化工进展 ›› 2022, Vol. 41 ›› Issue (6): 2864-2870.DOI: 10.16085/j.issn.1000-6613.2021-1319

• 化工过程与装备 • 上一篇    下一篇

静电喷雾沉积半径的预测模型

于涵1,2(), 王宏1,2(), 朱恂1,2, 丁玉栋1,2, 陈蓉1,2, 廖强1,2   

  1. 1.重庆大学低品位能源利用技术及系统教育部重点实验室,重庆 400030
    2.重庆大学工程热物理研究所,重庆 400030
  • 收稿日期:2021-06-24 修回日期:2021-07-28 出版日期:2022-06-10 发布日期:2022-06-21
  • 通讯作者: 王宏
  • 作者简介:于涵(1994—),男,硕士研究生,研究方向为界面现象与传热。E-mail:yhupup@foxmail.com
  • 基金资助:
    国家自然科学基金创新研究群体项目(52021004);国家自然科学基金面上项目(51676022)

Prediction model of electrospray deposition radius

YU Han1,2(), WANG Hong1,2(), ZHU Xun1,2, DING Yudong1,2, CHEN Rong1,2, LIAO Qiang1,2   

  1. 1.Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Chongqing 400030, China
    2.Institute of Engineering Thermophysics, Chongqing University, Chongqing 400030, China
  • Received:2021-06-24 Revised:2021-07-28 Online:2022-06-10 Published:2022-06-21
  • Contact: WANG Hong

摘要:

静电喷雾法制备薄膜是近年来新兴的纳米材料制备工艺之一,因其具有工艺简单、材料利用率高和表面适应性强等优点而受到广泛关注。喷涂面积作为评价喷涂质量和生产效率的重要指标,由于易受外加电压、溶液性质、喷涂距离等参数的影响,在相关的生产过程中难以精确控制。为了解决这一问题,本文提出了一种预测静电喷雾沉积半径的数学模型。通过高斯定律将静电喷雾羽流等效为空间电荷场,随后对羽流外侧液滴进行受力分析,得出喷雾羽流在不同位置处的膨胀半径,即为静电喷雾的沉积半径。对比发现,模型与相关结果吻合良好。相比传统的拉格朗日方法和实验方法,该模型可快速预测各种工况下的喷涂面积,为工业生产操作和雾化器设计提供指导。

关键词: 静电喷雾, 数值模拟, 预测模型, 沉积半径, 电场力

Abstract:

The preparation of thin films by electrostatic spraying is one of the emerging nanomaterial preparation processes in recent years. It has attracted wide attention because of its simple process, high material utilization and strong surface adaptability. As an important index for evaluating spraying quality and production efficiency, spraying area is easily affected by parameters such as applied voltage, solution properties, spraying distance, etc., and is difficult to accurately control in the relevant production process. In order to solve this problem, a mathematical model for predicting the radius of electrostatic spray deposition was proposed. The electrostatic spray plume was equivalent to a space charge field by Gauss’s law, and then the force analysis of the droplets outside the plume was carried out, and the expansion radius of the spray plume at different positions was obtained, which was the deposition radius of the electrostatic spray. The comparison showed that the model was in good agreement with the related results. Compared with the traditional Lagrangian method and experimental method, the model can quickly predict the spray area under various working conditions to provide guidance for industrial production operations and atomizer design.

Key words: electrospray, numerical simulation, prediction model, deposition radius, electric force

中图分类号: 

京ICP备12046843号-2;京公网安备 11010102001994号
版权所有 © 《化工进展》编辑部
地址:北京市东城区青年湖南街13号 邮编:100011
电子信箱:hgjz@cip.com.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn