 150W卤钨灯 | ·OH | [ |
TiO2/BiOIO3 | 气相汞 | 91.12 | 9W LED灯 | ·O2-、·OH | [ |
CdS/BiOI | 气相汞 | 82 | 24W LED灯 | ·O2-、·OH | [ |
Bi/Bi2WO6/Bi2O3 | 一氧化氮 | 55.4 | 150W卤钨灯(>420nm) | ·O2-、·OH、h+ | [ |
Bi2WO6/NH2-UiO-66 | 一氧化氮 | 79 | 500W氙灯(>420nm) | ·O2-、·OH | [ |
光催化材料 | 产氢效率 | 光照条件 | 参考文献 |
---|---|---|---|
BiOCl | 12.49μmol·h-1·g-1 | 模拟太阳光 | [ |
Bi2O2CO3/g-C3N4 | 965μmol·h-1·g-1 | 300W氙灯 (>420nm) | [ |
Cr-Bi4Ti3O12 | 117μmol·h-1·g-1 | 300W氙灯 (>420nm) | [ |
I-Bi2O2CO3/Bi2WO6 | 664.54μmol·h-1·g-1 | 300W氙灯 (>420nm) | [ |
Bi2MoO6/g-C3N4 | 563.4μmol·h-1·g-1 | 300W氙灯 (>420nm) | [ |
CQDs/Bi2WO6 | 44.83μmol·h-1·g-1 | 500W氙灯 | [ |
Bi2WO6/CdS | 1223μmol·h-1·g-1 | 300W氙灯 (>420nm) | [ |
CdS/BiVO4 | 1153µmol·h-1 | 300W氙灯 (>420nm) | [ |
g-C3N4/BiFeO3 | 160.75μmol·h-1·g-1 | 125W中压 汞灯 | [ |
ZnIn2S4/RGO/BiVO4 | 1687μmol·h-1·g-1 | 350W氙灯 (>420nm) | [ |
Bi2WO6/PANI | 490.56μmol·h-1·g-1 | 250W汞灯 | [ |
表7 铋系半导体光催化剂制H2
光催化材料 | 产氢效率 | 光照条件 | 参考文献 |
---|---|---|---|
BiOCl | 12.49μmol·h-1·g-1 | 模拟太阳光 | [ |
Bi2O2CO3/g-C3N4 | 965μmol·h-1·g-1 | 300W氙灯 (>420nm) | [ |
Cr-Bi4Ti3O12 | 117μmol·h-1·g-1 | 300W氙灯 (>420nm) | [ |
I-Bi2O2CO3/Bi2WO6 | 664.54μmol·h-1·g-1 | 300W氙灯 (>420nm) | [ |
Bi2MoO6/g-C3N4 | 563.4μmol·h-1·g-1 | 300W氙灯 (>420nm) | [ |
CQDs/Bi2WO6 | 44.83μmol·h-1·g-1 | 500W氙灯 | [ |
Bi2WO6/CdS | 1223μmol·h-1·g-1 | 300W氙灯 (>420nm) | [ |
CdS/BiVO4 | 1153µmol·h-1 | 300W氙灯 (>420nm) | [ |
g-C3N4/BiFeO3 | 160.75μmol·h-1·g-1 | 125W中压 汞灯 | [ |
ZnIn2S4/RGO/BiVO4 | 1687μmol·h-1·g-1 | 350W氙灯 (>420nm) | [ |
Bi2WO6/PANI | 490.56μmol·h-1·g-1 | 250W汞灯 | [ |
1 | FUJISHIMA A, HONDA K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238(5358): 37-38. |
2 | CAREY J H, LAWRENCE J, TOSINE H M. Photodechlorination of PCB’s in the presence of titanium dioxide in aqueous suspensions[J]. Bulletin of Environmental Contamination and Toxicology, 1976, 16(6): 697-701. |
3 | YANG Yang, ZHANG Chen, LAI Cui, et al. BiOX (X=Cl, Br, I) photocatalytic nanomaterials: applications for fuels and environmental management[J]. Advances in Colloid and Interface Science, 2018, 254: 76-93. |
4 | OPOKU F, GOVENDER K K, VAN SITTERT C G C E, et al. Recent progress in the development of semiconductor-based photocatalyst materials for applications in photocatalytic water splitting and degradation of pollutants[J]. Advanced Sustainable Systems, 2017, 1(7): 1700006. |
5 | DUTTA V, SHARMA S, RAIZADA P, et al. Recent progress on bismuth-based Z-scheme semiconductor photocatalysts for energy and environmental applications[J]. Journal of Environmental Chemical Engineering, 2020, 8(6): 104505. |
6 | OCHIAI T, FUJISHIMA A. Photoelectrochemical properties of TiO2 photocatalyst and its applications for environmental purification[J]. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2012, 13(4): 247-262. |
7 | MENG Xiangchao, ZHANG Zisheng. Bismuth-based photocatalytic semiconductors: introduction, challenges and possible approaches[J]. Journal of Molecular Catalysis A: Chemical, 2016, 423: 533-549. |
8 | HAN Qiaofeng. Advances in preparation methods of bismuth-based photocatalysts[J]. Chemical Engineering Journal, 2021, 414: 127877. |
9 | LI Ting, QUAN Shanyu, SHI Xuefeng, et al. Fabrication of La-doped Bi2O3 nanoparticles with oxygen vacancies for improving photocatalytic activity[J]. Catalysis Letters, 2020, 150(3): 640-651. |
10 | AJIBOYE T O, ONWUDIWE D C. Bismuth sulfide based compounds: properties, synthesis and applications[J]. Results in Chemistry, 2021, 3: 100151. |
11 | SUN Mengdi, ZHANG Zemin, SHI Qiujin, et al. Toward photocatalytic hydrogen generation over BiVO4 by controlling particle size[J]. Chinese Chemical Letters, 2021, 32(8): 2419-2422. |
12 | KUMAR R, SUDHAIK A, RAIZADA P, et al. An overview on bismuth molybdate based photocatalytic systems: controlled morphology and enhancement strategies for photocatalytic water purification[J]. Journal of Environmental Chemical Engineering, 2020, 8(5): 104291. |
13 | LIANG Ying, SHI Jiawei. Effect of halide ions on the microstructure of Bi2WO6 with enhanced removal of rhodamine B[J]. Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30(8): 2872-2880. |
14 | BHARATHKUMAR S, SAKAR M, NAVANEETHAN M, et al. Mechanistic insights into the electrospinning fabrication of belt-like structures of BiFeO3 and their photocatalytic properties[J]. Materials Letters, 2021, 304: 130475. |
15 | LIU H, LI D, SHAO L, et al. Immobilization of nonisolated BiPO4 particles onto PDMS/SiO2 composite for the photocatalytic degradation of dye pollutants[J]. International Journal of Environmental Science and Technology, 2020, 17(9): 4061-4074. |
16 | LI Jie, YU Ying, ZHANG Lizhi. Bismuth oxyhalide nanomaterials: layered structures meet photocatalysis[J]. Nanoscale, 2014, 6(15): 8473-8488. |
