1 |
赵春生, 杨君君, 王婧, 等. 燃煤发电行业低碳发展路径研究[J]. 发电技术, 2021, 42(5): 547-553.
|
|
ZHAO Chunsheng, YANG Junjun, WANG Jing, et al. Research on low-carbon development path of coal-fired power industry[J]. Power Generation Technology, 2021, 42(5): 547-553.
|
2 |
黄畅, 张攀, 王卫良, 等. 燃煤发电产业升级支撑我国节能减排与碳中和国家战略[J]. 热力发电, 2021, 50(4): 1-6.
|
|
HUANG Chang, ZHANG Pan, WANG Weiliang, et al. The upgradation of coal-fired power generation industry supports China’s energy conservation, emission reduction and carbon neutrality[J]. Thermal Power Generation, 2021, 50(4): 1-6.
|
3 |
张智刚, 康重庆. 碳中和目标下构建新型电力系统的挑战与展望[J]. 中国电机工程学报, 2022, 42(8): 2806-2819.
|
|
ZHANG Zhigang, KANG Chongqing. Challenges and prospects for constructing the new-type power system towards a carbon neutrality future[J]. Proceedings of the CSEE, 2022, 42(8): 2806-2819.
|
4 |
DOROTIĆ H, PUKŠEC T, SCHNEIDER D R, et al. Evaluation of district heating with regard to individual systems—Importance of carbon and cost allocation in cogeneration units[J]. Energy, 2021, 221: 119905.
|
5 |
WANG Zijie, GU Yujiong, LIU Haochen, et al. Optimizing thermal-electric load distribution of large-scale combined heat and power plants based on characteristic day[J]. Energy Conversion and Management, 2021, 248: 114792.
|
6 |
曹欢, 张光明, 牛玉广, 等. 耦合热泵的热电联产机组机理模型研究[J]. 热力发电, 2021, 50(3): 129-137.
|
|
CAO Huan, ZHANG Guangming, NIU Yuguang, et al. Mechanism model analysis for CHP units coupled with heat pump[J]. Thermal Power Generation, 2021, 50(3): 129-137.
|
7 |
李定青, 李德波, 董启盛. 50MW纯凝生物质机组供热改造方案[J]. 山东电力技术, 2022, 49(1): 60-64.
|
|
LI Dingqing, LI Debo, DONG Qisheng. Feasibility analysis of heat-supply alteration in 50MW condensing biomass power unit[J]. Shandong Electric Power, 2022, 49(1): 60-64.
|
8 |
吴正民, 余国瑶, 戴巍, 等. 5kW(e)级自由活塞斯特林发电机热电联产性能研究[J]. 中国电机工程学报, 2018, 38(11): 3275-3280.
|
|
WU Zhengmin, YU Guoyao, DAI Wei, et al. Performance of the CHP system by using a 5kW(e) class free piston stirling generator[J]. Proceedings of the CSEE, 2018, 38(11): 3275-3280.
|
9 |
韩中合, 肖炜刚, 安国银. 大型汽轮机供热改造方案研究[J]. 汽轮机技术, 2016, 58(3): 198-200, 168.
|
|
HAN Zhonghe, XIAO Weigang, AN Guoyin. Research of heating retrofitting schemes for large steam turbine[J]. Turbine Technology, 2016, 58(3): 198-200, 168.
|
10 |
莫子渊, 顾煜炯, 陆树银, 等. 600MW超临界供热机组能量梯级利用及对比分析[J]. 电力科学与工程, 2021, 37(4): 55-62.
|
|
MO Ziyuan, GU Yujiong, LU Shuyin, et al. Energy cascade utilization and comparative analysis of 600MW supercritical heating unit[J]. Electric Power Science and Engineering, 2021, 37(4): 55-62.
|
11 |
张福祥. 热电联产机组能量梯级利用及灵活调峰运行[D]. 北京: 华北电力大学(北京), 2020.
|
|
ZHANG Fuxiang. Energy cascade utilization and flexibility enhancement of the combined heat and power unit[D]. Beijing: North China Electric Power University, 2020.
|
12 |
陆树银, 刘浩晨, 顾煜炯, 等. 大型热电联产机组供热改造分析[J]. 工程热物理学报, 2022, 43(5): 1182-1189.
|
|
LU Shuyin, LIU Haochen, GU Yujiong, et al. Thermodynamic analysis of heating reformation of large-scale CHP[J]. Journal of Engineering Thermophysics, 2022, 43(5): 1182-1189.
|
13 |
王立功, 许继东, 徐钢, 等. 热电联产机组供热抽汽余压利用节能机理[J]. 热力发电, 2019, 48(5): 8-13.
