[1] ABUHALIMA O,张隽,孙琳,等. 换热网络综合中管壳式换热器设计研究进展[J]. 计算机与应用化学,2015,32(1):9-14. ABUHALIMA O,ZHANG J,SUN L,et al. Research progress in the design of shell and tube heat exchangers in the synthesis of heat exchanger networks[J]. Computers and Applied Chemistry,2015,32(1):9-14.
[2] PAN M,BULATOV I,SMITH R. Recent methods for retrofitting heat exchanger networks with heat transfer intensifications[J]. Chemical Engineering Transactions,2014,39:1435-1440.
[3] 曹振恒,赵立功,王彩琴,等. 管壳式换热器壳程传热强化研究进展[J]. 化学工程与装备,2015(3):174-176. CAO Z H,ZHAO L G,WANG C Q,et al. Research progress on heat transfer enhancement of shell side in shell and tube heat exchanger[J]. Chemical Engineering & Equipment,2015(3):174-176.
[4] POLLEY G T,ATHIE C M R,GOUGH M. Use of heat transfer enhancement in process integration[J]. Heat Recovery Systems & Chp,1992,12(3):191-202.
[5] LIU Z Y,VARBANOV P S,KLEMES J J,et al. Recent developments in applied thermal engineering:process integration,heat exchangers,enhanced heat transfer,solar thermal energy,combustion and high temperature processes and thermal process modelling[J]. Applied Thermal Engineering,2016,105:755-762.
[6] 王丽丽,马贵阳. 纵流式换热器结构优化研究进展[J]. 当代化工,2016,45(8):1937-1939. WANG L L,MA G Y. Research process of structural optimization of heat exchangers with longitudinal flow[J]. Contemporary Chemical Industry,2016,45(8):1937-1939.
[7] 王琰,杨建锋,曾敏,等. 一种新型连续螺旋折流板管壳式汽车空调回热器[J]. 化工学报,2014,65(s1):264-271. WANG Y,YANG J F,ZENG M,et al. A new type of liquid-suction heat exchanger for automotive air conditioning system[J]. CIESC Journal,2014,65(s1):264-271.
[8] PAN M,BULATOV I,SMITH R. Efficient retrofitting approach for improving heat recovery in heat exchanger networks with heat transfer intensification[J]. Industrial & Engineering Chemistry Research,2014,53(27):11107-11120.
[9] SHEIKHOLESLAMI M,GORJI-BANDPY M,GANJI D D. Review of heat transfer enhancement methods:focus on passive methods using swirl flow devices[J]. Renewable & Sustainable Energy Reviews,2015,49:444-469.
[10] 赵晓曦,邓先和,陈颖,等. 管壳式换热器壳程传热强化研究[J]. 现代化工,2001,21(7):14-17. ZHAO X X,DENG X H,CHEN Y,et al. Heat transfer enhancement in shellside of shell and tube heat exchanger[J]. Modern Chemical Industry,2001,21(7):14-17.
[11] HAMEED V M,HUSSEIN M A. Effect of new type of enhancement on inside and outside surface of the tube side in single pass heat exchanger[J]. Applied Thermal Engineering,2017,122:484-491.
[12] 刘敏珊,宫本希,董其伍. 螺旋扁管的换热性能研究[J]. 石油机械,2008,36(2):22-25. LIU M S,GONG B X,DONG Q W. Study on the heat transfer performance of a spiral flat tube[J]. China Petroleum Machinery,2008,36(2):22-25.
[13] 王丹,董其伍,刘敏珊. 低Re数下正弦波纹流道内流体混合性能研究[J]. 机械设计与制造,2012(6):186-188. WANG D,DONG Q W,LIU M S. Research on the mixing performance of fluid flow in sinusoidal corrugated channel at low Reynolds number[J]. Machinery Design & Manufacture,2012(6):186-188.
[14] 丁聪,高学农. 高黏度流体的传热强化研究进展[J]. 化工进展,2012,31(s1):416-419. DING C,GAO X N. Research development of high viscosity fluid in heat transfer enhancement[J]. Chemical Industry and Engineering Progress,2012,31(s1):416-419.
[15] 李若兰,丁杰,霍正齐. 管壳式换热器换热管的传热强化[J]. 制冷,2013(3):76-81. LI R L,DING J,HUO Z Q. Heat transfer enhancement of shell and tube heat exchanger heat transfer tube[J]. Refrigeration,2013(3):76-81.
[16] BILEN K,CETIN M,GUL H,et al. The investigation of groove geometry effect on heat transfer for internally grooved tubes[J]. Applied Thermal Engineering,2009,29(4):753-761.