17 | NI Zilin, SUN Yanjuan, ZHANG Yuxin, et al. Fabrication, modification and application of (BiO)2CO3-based photocatalysts: a review[J]. Applied Surface Science, 2016, 365: 314-335. |
18 | ZHANG Li, LI Yuhan, LI Qin, et al. Recent advances on bismuth-based photocatalysts: strategies and mechanisms[J]. Chemical Engineering Journal, 2021, 419(4): 129484. |
19 | GADHI T A, HERNÁNDEZ-GORDILLO A, BIZARRO M, et al. Efficient α/β-Bi2O3 composite for the sequential photodegradation of two-dyes mixture[J]. Ceramics International, 2016, 42(11): 13065-13073. |
20 | WU Lei, ZHANG Qiwu, LI Zhao, et al. Mechanochemical syntheses of a series of bismuth oxyhalide composites to progressively enhance the visible-light responsive activities for the degradation of bisphenol-A[J]. Materials Science in Semiconductor Processing, 2020, 105: 104733. |
21 | LI Jing, CHEN Yan, CHEN Chengru, et al. Solid-phase synthesis of visible-light-driven BiVO4 photocatalyst and photocatalytic reduction of aqueous Cr(Ⅵ)[J]. Bulletin of Chemical Reaction Engineering & Catalysis, 2019, 14(2): 336. |
22 | BACHA A U R, NABI I, FU Zhaoyang, et al. A comparative study of bismuth-based photocatalysts with titanium dioxide for perfluorooctanoic acid degradation[J]. Chinese Chemical Letters, 2019, 30(12): 2225-2230. |
23 | YANG Mei, YANG Qi, ZHONG Junbo, et al. PVA-assisted hydrothermal preparation of BiOF with remarkably enhanced photocatalytic performance[J]. Materials Letters, 2017, 201: 35-38. |
24 | LAI M Tze Leng, LAI Chin Wei, LEE Kian Mun, et al. Facile one-pot solvothermal method to synthesize solar active Bi2WO6 for photocatalytic degradation of organic dye[J]. Journal of Alloys and Compounds, 2019, 801: 502-510. |
25 | BIELICKA-GIEŁDOŃ A, WILCZEWSKA P, MALANKOWSKA A, et al. Morphology, surface properties and photocatalytic activity of the bismuth oxyhalides semiconductors prepared by ionic liquid assisted solvothermal method[J]. Separation and Purification Technology, 2019, 217: 164-173. |
26 | INTAPHONG P, PHURUANGRAT A, THONGTEM S, et al. Sonochemical synthesis and characterization of BiOI nanoplates for using as visible-light-driven photocatalyst[J]. Materials Letters, 2018, 213: 88-91. |
27 | SUN Chufeng, WANG Yanbin, SU Qiong. Sol-gel synthesis of Bi2WO6/graphene thin films with enhanced photocatalytic performance for nitric monoxide oxidation under visible light irradiation[J]. Chemical Physics Letters, 2018, 702: 49-56. |
28 | LONG Yang, WANG Yi, ZHANG Dun, et al. Facile synthesis of BiOI in hierarchical nanostructure preparation and its photocatalytic application to organic dye removal and biocidal effect of bacteria[J]. Journal of Colloid and Interface Science, 2016, 481: 47-56. |
29 | TAHMASEBI N, SEZARI S, ABBASI H, et al. Investigation of photodegradation of rhodamine B over a BiOX (X=Cl, Br and I) photocatalyst under white LED irradiation[J]. Bulletin of Materials Science, 2019, 42(4): 1-8. |
30 | GAO Meichao, ZHANG Dafeng, PU Xipeng, et al. Combustion synthesis of BiOCl with tunable percentage of exposed {001} facets and enhanced photocatalytic properties[J]. Journal of the American Ceramic Society, 2015, 98(5): 1515-1519. |
31 | GAO Meichao, ZHANG Dafeng, PU Xipeng, et al. Combustion synthesis of Fe-doped BiOCl with high visible-light photocatalytic activities[J]. Separation and Purification Technology, 2016, 162: 114-119. |
32 | MAO Danjun, YUAN Julong, QU Xiaolei, et al. Size tunable Bi3O4Br hierarchical hollow spheres assembled with {001}-facets exposed nanosheets for robust photocatalysis against phenolic pollutants[J]. Journal of Catalysis, 2019, 369: 209-221. |
33 | WU Ruiyang, SONG Hongbo, LUO Nan, et al. Microwave-assisted preparation and enhanced photocatalytic activity of Bi2WO6/BiOI heterojunction for organic pollutants degradation under visible-light irradiation[J]. Solid State Sciences, 2019, 87: 101-109. |
34 | WU Zhansheng, XUE Yongtao, HE Xiufang, et al. Surfactants-assisted preparation of BiVO4 with novel morphologies via microwave method and CdS decoration for enhanced photocatalytic properties[J]. Journal of Hazardous Materials, 2020, 387: 122019. |
35 | SUN Qing, KE Meilin, ZHAO Yingjie, et al. Embellishing {0 0 1} surface of Bi2MoO6 nanobelts with enhanced photocatalytic performance and mechanisms exploration[J]. Applied Surface Science, 2021, 563: 150104. |
36 | HAN Xu, ZHANG Yihe, WANG Shuobo, et al. Controllable synthesis, characterization and photocatalytic performance of four kinds of bismuth-based materials[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 568: 419-428. |
37 | BIJANZAD K, TADJARODI A, AKHAVAN O, et al. Solid state preparation and photocatalytic activity of bismuth oxybromide nanoplates[J]. Research on Chemical Intermediates, 2016, 42(3): 2429-2447. |
38 | JING Qifeng, HUANG Lin, LI Qingsen, et al. Bi-nanoparticle-decorated BiPO4 nanorods with improved photocatalytic activity[J]. Journal of Materials Science: Materials in Electronics, 2020, 31(23): 20954-20963. |
39 | MENG Xiangchao, LI Zizhen, ZHANG Zisheng. Pd-nanoparticle-decorated peanut-shaped BiVO4 with improved visible light-driven photocatalytic activity comparable to that of TiO2 under UV light[J]. Journal of Catalysis, 2017, 356: 53-64. |
40 | LONG Yang, HAN Qiang, YANG Zhiqing, et al. A novel solvent-free strategy for the synthesis of bismuth oxyhalides[J]. Journal of Materials Chemistry A, 2018, 6(27): 13005-13011. |
41 | CHEN Long, MENG Dawei, WU Xiuling, et al. Shape-controlled synthesis of novel self-assembled BiVO4 hierarchical structures with enhanced visible light photocatalytic performances[J]. Materials Letters, 2016, 176: 143-146. |
42 | CHEN Long, WANG Junxia, MENG Dawei, et al. The pH-controlled {040} facets orientation of BiVO4 photocatalysts with different morphologies for enhanced visible light photocatalytic performance[J]. Materials Letters, 2016, 162: 150-153. |
43 | JAFFARI Z H, LAM S M, SIN J C, et al. Constructing magnetic Pt-loaded BiFeO3 nanocomposite for boosted visible light photocatalytic and antibacterial activities[J]. Environmental Science and Pollution Research International, 2019, 26(10): 10204-10218. |
44 | QIN Feiyu, CUI Pengzhen, HU Lei, et al. Construction of multi-shelled Bi2WO6 hollow microspheres with enhanced visible light photocatalytic performance[J]. Materials Research Bulletin, 2018, 99: 331-335. |
45 | YU Changlin, LIU Xingqiang, LIU Renyue, et al. Hierarchical BiOHC2O4/Bi2O2CO3 composite microrods fabricated via in situ anion ion-exchange and their advanced photocatalytic performance[J]. Journal of Alloys and Compounds, 2020, 840: 155687. |
46 | PENG Yin, XU Jian, LIU Ting, et al. Controlled synthesis of one-dimensional BiOBr with exposed (110) facets and enhanced photocatalytic activity[J]. CrystEngComm, 2017, 19(43): 6473-6480. |
47 | SHI Xian, WANG Pingquan, ZHANG Kai, et al. Ultrathin bismuth oxyhalides solid solution nanosheets with oxygen vacancies for enhanced selective photocatalytic NO removal process[J]. Journal of Materials Science: Materials in Electronics, 2019, 30(19): 17828-17837. |
48 | MENG S, OGAWA T, OKUMURA H, et al. The effect of potassium chloride on BiVO4 morphology and photocatalysis[J]. Journal of Solid State Chemistry, 2021, 302: 122291. |
49 | SHANG Yaru, CUI Yongping, SHI Ruixia, et al. Effect of acetic acid on morphology of Bi2WO6 with enhanced photocatalytic activity[J]. Materials Science in Semiconductor Processing, 2019, 89: 240-249. |
50 | LI Min, YU Shixin, HUANG Hongwei, et al. Unprecedented eighteen-faceted BiOCl with a ternary facet junction boosting cascade charge flow and photo-redox[J]. Angewandte Chemie International Edition, 2019, 58(28): 9517-9521. |
51 | HAN Qiaofeng, PANG Jiawei, WANG Xin, et al. Synthesis of unique flowerlike Bi2O2(OH)(NO3) hierarchical microstructures with high surface area and superior photocatalytic performance[J]. Chemistry - A European Journal, 2017, 23(16): 3891-3897. |
52 | JIANG Zaiyong, LIANG Xizhuang, ZHENG Hailong, et al. Photocatalytic reduction of CO2 to methanol by three-dimensional hollow structures of Bi2WO6 quantum dots[J]. Applied Catalysis B: Environmental, 2017, 219: 209-215. |
53 | SUN Xiaoming, WU Jiang, LI Qifen, et al. Fabrication of BiOIO3 with induced oxygen vacancies for efficient separation of the electron-hole pairs[J]. Applied Catalysis B: Environmental, 2017, 218: 80-90. |
54 | LI Kai, LIANG Yujun, YANG Jian, et al. Controllable synthesis of {0 0 1} facet dependent foursquare BiOCl nanosheets: a high efficiency photocatalyst for degradation of methyl orange[J]. Journal of Alloys and Compounds, 2017, 695: 238-249. |
55 | XU Xiao, DING Xing, YANG Xianglong, et al. Oxygen vacancy boosted photocatalytic decomposition of ciprofloxacin over Bi2MoO6: oxygen vacancy engineering, biotoxicity evaluation and mechanism study[J]. Journal of Hazardous Materials, 2019, 364: 691-699. |
56 | WU Qiang, HAN Ruobing, CHEN Pengfei, et al. Novel synthesis and photocatalytic performance of BiVO4 with tunable morphologies and macroscopic structures[J]. Materials Science in Semiconductor Processing, 2015, 38: 271-277. |
57 | GUO Xiaoxia, WU Dan, LONG Xia, et al. Nanosheets-assembled Bi2WO6 microspheres with efficient visible-light-driven photocatalytic activities[J]. Materials Characterization, 2020, 163: 110297. |
