1 |
TYAGI V V, CHOPRA K, SHARMA R K, et al. A comprehensive review on phase change materials for heat storage applications: development, characterization, thermal and chemical stability[J]. Solar Energy Materials and Solar Cells, 2022, 234: 111392.
|
2 |
NIE Binjian, PALACIOS Anabel, ZOU Boyang, et al. Review on phase change materials for cold thermal energy storage applications[J]. Renewable and Sustainable Energy Reviews, 2020, 134: 110340.
|
3 |
ZHANG Shengqi, PU Liang, XU Lingling, et al. Melting performance analysis of phase change materials in different finned thermal energy storage[J]. Applied Thermal Engineering, 2020, 176: 115425.
|
4 |
KARAMI Ramin, KAMKARI Babak. Experimental investigation of the effect of perforated fins on thermal performance enhancement of vertical shell and tube latent heat energy storage systems[J]. Energy Conversion and Management, 2020, 210: 112679.
|
5 |
ZHANG Chengbin, LI Jie, CHEN Yongping. Improving the energy discharging performance of a latent heat storage (LHS) unit using fractal-tree-shaped fins[J]. Applied Energy, 2020, 259: 114102.
|
6 |
LIU Xiangdong, HUANG Yongping, ZHANG Xuan, et al. Investigation on charging enhancement of a latent thermal energy storage device with uneven tree-like fins[J]. Applied Thermal Engineering, 2020, 179: 115749.
|
7 |
YU Cheng, WU Suchen, HUANG Yongping, et al. Charging performance optimization of a latent heat storage unit with fractal tree-like fins[J]. Journal of Energy Storage, 2020, 30: 101498.
|
8 |
MAHDI Jasim M, MOHAMMED Hayder I, HASHIM Emad T, et al. Solidification enhancement with multiple PCMs, cascaded metal foam and nanoparticles in the shell-and-tube energy storage system[J]. Applied Energy, 2020, 257: 113993.
|
9 |
LI Hongyang, HU Chengzhi, HE Yichuan, et al. Visualized-experimental investigation on the energy storage performance of PCM infiltrated in the metal foam with varying pore densities[J]. Energy, 2021, 237: 121540.
|
10 |
ABDULATEEF Ammar M, ABDULATEEF Jasim, Sohif MAT, et al. Experimental and numerical study of solidifying phase-change material in a triplex-tube heat exchanger with longitudinal/triangular fins[J]. International Communications in Heat and Mass Transfer, 2018, 90: 73-84.
|
11 |
MAHDI Jasim M, LOHRASBI Sina, GANJI Davood D, et al. Accelerated melting of PCM in energy storage systems via novel configuration of fins in the triplex-tube heat exchanger[J]. International Journal of Heat and Mass Transfer, 2018, 124: 663-676.
|
12 |
ABDULATEEF Ammar M, Sohif MAT, SOPIAN Kamaruzzaman, et al. Experimental and computational study of melting phase-change material in a triplex tube heat exchanger with longitudinal/triangular fins[J]. Solar Energy, 2017, 155: 142-153.
|
13 |
Sohif MAT, AL-ABIDI Abduljalil A, SOPIAN K, et al. Enhance heat transfer for PCM melting in triplex tube with internal-external fins[J]. Energy Conversion and Management, 2013, 74: 223-236.
|
14 |
ZHANG Shengqi, PU Liang, XU Lingling, et al. Thermal and exergetic analysis of shell and eccentric-tube thermal energy storage[J]. Journal of Energy Storage, 2021, 38: 102504.
|
15 |
YAZICI Mustafa Yusuf, AVCI Mete, AYDIN Orhan, et al. On the effect of eccentricity of a horizontal tube-in-shell storage unit on solidification of a PCM[J]. Applied Thermal Engineering, 2014, 64(1/2): 1-9.
|
16 |
BAZAI H, MOGHIMI M A, MOHAMMED H I, et al. Numerical study of circular-elliptical double-pipe thermal energy storage systems[J]. Journal of Energy Storage, 2020, 30: 101440.
|
17 |
DHAIDAN N S, KHODADADI J M, AL-HATTAB T A, et al. Experimental and numerical investigation of melting of NePCM inside an annular container under a constant heat flux including the effect of eccentricity[J]. International Journal of Heat and Mass Transfer, 2013, 67: 455-468.
|
18 |
DARZI AhmadAli Rabienataj, FARHADI Mousa, SEDIGHI Kurosh. Numerical study of melting inside concentric and eccentric horizontal annulus[J]. Applied Mathematical Modelling, 2012, 36(9): 4080-4086.
|
19 |
DENG Zilong, WU Suchen, XU Hao, et al. Melting heat transfer enhancement of a horizontal latent heat storage unit by fern-fractal fins[J]. Chinese Journal of Chemical Engineering, 2020, 28(11): 2857-2871.
|
20 |
TAO Y B, LIU Y K, HE Y-L. Effects of PCM arrangement and natural convection on charging and discharging performance of shell-and-tube LHS unit[J]. International Journal of Heat and Mass Transfer, 2017, 115: 99-107.
|