[17] MOHAMMED H A,ABBAS A K,SHERIFF J M. Influence of geometrical parameters and forced convective heat transfer in transversely corrugated circular tubes[J]. International Communications in Heat & Mass Transfer,2013,44(5):116-126.
[18] WANG L,SUNDEN B. Performance comparison of some tube inserts[J]. International Communications in Heat & Mass Transfer,2002,29(1):45-56.
[19] GARCIA A,VICENTE P G,VIEDMA A. Experimental study of heat transfer enhancement with wire coil inserts in laminar-transition-turbulent regimes at different Prandtl numbers[J]. International Journal of Heat & Mass Transfer,2005,48(21/22):4640-4651.
[20] ZDANIUK G J,CHAMRA L M,MAGO P J. Experimental determination of heat transfer and friction in helically-finned tubes[J]. Experimental Thermal & Fluid Science,2008,32(3):761-775.
[21] WANG C C,LEE W S,SHEU W J. A comparative study of compact enhanced fin-and-tube heat exchangers[J]. International Journal of Heat & Mass Transfer,2001,44(18):3565-3573.
[22] LIM K Y,HUNG Y M,TAN B T. Performance evaluation of twisted-tape insert induced swirl flow in a laminar thermally developing heat exchanger[J]. Applied Thermal Engineering,2017,121:652-661.
[23] KEKLIKCIOGLU O,OZCEYHAN V. Experimental investigation on heat transfer enhancement of a tube with coiled-wire inserts installed with a separation from the tube wall[J]. International Communications in Heat & Mass Transfer,2016,78:88-94.
[24] SAN J Y,HUANG W C,CHEN C A. Experimental investigation on heat transfer and fluid friction correlations for circular tubes with coiled-wire inserts[J]. International Communications in Heat & Mass Transfer,2015,65:8-14.
[25] YUN J Y,LEE K S. Influence of design parameters on the heat transfer and flow friction characteristics of the heat exchanger with slit fins[J]. International Journal of Heat & Mass Transfer,2000,43(14):2529-2539.
[26] SAHA S K,DUTTA A,DHAL S K. Friction and heat transfer characteristics of laminar swirl flow through a circular tube fitted with regularly spaced twisted-tape elements[J]. International Journal of Heat & Mass Transfer,2001,44(22):4211-4223.
[27] HONG Y,DU J,WANG S. Experimental heat transfer and flow characteristics in a spiral grooved tube with overlapped large/small twin twisted tapes[J]. International Journal of Heat & Mass Transfer,2016,106:1178-1190.
[28] NOZU S,HONDA H. Condensation of refrigerants in horizontal,spirally grooved microfin tubes:numerical analysis of heat transfer in the annular flow regime[J]. Journal of Heat Transfer,2000,122(1):80-91.
[29] AL-FAHED S,CHAMRA L,CHAKROUN W. Pressure drop and heat transfer comparison for both microfin tube and twisted-tape inserts in laminar flow[J]. Experimental Thermal and Fluid Science,1998,18(4):323-333.
[30] 朱冬生,肖建国. 轧槽管抗污垢性能的试验研究[J]. 石油化工设备,1996(1):8-11. ZHU D S,XIAO J G. Study on anti-fouling characteristics of the corrugated tube[J]. PetroChemical Equipment,1996(1):8-11.
[31] ROZZI S,MASSINI R,PACIELLO G,et al.Heat treatment of fluid foods in a shell and tube heat exchanger:comparison between smooth and helically corrugated wall tubes[J]. Journal of Food Engineering,2007,79(1):249-254.
[32] LI H,KOTTKE V. Effect of the leakage on pressure drop and local heat transfer in shell-and-tube heat exchangers for staggered tube arrangement[J]. International Journal of Heat & Mass Transfer,1998,41(2):425-433.
[33] 王英双,刘志春,黄素逸,等. 新型折流杆换热器的流动与传热数值模拟[J]. 化工进展,2010,29(7):1205-1208. WANG Y S,LIU Z C,HUANG S Y,et al. Fluid flow and heat transfer in rod baffle heat exchanger shell side[J]. Chemical Industry and Engineering Progress,2010,29(7):1205-1208.
[34] 古新,秦晓柯,王永庆,等. 倾斜折流栅式换热器壳程流体流动与传热特性[J]. 化工进展,2017,36(10):3584-3589. GU X,QIN X K,WANG Y Q,et al. Research on fluid flow and heat transfer characteristics in shell side of inclined shutter baffle heat exchanger[J]. Chemical Industry and Engineering Progress,2017,36(10):3584-3589.