58 | WANG Haitao, SHI Mengshan, YANG Huifang, et al. Template-free synthesis of nanosliced BiOBr hollow microspheres with high surface area and efficient photocatalytic activity[J]. Materials Letters, 2018, 222: 164-167. |
59 | HE Rongan, ZHANG Jinfeng, YU Jiaguo, et al. Room-temperature synthesis of BiOI with tailorable (001) facets and enhanced photocatalytic activity[J]. Journal of Colloid and Interface Science, 2016, 478: 201-208. |
60 | SHIVANI V, HARISH S, ARCHANA J, et al. Highly efficient 3-D hierarchical Bi2WO6 catalyst for environmental remediation[J]. Applied Surface Science, 2019, 488: 696-706. |
61 | YE Liqun, JIN Xiaoli, LENG Yumin, et al. Synthesis of black ultrathin BiOCl nanosheets for efficient photocatalytic H2 production under visible light irradiation[J]. Journal of Power Sources, 2015, 293: 409-415. |
62 | XING Yongxing, CHENG Rongqing, LI Haipeng, et al. Mannitol-assisted synthesis of ultrathin Bi2MoO6 architectures: excellent selective adsorption and photocatalytic performance[J]. Journal of Nanoparticle Research, 2019, 21(2): 40. |
63 | JIANG Qi, JI Mengxia, CHEN Rong, et al. Ionic liquid induced mechanochemical synthesis of BiOBr ultrathin nanosheets at ambient temperature with superior visible-light-driven photocatalysis[J]. Journal of Colloid and Interface Science, 2020, 574: 131-139. |
64 | SAKHARE P A, PAWAR S S, BHAT T S, et al. Magnetically recoverable BiVO4/NiFe2O4 nanocomposite photocatalyst for efficient detoxification of polluted water under collected sunlight[J]. Materials Research Bulletin, 2020, 129: 110908. |
65 | DONG S J, LEE G J, ZHOU R, et al. Synthesis of g-C3N4/BiVO4 heterojunction composites for photocatalytic degradation of nonylphenol ethoxylate[J]. Separation and Purification Technology, 2020, 250: 117202. |
66 | YIN Sheng, SHAO Yifan, HU Qingsong, et al. In situ preparation of Bi2O3/(BiO)2CO3 composite photocatalyst with enhanced visible-light photocatalytic activity[J]. Research on Chemical Intermediates, 2021, 47(4): 1601-1613. |
67 | XU Jingjing, WANG Yu, CHEN Mingdong, et al. A novel BiOCl/BiOCOOH heterojunction photocatalyst with significantly enhanced photocatalytic activity[J]. Materials Letters, 2018, 222: 176-179. |
68 | YANG Chengwu, XUE Zhe, QIN Jiaqian, et al. Visible light-driven photocatalytic H2 generation and mechanism insights into Bi2O2CO3/g-C3N4 Z-scheme photocatalyst[J]. The Journal of Physical Chemistry C, 2019, 123(8): 4795-4804. |
69 | QIN Huimei, WANG Kai, JIANG Lisha, et al. Ultrasonic-assisted fabrication of a direct Z-scheme BiOI/Bi2O4 heterojunction with superior visible light-responsive photocatalytic performance[J]. Journal of Alloys and Compounds, 2020, 821: 153417. |
70 | SHI Liyan, MA Zilun, QU Wenwen, et al. Hierarchical Z-scheme Bi2S3/CdS heterojunction: controllable morphology and excellent photocatalytic antibacterial[J]. Applied Surface Science, 2021, 568: 150923. |
71 | WU Xiuqin, ZHAO Juan, WANG Liping, et al. Carbon dots as solid-state electron mediator for BiVO4/CDs/CdS Z-scheme photocatalyst working under visible light[J]. Applied Catalysis B: Environmental, 2017, 206: 501-509. |
72 | PAN Jinbo, LIU Jianjun, ZUO Shengli, et al. Structure of Z-scheme CdS/CQDs/BiOCl heterojunction with enhanced photocatalytic activity for environmental pollutant elimination[J]. Applied Surface Science, 2018, 444: 177-186. |
73 | ZHU Fengyi, Yunzhe LÜ, LI Jianju, et al. Enhanced visible light photocatalytic performance with metal-doped Bi2WO6 for typical fluoroquinolones degradation: efficiencies, pathways and mechanisms[J]. Chemosphere, 2020, 252: 126577. |
74 | SHEN Zichen, HAN Qiaofeng, WANG Xin, et al. Green synthesis of I- ions doped (BiO)2CO3 with enhanced visible-light photocatalytic activity[J]. Materials Letters, 2018, 214: 103-106. |
75 | JIA Xuemei, HAN Qiaofeng, WANG Xin, et al. Milling-induced synthesis of BiOCl1- x Br x solid solution and their adsorptive and photocatalytic performance[J]. Photochemistry and Photobiology, 2018, 94(5): 942-954. |
76 | GNAYEM H, SASSON Y. Hierarchical nanostructured 3D flowerlike BiOCl x Br1– x semiconductors with exceptional visible light photocatalytic activity[J]. ACS Catalysis, 2013, 3(2): 186-191. |
77 | XIE Jing, CAO Yali, JIA Dianzeng, et al. Dahlia-shaped BiOCl x I1- x structures prepared by a facile solid-state method: evidence and mechanism of improved photocatalytic degradation of rhodamine B dye[J]. Journal of Colloid and Interface Science, 2017, 503: 115-123. |
78 | PENG Maoyuan, HAN Qiaofeng, LIU Weiqi, et al. One-pot grinding method to BiO(HCOO) x I1- x solid solution with enhanced visible-light photocatalytic activity[J]. Journal of Colloid and Interface Science, 2019, 554: 66-73. |