|
|
WANG Ligong, XU Jidong, XU Gang, et al. Energy saving mechanism of waste pressure utilization of extraction steam for heating in combined heat and power cogeneration units[J]. Thermal Power Generation, 2019, 48(5): 8-13.
|
14 |
刘浩晨, 耿直, 顾煜炯. 基于膨胀机-热泵(st-hp)的大型吸收式热电联产机组集中供热方法[J]. 化工进展, 2020, 39(2): 468-477.
|
|
LIU Haochen, GENG Zhi, GU Yujiong. Central heating supply method of large scale absorption CHP based on st-hp[J]. Chemical Industry and Engineering Progress, 2020, 39(2): 468-477.
|
15 |
谷军生, 姜占文, 吴俊杰. 余热梯级利用在热网改造场景中的应用浅析[J]. 汽轮机技术, 2020, 62(6): 473-474, 477.
|
|
GU Junsheng, JIANG Zhanwen, WU Junjie. The analysis of cascade utilization of surplus heat in heat network retrofitting system[J]. Turbine Technology, 2020, 62(6): 473-474, 477.
|
16 |
崔殊杰, 王玮, 杨利, 等. 燃煤发电机组供热蒸汽余压梯级利用方案[J]. 能源与节能, 2022, 197(2): 24-28.
|
|
CUI Shujie, WANG Wei, YANG Li, et al. Cascade utilization scheme for surplus pressure of extraction steam from coal fired generating units[J]. Energy and Energy Conservation, 2022, 197(2): 24-28.
|
17 |
熊军, 廖晔, 胡宪法, 等. 溴化锂吸收式热泵的动态建模及运行特性分析[J]. 热能动力工程, 2022, 37(2): 122-128, 159.
|
|
XIONG Jun, LIAO Ye, HU Xianfa, et al. Analysis of dynamic of modeling and operation characteristics of LiBr absorption heat pump[J]. Journal of Engineering for Thermal Energy and Power, 2022, 37(2): 122-128, 159.
|
18 |
孙健, 马世财, 霍成, 等. 耦合热泵换热器的原理及变工况性能研究[J]. 工程热物理学报, 2021, 42(1): 9-15.
|
|
SUN Jian, MA Shicai, HUO Cheng, et al. Study on a hybrid heat exchanger based on absorption and compression cycles[J]. Journal of Engineering Thermophysics, 2021, 42(1): 9-15.
|
19 |
郭中旭, 戈志华, 赵世飞, 等. 耦合吸收式热泵机组变工况分析[J]. 热能动力工程, 2018, 33(2): 25-32.
|
|
GUO Zhongxu, GE Zhihua, ZHAO Shifei, et al. Analysis of the off-design operation conditions of a coupled absorption type heat pump unit[J]. Journal of Engineering for Thermal Energy and Power, 2018, 33(2): 25-32.
|
20 |
米玉鸿, 冯林魁, 柏建华, 等. 亚临界热电联产机组耦合吸收式热泵系统热经济性及环境效益分析[J]. 热能动力工程, 2022, 37(4): 94-99.
|
|
MI Yuhong, FENG Linkui, BAI Jianhua, et al. Analysis of thermal economy and environmental benefits of subcritical cogeneration units coupled with absorption heat pump system[J]. Journal of Engineering for Thermal Energy and Power, 2022, 37(4): 94-99.
|
21 |
张抖, 张光明, 牛玉广, 等. 吸收式热泵对热电联产机组调峰能力影响分析[J]. 热力发电, 2021, 50(10): 95-100, 129.
|
|
ZHANG Dou, ZHANG Guangming, NIU Yuguang, et al. Effect of absorption heat pump on peak regulation capacity of combined heat and power unit[J]. Thermal Power Generation, 2021, 50(10): 95-100, 129.
|
22 |
王新军, 李亮, 宋立明. 汽轮机原理[M]. 西安: 西安交通大学出版社, 2014.
|
|
WANG Xinjun, LI Liang, SONG Liming. Turbine principle[M]. Xi’an: Xi’an Jiaotong University Press, 2014.
|
23 |
国家能源局. 火力发电厂技术经济指标计算方法: [S]. 北京: 中国电力出版社, 2015.
|
|
National Energy Administration of the People’s Republic of China. Calculating method of economical and technical index for thermal power plant: [S]. Beijing: China Electric Power Press, 2015.
|
24 |
曹丽华, 王文龙, 罗桓桓, 等. 深度调峰工况下汽轮机低压缸最小流量的确定[J]. 机械工程学报, 2020, 56(16): 98-108.
|
|
CAO Lihua, WANG Wenlong, LUO Huanhuan, et al. Determination of minimum flow rate of low pressure cylinder of steam turbine under deep peak load regulation conditions[J]. Journal of Mechanical Engineering, 2020, 56(16): 98-108.
|