[35] ZHOU G Y,XIAO J,ZHU L,et al. A numerical study on the shell-side turbulent heat transfer enhancement of shell-and-tube heat exchanger with trefoil-hole baffles[J]. Energy Procedia,2015,75:3174-3179.
[36] WANG Q,CHEN G,CHEN Q,et al. Review of improvements on shell-and-tube heat exchangers with helical baffles[J]. Heat Transfer Engineering,2010,31(10):836-853.
[37] WEN J,YANG H,JIAN G,et al. Energy and cost optimization of shell and tube heat exchanger with helical baffles using Kriging metamodel based on MOGA[J]. International Journal of Heat & Mass Transfer,2016,98:29-39.
[38] 文键,杨辉,王斯民,等. 旋梯式螺旋折流板换热器优化结构的数值模拟[J]. 西安交通大学学报,2014,48(11):8-14. WEN J,YANG H,WANG S M,et al. Numerical simulation for configuration optimization of heat exchanger with helical baffles[J]. Journal of Xi'an Jiaotong University,2014,48(11):8-14.
[39] 王斯民,肖娟,王家瑞,等. 折面螺旋折流板换热器的流动传热性能实验研究[J]. 化工学报,2017,68(12):4537-4544. WANG S M,XIAO J,WANG J R,et al. Flow and heat transfer performance of shell-and-tube heat exchangers with fold helical baffles[J]. CIESC Journal,2017,68(12):4537-4544.
[40] WEN J,YANG H,WANG S,et al. PIV experimental investigation on shell-side flow patterns of shell and tube heat exchanger with different helical baffles[J]. International Journal of Heat & Mass Transfer,2017,104:247-259.
[41] ZHANG J F,LI B,HUANG W J,et al. Experimental performance comparison of shell-side heat transfer for shell-and-tube heat exchangers with middle-overlapped helical baffles and segmental baffles[J]. Chemical Engineering Science,2009,64(8):1643-1653.
[42] LIU L,FAN Y,LING X,et al. Flow and heat transfer characteristics of finned tube with internal and external fins in air cooler for waste heat recovery of gas-fired boiler system[J]. Chemical Engineering & Processing Process Intensification,2013,74(8):142-152.
[43] BIYANTO T R,GONAWAN E K,NUGROHO G,et al. Heat exchanger network retrofit throughout overall heat transfer coefficient by using genetic algorithm[J]. Applied Thermal Engineering,2016,94:274-281.
[44] ZHU X X,ZANFIR M,KLEMES J. Heat transfer enhancement for heat exchanger network retrofit[J]. Heat Transfer Engineering,2000,21(2):7-18.
[45] PAN M,BULATOV I,SMITH R,et al. Novel MILP-based iterative method for the retrofit of heat exchanger networks with intensified heat transfer[J]. Computers & Chemical Engineering,2012,42(27):263-276.
[46] WANG Y,PAN M,BULATOV I,et al. Application of intensified heat transfer for the retrofit of heat exchanger network[J]. Applied Energy,2012,89(1):45-59.
[47] AKPOMIEMIE M O,SMITH R. Retrofit of heat exchanger networks without topology modifications and additional heat transfer area[J]. Applied Energy,2015,159:381-390.
[48] PAN M,BULATOV I,SMITH R. Exploiting tube inserts to intensify heat transfer for the retrofit of heat exchanger networks considering fouling mitigation[J]. Industrial & Engineering Chemistry Research,2013,52(8):2925-2943.
[49] JIANG N,SHELLEY J D,SMITH R. New models for conventional and heat exchangers enhanced with tube inserts for heat exchanger network retrofit[J]. Applied Thermal Engineering,2014,70(1):944-956.
[50] PAN M,BULATOV I,SMITH R. Improving heat recovery in retrofitting heat exchanger networks with heat transfer intensification,pressure drop constraint and fouling mitigation[J]. Applied Energy,2016,161:611-626.
[51] AKPOMIEMIE M O,SMITH R. Pressure drop considerations with heat transfer enhancement in heat exchanger network retrofit[J]. Applied Thermal Engineering,2017,116:695-708.
[52] 尹清华,华贲,吴国东,等.同时考虑流动(火用)损费和传热强化的换热网络合成[J]. 化工学报,1992,43(1):54-61. YIN Q H,HUA B,WU G D,et al. Considering the flow of energy loss cost together with heat transfer enhancement of heat exchanger network synthesis[J]. CIESC Journal,1992,43(1):54-61.
[53] ODEJOBI O J,ADEJIKUN A E,AL-MUTAIRI E M. Heat exchanger network synthesis incorporating enhanced heat transfer techniques[J]. Applied Thermal Engineering,2015,89:684-692. |