79 | RAZA W, KHAN A, ALAM U, et al. Facile fabrication of visible light induced Bi2O3 nanorod using conventional heat treatment method[J]. Journal of Molecular Structure, 2016, 1107: 39-46. |
80 | REGMI C, KSHETRI Y K, RAY S K, et al. Utilization of visible to NIR light energy by Yb3+, Er3+ and Tm3+ doped BiVO4 for the photocatalytic degradation of methylene blue[J]. Applied Surface Science, 2017, 392: 61-70. |
81 | ZAI Jiantao, CAO Fenglei, LIANG Na, et al. Rose-like I-doped Bi2O2CO3 microspheres with enhanced visible light response: DFT calculation, synthesis and photocatalytic performance[J]. Journal of Hazardous Materials, 2017, 321: 464-472. |
82 | CHEN Zhiwu, JIANG Xunyang, ZHU Chengbin, et al. Chromium-modified Bi4Ti3O12 photocatalyst: application for hydrogen evolution and pollutant degradation[J]. Applied Catalysis B: Environmental, 2016, 199: 241-251. |
83 | LU Xin, ZHU Gangqiang, ZHANG Rongxin, et al. I-doped Bi2WO6 microflowers enhanced visible light photocatalytic activity for organic pollution degradation and NO removal[J]. Journal of Materials Science: Materials in Electronics, 2019, 30(19): 17787-17797. |
84 | MENG Sun, BI Yalian, YAN Tao, et al. Room-temperature fabrication of bismuth oxybromide/oxyiodide photocatalyst and efficient degradation of phenolic pollutants under visible light[J]. Journal of Hazardous Materials, 2018, 358: 20-32. |
85 | XIANG Lei, CHEN Lei, MO Cehui, et al. Facile synthesis of Ni-doping Bi2WO6 nano-sheets with enhanced adsorptive and visible-light photocatalytic performances[J]. Journal of Materials Science, 2018, 53(10): 7657-7671. |
86 | HU Zijun, CHEN Da, WANG Sen, et al. Facile synthesis of Sm-doped BiFeO3 nanoparticles for enhanced visible light photocatalytic performance[J]. Materials Science and Engineering: B, 2017, 220: 1-12. |
87 | TIAN Cuihua, LUO Sha, SHE Jiarong, et al. Cellulose nanofibrils enable flower-like BiOCl for high-performance photocatalysis under visible-light irradiation[J]. Applied Surface Science, 2019, 464: 606-615. |
88 | WANG Tianye, LIU Shuxia, MAO Wei, et al. Novel Bi2WO6 loaded N-biochar composites with enhanced photocatalytic degradation of rhodamine B and Cr(Ⅵ)[J]. Journal of Hazardous Materials, 2020, 389: 121827. |
89 | WANG Siyuan, YANG Hua, YI Zao, et al. Enhanced photocatalytic performance by hybridization of Bi2WO6 nanoparticles with honeycomb-like porous carbon skeleton[J]. Journal of Environmental Management, 2019, 248: 109341. |
90 | DIXIT T K, SHARMA S, SINHA A S K. Development of heterojunction in N-rGO supported bismuth ferrite photocatalyst for degradation of Rhodamine B[J]. Inorganic Chemistry Communications, 2020, 117: 107945. |
91 | LI Miyuan, MA Chuanjun, WANG Guanlong, et al. Controlling the up-conversion photoluminescence property of carbon quantum dots (CQDs) by modifying its surface functional groups for enhanced photocatalytic performance of CQDs/BiVO4 under a broad-spectrum irradiation[J]. Research on Chemical Intermediates, 2021, 47(8): 3469-3485. |
92 | ZHENG Shizheng, QIN Feng, HU Changyuan, et al. Up-converted nitrogen-doped carbon quantum dots to accelerate charge transfer of dibismuth tetraoxide for enhanced full-spectrum photocatalytic activity[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 615: 126217. |
93 | XIA Jiexiang, DI Jun, LI Haitao, et al. Ionic liquid-induced strategy for carbon quantum dots/BiOX (X = Br, Cl) hybrid nanosheets with superior visible light-driven photocatalysis[J]. Applied Catalysis B: Environmental, 2016, 181: 260-269. |
94 | LIU Yangqing, ZHU Changjun, SUN Jingwen, et al. In situ assembly of CQDs/Bi2WO6 for highly efficient photocatalytic degradation of VOCs under visible light[J]. New Journal of Chemistry, 2020, 44(8): 3455-3462. |
95 | ZHONG Qing, ZHANG Weide, SHI Qingshan, et al. 0D/2D CQDs/Bi7O9I3 composite with high photocatalytic disinfection performance under visible light[J]. Journal of Solid State Chemistry, 2021, 302: 122426. |
96 | KRAEUTLER B, BARD A J. Heterogeneous photocatalytic preparation of supported catalysts. Photodeposition of platinum on titanium dioxide powder and other substrates[J]. Journal of the American Chemical Society, 1978, 100(13): 4317-4318. |
97 | LI Shijie, HU Shiwei, JIANG Wei, et al. One-pot solvothermal synthesis of Ag nanoparticles decorated BiOCOOH microflowers with enhanced visible light activity[J]. Materials Letters, 2017, 196: 343-346. |
98 | JAFFARI Z H, Sze-Mun LAM, Jin-Chung SIN, et al. Magnetically recoverable Pd-loaded BiFeO3 microcomposite with enhanced visible light photocatalytic performance for pollutant, bacterial and fungal elimination[J]. Separation and Purification Technology, 2020, 236: 116195. |
99 | ZHOU Hongru, WEN Zhipan, LIU Jie, et al. Z-scheme plasmonic Ag decorated WO3/Bi2WO6 hybrids for enhanced photocatalytic abatement of chlorinated-VOCs under solar light irradiation[J]. Applied Catalysis B: Environmental, 2019, 242: 76-84. |
100 | TIAN Fan, ZHAO Huiping, LI Guangfang, et al. Modification with metallic bismuth as efficient strategy for the promotion of photocatalysis: the case of bismuth phosphate[J]. ChemSusChem, 2016, 9(13): 1579-1585. |
101 | CHEN Meijuan, LI Xinwei, HUANG Yu, et al. Synthesis and characterization of Bi-BiPO4 nanocomposites as plasmonic photocatalysts for oxidative NO removal[J]. Applied Surface Science, 2020, 513: 145775. |
102 | YU Yu, CAO Changyan, LIU Hua, et al. A Bi/BiOCl heterojunction photocatalyst with enhanced electron-hole separation and excellent visible light photodegrading activity[J]. Journal of Materials Chemistry A, 2014, 2(6): 1677-1681. |
103 | ZHANG Li, YANG Chao, Kangle LYU, et al. SPR effect of bismuth enhanced visible photoreactivity of Bi2WO6 for NO abatement[J]. Chinese Journal of Catalysis, 2019, 40(5): 755-764. |
104 | ZHANG Shuoshuo, PU Wenhong, CHEN Ayan, et al. Oxygen vacancies enhanced photocatalytic activity towards VOCs oxidation over Pt deposited Bi2WO6 under visible light[J]. Journal of Hazardous Materials, 2020, 384: 121478. |
105 | ZHAO Huiping, ZHANG Yafang, LI Guangfang, et al. Rhodamine B-sensitized BiOCl hierarchical nanostructure for methyl orange photodegradation[J]. RSC Advances, 2016, 6(10): 7772-7779. |
106 | LI Guisheng, JIANG Bo, XIAO Shuning, et al. An efficient dye-sensitized BiOCl photocatalyst for air and water purification under visible light irradiation[J]. Environmental Science Processes & Impacts, 2014, 16(8): 1975-1980. |
107 | ZHANG Ling, YANG Jing, ZHAO Xiaoyang, et al. Small-molecule surface-modified bismuth-based semiconductors as a new class of visible-light-driven photocatalytic materials: structure-dependent photocatalytic properties and photosensitization mechanism[J]. Chemical Engineering Journal, 2020, 380: 122546. |
108 | SINGH K, ARORA S. Removal of synthetic textile dyes from wastewaters: a critical review on present treatment technologies[J]. Critical Reviews in Environmental Science and Technology, 2011, 41(9): 807-878. |
109 | VERMA A K, DASH R R, BHUNIA P. A review on chemical coagulation/flocculation technologies for removal of colour from textile wastewaters[J]. Journal of Environmental Management, 2012, 93(1): 154-168. |
110 | WANG Li, MIN Xiaopeng, SUI Xiaoyu, et al. Facile construction of novel BiOBr/Bi12O17Cl2 heterojunction composites with enhanced photocatalytic performance[J]. Journal of Colloid and Interface Science, 2020, 560: 21-33. |
111 | CHEN Fei, YANG Qi, WANG Yali, et al. Efficient construction of bismuth vanadate-based Z-scheme photocatalyst for simultaneous Cr(Ⅵ) reduction and ciprofloxacin oxidation under visible light: kinetics, degradation pathways and mechanism[J]. Chemical Engineering Journal, 2018, 348: 157-170. |
112 | HAGHIGHI A, HAGHIGHI M, SHABANI M, et al. Oxygen-rich bismuth oxybromide nanosheets coupled with Ag2O as Z-scheme nano-heterostructured plasmonic photocatalyst: solar light-activated photodegradation of dye pollutants[J]. Journal of Hazardous Materials, 2021, 408: 124406. |
113 | WU Lei, LI Zhao, LI Yujie, et al. Mechanochemical syntheses of bismuth oxybromides Bi x O y Br z as visible-light responsive photocatalyts for the degradation of bisphenol A[J]. Journal of Solid State Chemistry, 2019, 270: 458-462. |
114 | ZHENG Mengyun, HAN Qiaofeng, JIA Xuemei, et al. Grinding-assistant synthesis to basic bismuth nitrates and their photocatalytic properties[J]. Materials Science in Semiconductor Processing, 2019, 101: 183-190. |
115 | ARUMUGAM M, LEE S J, BEGILDAYEVA T, et al. Enhanced photocatalytic activity at multidimensional interface of 1D-Bi2S3@2D-GO/3D-BiOI ternary nanocomposites for tetracycline degradation under visible-light[J]. Journal of Hazardous Materials, 2021, 404: 123868. |
116 | LI Hongfen, ZHANG Yihe, Hongling OU, et al. Two layered Bi-based borate photocatalysts MBi2B2O7 (M=Ca, Sr) for photocatalytic degradation and oxygen activation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 584: 123994. |
117 | RUAN Xiaowen, HU Hao, CHE Huinan, et al. A visible-light-driven Z-scheme CdS/Bi12GeO20 heterostructure with enhanced photocatalytic degradation of various organics and the reduction of aqueous Cr(Ⅵ)[J]. Journal of Colloid and Interface Science, 2019, 543: 317-327. |
118 | MAJHI D, DAS K, MISHRA A, et al. One pot synthesis of CdS/BiOBr/Bi2O2CO3: a novel ternary double Z-scheme heterostructure photocatalyst for efficient degradation of atrazine[J]. Applied Catalysis B: Environmental, 2020, 260: 118222. |
119 | ONWUDIWE D C, OYEWO O A, ATAMTÜRK U, et al. Photocatalytic reduction of Cr(Ⅵ) using star-shaped Bi2S3 obtained from microwave irradiation of bismuth complex[J]. Journal of Environmental Chemical Engineering, 2020, 8(4): 103816. |
120 | XIAO Xin, LU Mingli, Junmin NAN, et al. Rapid microwave synthesis of I-doped Bi4O5Br2 with significantly enhanced visible-light photocatalysis for degradation of multiple parabens[J]. Applied Catalysis B: Environmental, 2017, 218: 398-408. |
121 | LIANG Q W, PLOYCHOMPOO S, CHEN J D, et al. Simultaneous Cr(Ⅵ) reduction and bisphenol A degradation by a 3D Z-scheme Bi2S3-BiVO4 graphene aerogel under visible light[J]. Chemical Engineering Journal, 2020, 384: 123256. |
122 | CHANKHANITTHA T, SOMAUDON V, WATCHARAKITTI J, et al. Solar light-driven photocatalyst based on bismuth molybdate (Bi4MoO9) for detoxification of anionic azo dyes in wastewater[J]. Journal of Materials Science: Materials in Electronics, 2021, 32(2): 1977-1991. |
123 | ZHAO Chen, WANG Jiasheng, CHEN Xi, et al. Bifunctional Bi12O17Cl2/MIL-100(Fe) composites toward photocatalytic Cr(Ⅵ) sequestration and activation of persulfate for bisphenol A degradation[J]. Science of the Total Environment, 2021, 752: 141901. |
124 | KUMAR R, RAIZADA P, VERMA N, et al. Recent advances on water disinfection using bismuth based modified photocatalysts: Strategies and challenges[J]. Journal of Cleaner Production, 2021, 297: 126617. |
125 | SHI Huanxian, ZHAO Yanyan, FAN Jun, et al. Construction of novel Z-scheme flower-like Bi2S3/SnIn4S8 heterojunctions with enhanced visible light photodegradation and bactericidal activity[J]. Applied Surface Science, 2019, 465: 212-222. |
126 | REGMI C, KSHETRI Y K, KIM T H, et al. Fabrication of Ni-doped BiVO4 semiconductors with enhanced visible-light photocatalytic performances for wastewater treatment[J]. Applied Surface Science, 2017, 413: 253-265. |
127 | BORUAH B, GUPTA R, MODAK J M, et al. Novel insights into the properties of AgBiO3 photocatalyst and its application in immobilized state for 4-nitrophenol degradation and bacteria inactivation[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 373: 105-115. |
128 | XIANG Zhenbo, WANG Yi, YANG Zhiqing, et al. Heterojunctions of β-AgVO3/BiVO4 composites for enhanced visible-light-driven photocatalytic antibacterial activity[J]. Journal of Alloys and Compounds, 2019, 776: 266-275. |
129 | GUAN Yu, LIU Yinhe, Qiang LYU, et al. Bismuth-based photocatalyst for photocatalytic oxidation of flue gas mercury removal: a review[J]. Journal of Hazardous Materials, 2021, 418: 126280. |
130 | DONG Fan, LI Qiuyan, SUN Yanjuan, et al. Noble metal-like behavior of plasmonic Bi particles as a cocatalyst deposited on (BiO)2CO3 microspheres for efficient visible light photocatalysis[J]. ACS Catalysis, 2014, 4(12): 4341-4350. |
131 | CHENG Haoqiang, HUANG Yaji, WU Jiang, et al. Controllable design of bismuth oxyiodides by in-situ self-template phase transformation and heterostructure construction for photocatalytic removal of gas-phase mercury[J]. Materials Research Bulletin, 2020, 131: 110968. |
132 | PHAM M T, HUSSAIN A, BUI D P, et al. Surface plasmon resonance enhanced photocatalysis of Ag nanoparticles-decorated Bi2S3 nanorods for NO degradation[J]. Environmental Technology & Innovation, 2021, 23: 101755. |
133 | FENG Xin, LI Xinwei, CUI Wen, et al. An ion-exchange strategy for I-doped BiOCOOH nanoplates with enhanced visible light photocatalytic NO x removal[J]. Pure and Applied Chemistry, 2018, 90(2): 353-361. |
134 | SUN Xiaoming, WU Jiang, TIAN Fengguo, et al. Synergistic effect of surface defect and interface heterostructure on TiO2/BiOIO3 photocatalytic oxide gas-phase mercury[J]. Materials Research Bulletin, 2018, 103: 247-258. |
135 | WU Jiang, LIANG Pankun, LI Qingwei, et al. Fabrication of CdS/BiOI heterostructure with enhanced photocatalytic performance under visible-light irradiation[J]. Materials Letters, 2018, 218: 5-9. |
136 | HE Wenjie, SUN Yanjun, JIANG Guangming, et al. Activation of amorphous Bi2WO6 with synchronous Bi metal and Bi2O3 coupling: photocatalysis mechanism and reaction pathway[J]. Applied Catalysis B: Environmental, 2018, 232: 340-347. |
137 | LIU Yiqiu, ZHOU Yi, TANG Qijun, et al. A direct Z-scheme Bi2WO6/NH2-UiO-66 nanocomposite as an efficient visible-light-driven photocatalyst for NO removal[J]. RSC Advances, 2020, 10(3): 1757-1768. |
138 | QIANG Zhuomin, LIU Ximeng, LI Feng, et al. Iodine doped Z-scheme Bi2O2CO3/Bi2WO6 photocatalysts: facile synthesis, efficient visible light photocatalysis, and photocatalytic mechanism[J]. Chemical Engineering Journal, 2021, 403: 126327. |
139 | LI Juan, YIN Yunchao, LIU Enzhou, et al. In situ growing Bi2MoO6 on g-C3N4 nanosheets with enhanced photocatalytic hydrogen evolution and disinfection of bacteria under visible light irradiation[J]. Journal of Hazardous Materials, 2017, 321: 183-192. |
140 | ZHANG Zhijie, ZHENG Tingting, XU Jiayue, et al. Carbon quantum dots/Bi2WO6 composites for efficient photocatalytic pollutant degradation and hydrogen evolution[J]. Nano, 2017, 12(7): 1750082. |
141 | ARIF M, MIN Zhang, LUO Yuting, et al. A Bi2WO6-based hybrid heterostructures photocatalyst with enhanced photodecomposition and photocatalytic hydrogen evolution through Z-scheme process[J]. Journal of Industrial and Engineering Chemistry, 2019, 69: 345-357. |
142 | ZHOU Fanqi, FAN Jinchen, XU Qunjie, et al. BiVO4 nanowires decorated with CdS nanoparticles as Z-scheme photocatalyst with enhanced H2 generation[J]. Applied Catalysis B: Environmental, 2017, 201: 77-83. |
143 | SEPAHVAND H, SHARIFNIA S. Photocatalytic overall water splitting by Z-scheme g-C3N4/BiFeO3 heterojunction[J]. International Journal of Hydrogen Energy, 2019, 44(42): 23658-23668. |
144 | ZHU Rongshu, TIAN Fei, YANG Ruijie, et al. Z scheme system ZnIn2S4/RGO/BiVO4 for hydrogen generation from water splitting and simultaneous degradation of organic pollutants under visible light[J]. Renewable Energy, 2019, 139: 22-27. |
145 | TAHIR M B, NAWAZ T, NABI G, et al. Photocatalytic degradation and hydrogen evolution using bismuth tungstate based nanocomposites under visible light irradiation[J]. International Journal of Hydrogen Energy, 2020, 45(43): 22833-22847. |
146 | YE Liqun, DENG Yu, WANG Li, et al. Bismuth-based photocatalysts for solar photocatalytic carbon dioxide conversion[J]. ChemSusChem, 2019, 12(16): 3671-3701. |
147 | LI Fei, ZHANG Li, CHEN Xi, et al. Synergistically enhanced photocatalytic reduction of CO2 on N-Fe codoped BiVO4 under visible light irradiation[J]. Physical Chemistry Chemical Physics, 2017, 19(32): 21862-21868. |
148 | KONG Xinying, TAN Wenliang, Boon-Junn NG, et al. Harnessing vis-NIR broad spectrum for photocatalytic CO2 reduction over carbon quantum dots-decorated ultrathin Bi2WO6 nanosheets[J]. Nano Research, 2017, 10(5): 1720-1731. |
149 | WEI Zhihe, WANG Yanfang, LI Yanyang, et al. Enhanced photocatalytic CO2 reduction activity of Z-scheme CdS/BiVO4 nanocomposite with thinner BiVO4 nanosheets[J]. Journal of CO2 Utilization, 2018, 28: 15-25. |
150 | LI Zizhen, IVANENKO A, MENG Xiangchao, et al. Photocatalytic oxidation of methanol to formaldehyde on bismuth-based semiconductors[J]. Journal of Hazardous Materials, 2019, 380: 120822. |
151 | XIAO Xin, ZHENG Chunxia, LU Mingli, et al. Deficient Bi24O31Br10 as a highly efficient photocatalyst for selective oxidation of benzyl alcohol into benzaldehyde under blue LED irradiation[J]. Applied Catalysis B: Environmental, 2018, 228: 142-151. |
152 | RIENTE P, MATAS ADAMS A, ALBERO J, et al. Light-driven organocatalysis using inexpensive, nontoxic Bi2O3 as the photocatalyst[J]. Angewandte Chemie, 2014, 126(36): 9767-9770. |
153 | LIU Ying, YUAN Aili, XIAO Yufei, et al. Two-dimensional/two-dimensional Z-scheme photocatalyst of graphitic carbon nitride/bismuth vanadate for visible-light-driven photocatalytic synthesis of imines[J]. Ceramics International, 2020, 46(10): 16157-16165. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[3] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[4] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[5] | 王家庆, 宋广伟, 李强, 郭帅成, DAI Qingli. 橡胶混凝土界面改性方法及性能提升路径[J]. 化工进展, 2023, 42(S1): 328-343. |
[6] | 陈崇明, 陈秋, 宫云茜, 车凯, 郁金星, 孙楠楠. 分子筛基CO2吸附剂研究进展[J]. 化工进展, 2023, 42(S1): 411-419. |
[7] | 王乐乐, 杨万荣, 姚燕, 刘涛, 何川, 刘逍, 苏胜, 孔凡海, 朱仓海, 向军. SCR脱硝催化剂掺废特性及性能影响[J]. 化工进展, 2023, 42(S1): 489-497. |
[8] | 顾永正, 张永生. HBr改性飞灰对Hg0的动态吸附及动力学模型[J]. 化工进展, 2023, 42(S1): 498-509. |
[9] | 邓丽萍, 时好雨, 刘霄龙, 陈瑶姬, 严晶颖. 非贵金属改性钒钛基催化剂NH3-SCR脱硝协同控制VOCs[J]. 化工进展, 2023, 42(S1): 542-548. |
[10] | 程涛, 崔瑞利, 宋俊男, 张天琪, 张耘赫, 梁世杰, 朴实. 渣油加氢装置杂质沉积规律与压降升高机理分析[J]. 化工进展, 2023, 42(9): 4616-4627. |
[11] | 朱杰, 金晶, 丁正浩, 杨会盼, 侯封校. 化学链气化中准东煤灰对CaSO4载氧体改性及其作用机理[J]. 化工进展, 2023, 42(9): 4628-4635. |
[12] | 王晋刚, 张剑波, 唐雪娇, 刘金鹏, 鞠美庭. 机动车尾气脱硝催化剂Cu-SSZ-13的改性研究进展[J]. 化工进展, 2023, 42(9): 4636-4648. |
[13] | 王鹏, 史会兵, 赵德明, 冯保林, 陈倩, 杨妲. 过渡金属催化氯代物的羰基化反应研究进展[J]. 化工进展, 2023, 42(9): 4649-4666. |
[14] | 高彦静. 单原子催化技术国际研究态势分析[J]. 化工进展, 2023, 42(9): 4667-4676. |
[15] | 张启, 赵红, 荣峻峰. 质子交换膜燃料电池中氧还原反应抗毒性电催化剂研究进展[J]. 化工进展, 2023, 42(9): 4677-4691. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |