化工进展 ›› 2022, Vol. 41 ›› Issue (4): 1970-1981.DOI: 10.16085/j.issn.1000-6613.2021-0930
周亚兰1(), 闫雯1, 罗路1, 范毜仔1, 杜官本2, 赵伟刚1()
收稿日期:
2021-04-30
修回日期:
2021-06-28
出版日期:
2022-04-23
发布日期:
2022-04-25
通讯作者:
赵伟刚
作者简介:
周亚兰(1996—),女,硕士研究生,研究方向为生物质纳米多孔材料。E-mail:基金资助:
ZHOU Yalan1(), YAN Wen1, LUO Lu1, FAN Mizi1, DU Guanben2, ZHAO Weigang1()
Received:
2021-04-30
Revised:
2021-06-28
Online:
2022-04-23
Published:
2022-04-25
Contact:
ZHAO Weigang
摘要:
炭气凝胶是一种多孔纳米炭材料,具有低密度、高孔隙率、高比表面积、优异的导电性和良好的成型性能等优点,是炭材料研究的热点和重要方向。本文旨在通过阐明酚醛基炭气凝胶的制备原料和制备工艺的发展过程,从而突出未来酚醛基炭气凝胶的发展方向。基于此,本文首先重点介绍了酚醛基炭气凝胶的制备方法,主要包括溶胶-凝胶化、干燥以及炭化过程三个最主要的步骤;进而详述了以三种不同的前体,即间苯二酚、苯酚、生物质单宁/木质素分别制备酚醛基炭气凝胶的方法及其优缺点;接下来对酚醛基炭气凝胶作为吸附材料(气体吸附/液体吸附)的吸附量以及在电化学储能以及其他领域的应用进行了综述;最后对酚醛基炭气凝胶未来的研究方向和发展前景进行了总结和展望。文章指出,传统的以间苯二酚为原料辅以超临界干燥的方法制备的酚醛基炭气凝胶,原料成本较高,反应条件苛刻,实际生产应用受限;以苯酚取代间苯二酚,亦或是采用冷冻干燥等方法改进其制备工艺,可以大幅度降低原料和生产成本;但未来的发展方向和重点将是绿色、可再生的生物质原料(单宁、木质素、腰果酚等)及复合气凝胶材料的研发。因此,酚醛基炭气凝胶在未来的发展还需要进一步改进其制备工艺和方法,拓宽其原料来源,从而提高性能,扩大应用领域。
中图分类号:
周亚兰, 闫雯, 罗路, 范毜仔, 杜官本, 赵伟刚. 酚醛基炭气凝胶的研究进展[J]. 化工进展, 2022, 41(4): 1970-1981.
ZHOU Yalan, YAN Wen, LUO Lu, FAN Mizi, DU Guanben, ZHAO Weigang. Recent development of phenolic carbon aerogels: a review[J]. Chemical Industry and Engineering Progress, 2022, 41(4): 1970-1981.
4 | 张洁, 段荣帅, 李子江, 等. 生物质基碳气凝胶的研究进展[J]. 生物质化学工程, 2021, 55(1): 91-100. |
ZHANG Jie, DUAN Rongshuai, LI Zijiang, et al. Research advances on biomass derived carbon aerogel[J]. Biomass Chemical Engineering, 2021, 55(1): 91-100. | |
1 | 刘守新, 鄂雷, 李伟, 等. 炭气凝胶研究现状及其发展前景[J]. 林业工程学报, 2017, 2(2): 1-8. |
LIU Shouxin, Lei E, LI Wei, et al. A review of research progress on carbon aerogel[J]. Journal of Forestry Engineering, 2017, 2(2): 1-8. | |
2 | PEKALA R W. Organic aerogels from the polycondensation of resorcinol with formaldehyde[J]. Journal of Materials Science, 1989, 24(9): 3221-3227. |
3 | 孙超. 酚醛树脂基有机气凝胶及炭气凝胶的低成本制备及结构控制[D]. 上海: 华东理工大学, 2014. |
5 | 邓慧, 李培金, 孟庆函, 等. 碳气凝胶改性全氟磺酸质子交换膜的性能[J]. 化工进展, 2011, 30(2): 376-380. |
DENG Hui, LI Peijin, MENG Qinghan, et al. Performance of carbon aerogel modified perfluorosulfonate ion exchange membrane[J]. Chemical Industry and Engineering Progress, 2011, 30(2): 376-380. | |
6 | 王丽娜, 马晓军. 植物纤维素基碳气凝胶的制备及应用研究进展[J]. 生物质化学工程, 2021, 55(1): 83-90. |
WANG Lina, MA Xiaojun. Preparation and application progress of plant cellulose-based carbon aerogel[J]. Biomass Chemical Engineering, 2021, 55(1): 83-90. | |
7 | 段一凡, 张光磊, 史新月, 等. 纤维素气凝胶的制备与应用研究进展[J]. 陶瓷学报, 2021, 42(1): 36-43. |
DUAN Yifan, ZHANG Guanglei, SHI Xinyue, et al. Research progress in preparation and application of cellulose aerogels[J]. Journal of Ceramics, 2021, 42(1): 36-43. | |
3 | SUN Chao. Low-cost preparation and structure control of phenolic-novolac based organic aerogels and carbon aerogels[D]. Shanghai: East China University of Science and Technology, 2014. |
8 | 雷倩. 间苯二酚-甲醛基炭气凝胶的形貌控制及电化学性能研究[D]. 北京: 北京化工大学, 2016. |
LEI Qian. Morphology control and electrochemical performance of resorcinol-formaldehyde carbon aerogels[D]. Beijing: Beijing University of Chemical Technology, 2016. | |
9 | WIENER M, REICHENAUER G, SCHERB T, et al. Accelerating the synthesis of carbon aerogel precursors[J]. Journal of Non-Crystalline Solids, 2004, 350: 126-130. |
10 | JOB N, PIRARD R, MARIEN J, et al. Porous carbon xerogels with texture tailored by pH control during sol-gel process[J]. Carbon, 2004, 42(3): 619-628. |
11 | BABIĆ B, KALUĐEROVIĆ B, VRAČAR L, et al. Characterization of carbon cryogel synthesized by sol-gel polycondensation and freeze-drying[J]. Carbon, 2004, 42(12/13): 2617-2624. |
12 | KRAIWATTANAWONG K, MUKAI S R, TAMON H, et al. Preparation of carbon cryogels from wattle tannin and furfural[J]. Microporous and Mesoporous Materials, 2007, 98(1/2/3): 258-266. |
13 | KRAIWATTANAWONG K, MUKAI S R, TAMON H, et al. Improvement of mesoporosity of carbon cryogels by acid treatment of hydrogels[J]. Microporous and Mesoporous Materials, 2008, 115(3): 432-439. |
14 | DE HORIKAWA T, HAYASHI J, MUROYAMA K. Controllability of pore characteristics of resorcinol-formaldehyde carbon aerogel[J]. Carbon, 2004, 42(8/9): 1625-1633. |
15 | LI Z L, CHEN T T, WU X, et al. Nitrogen-containing high surface area carbon cryogel from co-condensed phenol-urea-formaldehyde resin for CO2 capture[J]. Journal of Porous Materials, 2019, 26(3): 847-854. |
16 | LI Z L, ZHOU Y L, YAN W, et al. Cost-effective monolithic hierarchical carbon cryogels with nitrogen doping and high-performance mechanical properties for CO2 capture[J]. ACS Applied Materials & Interfaces, 2020, 12(19): 21748-21760. |
17 | MULIK S, SOTIRIOU-LEVENTIS C, LEVENTIS N. Time-efficient acid-catalyzed synthesis of resorcinol–formaldehyde aerogels[J]. Chemistry of Materials, 2007, 19(25): 6138-6144. |
18 | BARRIOS E, FOX D, LI SIP Y Y, et al. Nanomaterials in advanced, high-performance aerogel composites: a review[J]. Polymers, 2019, 11(4): 726. |
19 | ZIEGLER C, WOLF A, LIU W, et al. Modern inorganic aerogels[J]. Angewandte Chemie International Edition, 2017, 56(43): 13200-13221. |
20 | AMARAL-LABAT G, SZCZUREK A, FIERRO V, et al. Unique bimodal carbon xerogels from soft templating of tannin[J]. Materials Chemistry and Physics, 2015, 149/150: 193-201. |
21 | KESHAVARZ L, GHAANI M R, MACELROY J M D, et al. A comprehensive review on the application of aerogels in CO2-adsorption: materials and characterisation[J]. Chemical Engineering Journal, 2021, 412: 128604. |
22 | SZCZUREK A, AMARAL-LABAT G, FIERRO V, et al. Porosity of resorcinol-formaldehyde organic and carbon aerogels exchanged and dried with supercritical organic solvents[J]. Materials Chemistry and Physics, 2011, 129(3): 1221-1232. |
23 | JOB N, PANARIELLO F, MARIEN J, et al. Synthesis optimization of organic xerogels produced from convective air-drying of resorcinol-formaldehyde gels[J]. Journal of Non-Crystalline Solids, 2006, 352(1): 24-34. |
24 | LÉONARD A, JOB N, BLACHER S, et al. Suitability of convective air drying for the production of porous resorcinol-formaldehyde and carbon xerogels[J]. Carbon, 2005, 43(8): 1808-1811. |
25 | PIERRE A C, PAJONK G M. Chemistry of aerogels and their applications[J]. Chemical Reviews, 2002, 102(11): 4243-4266. |
26 | JOB N, THÉRY A, PIRARD R, et al. Carbon aerogels, cryogels and xerogels: influence of the drying method on the textural properties of porous carbon materials[J]. Carbon, 2005, 43(12): 2481-2494. |
27 | SHEN J, GUAN D Y. Preparation and application of carbon aerogels[M]. Aerogels Handbook. New York: Springer New York, 2011: 813-831. |
28 | LIU Q, HAN Y, QIAN X C, et al. CO2 adsorption over carbon aerogels: the effect of pore and surface properties[J]. ChemistrySelect, 2019, 4(11): 3161-3168. |
29 | WANG S S, XU Y L, ZHANG L H, et al. The effect of carbonization temperature on carbon aerogels structure[J]. Key Engineering Materials, 2020, 842: 182-185. |
30 | 徐娟, 陈敏智, 周晓燕. 生物质基炭气凝胶炭基前驱体的研究进展[J]. 林产化学与工业, 2017, 37(5): 1-8. |
XU Juan, CHEN Minzhi, ZHOU Xiaoyan. Research progress of carbon precursors of biomass based carbon aerogels[J]. Chemistry and Industry of Forest Products, 2017, 37(5): 1-8. | |
31 | LEE J H, PARK S J. Recent advances in preparations and applications of carbon aerogels: a review[J]. Carbon, 2020, 163: 1-18. |
32 | KOCKLENBERG R, MATHIEU B, BLACHER S, et al. Texture control of freeze-dried resorcinol-formaldehyde gels[J]. Journal of Non-Crystalline Solids, 1998, 225: 8-13. |
33 | ALONSO-BUENAPOSADA I D, REY-RAAP N, CALVO E G, et al. Acid-based resorcinol-formaldehyde xerogels synthesized by microwave heating[J]. Journal of Sol-Gel Science and Technology, 2017, 84(1): 60-69. |
34 | WU D C, FU R W, YU Z Q. Organic and carbon aerogels from the NaOH-catalyzed polycondensation of resorcinol-furfural and supercritical drying in ethanol[J]. Journal of Applied Polymer Science, 2005, 96(4): 1429-1435. |
35 | MUKAI S R, TAMITSUJI C, NISHIHARA H, et al. Preparation of mesoporous carbon gels from an inexpensive combination of phenol and formaldehyde[J]. Carbon, 2005, 43(12): 2628-2630. |
36 | WU D C, FU R W, SUN Z Q, et al. Low-density organic and carbon aerogels from the sol-gel polymerization of phenol with formaldehyde[J]. Journal of Non-Crystalline Solids, 2005, 351(10/11): 915-921. |
37 | LONG D H, LIU X J, QIAO W M, et al. Molecular design of polymer precursors for controlling microstructure of organic and carbon aerogels[J]. Journal of Non-Crystalline Solids, 2009, 355(22/23): 1252-1258. |
38 | 易东, 刘秘, 周贵方, 等. 苯酚-三聚氰胺-甲醛气凝胶的制备与表征研究[J]. 功能材料, 2017, 48(4): 4141-4144. |
YI Dong, LIU Mi, ZHOU Guifang, et al. Preparation and characterization of phenol-melamine-formaldehyde aerogels[J]. Journal of Functional Materials, 2017, 48(4): 4141-4144. | |
39 | BRAGHIROLI F L, AMARAL-LABAT G, BOSS A F N, et al. Tannin gels and their carbon derivatives: a review[J]. Biomolecules, 2019, 9(10): 587. |
40 | 陈峰. 木质素-RF有机气凝胶的制备及其性能研究[D]. 哈尔滨: 东北林业大学, 2011. |
CHEN Feng. Preparation and properties study of organic aerogels based on lignin[D]. Harbin: Northeast Forestry University, 2011. | |
41 | 段亚军, 程岩岩, 隋光辉, 等. 木质素对木质素-脲醛共聚树脂的影响及反应机理[J]. 高等学校化学学报, 2019, 40(5): 1058-1064. |
DUAN Yajun, CHENG Yanyan, SUI Guanghui, et al. Lignin impacts on the lignin-urea-formaldehyde copolymer resin and the reaction mechanism[J]. Chemical Journal of Chinese Universities, 2019, 40(5): 1058-1064. | |
42 | GRISHECHKO L I, AMARAL-LABAT G, SZCZUREK A, et al. Lignin-phenol-formaldehyde aerogels and cryogels[J]. Microporous and Mesoporous Materials, 2013, 168: 19-29. |
43 | 羿颖, 马媛媛, 王佳楠, 等. 木质素/纤维素复合气凝胶的制备与表征[J]. 化工新型材料, 2019, 47(S1): 179-183. |
YI Ying, MA Yuanyuan, WANG Jianan, et al. Preparation and characterization of lignin/cellulose composite aerogel[J]. New Chemical Materials, 2019, 47(S1): 179-183. | |
44 | 兰平. 葡萄渣凝缩单宁的提取及单宁基胶粘剂研制[D]. 南京: 南京林业大学, 2013. |
LAN Ping. Condensed tannins extraction from grape pomace: characterization and utilization as tannin-based adhesives[D]. Nanjing: Nanjing Forestry University, 2013. | |
45 | AMARAL-LABAT G, GRISHECHKO L I, FIERRO V, et al. Tannin-based xerogels with distinctive porous structures[J]. Biomass and Bioenergy, 2013, 56: 437-445. |
46 | SZCZUREK A, AMARAL-LABAT G, FIERRO V, et al. The use of tannin to prepare carbon gels. Part Ⅰ: Carbon aerogels[J]. Carbon, 2011, 49(8): 2773-2784. |
47 | SZCZUREK A, AMARAL-LABAT G, FIERRO V, et al. The use of tannin to prepare carbon gels. Part Ⅱ. Carbon cryogels[J]. Carbon, 2011, 49(8): 2785-2794. |
48 | REY-RAAP N, SZCZUREK A, FIERRO V, et al. Advances in tailoring the porosity of tannin-based carbon xerogels[J]. Industrial Crops and Products, 2016, 82: 100-106. |
49 | MUEHLEMANN S E, HUBER L, ZHAO S Y, et al. Facile synthesis of resorcinol-melamine-formaldehyde based carbon xerogel[J]. Materials Today: Proceedings, 2018, 5(5): 13776-13784. |
50 | ROBERTSON C, MOKAYA R. Microporous activated carbon aerogels via a simple subcritical drying route for CO2 capture and hydrogen storage[J]. Microporous and Mesoporous Materials, 2013, 179: 151-156. |
51 | LI W C, REICHENAUER G, FRICKE J. Carbon aerogels derived from cresol-resorcinol-formaldehyde for supercapacitors[J]. Carbon, 2002, 40(15): 2955-2959. |
52 | HWANG S W, HYUN S H. Capacitance control of carbon aerogel electrodes[J]. Journal of Non-Crystalline Solids, 2004, 347(1/2/3): 238-245. |
53 | SZCZUREK A, JUREWICZ K, AMARAL-LABAT G, et al. Structure and electrochemical capacitance of carbon cryogels derived from phenol-formaldehyde resins[J]. Carbon, 2010, 48(13): 3874-3883. |
54 | GRISHECHKO L I, AMARAL-LABAT G, FIERRO V, et al. Biosourced, highly porous, carbon xerogel microspheres[J]. RSC Advances, 2016, 6(70): 65698-65708. |
55 | CHEN F, LI J. Synthesis and structural characteristics of organic aerogels with different content of lignin[J]. Advanced Materials Research, 2010, 113/114/115/116: 1837-1840. |
56 | 张倩, 禹筱元, 麦嘉雯, 等. 木质素酚醛基炭气凝胶的制备及电化学性能[J]. 高分子材料科学与工程, 2013, 29(4): 152-154, 159. |
ZHANG Qian, YU Xiaoyuan, Jiawen MAI, et al. Preparation and electrochemical performance of lignin-phenoic carbon aerogels[J]. Polymer Materials Science & Engineering, 2013, 29(4): 152-154, 159. | |
57 | GUARÍN-ROMERO J R, RODRÍGUEZ-ESTUPIÑÁN P, GIRALDO L, et al. Study of adsorption of CO2 and CH4 on resorcinol-formaldehyde aerogels at high pressures[J]. Journal of Chemical & Engineering Data, 2019, 64(12): 5263-5274. |
58 | REYNOLDS J G, CORONADO P R, HRUBESH L W. Hydrophobic aerogels for oil-spill cleanup? Intrinsic absorbing properties[J]. Energy Sources, 2001, 23(9): 831-843. |
59 | WANG Y, ZHU L, ZHU F Y, et al. Removal of organic solvents/oils using carbon aerogels derived from waste durian shell[J]. Journal of the Taiwan Institute of Chemical Engineers, 2017, 78: 351-358. |
60 | MARIA RAHMAN M, AKTER N, KARIM M R, et al. Optimization, kinetic and thermodynamic studies for removal of Brilliant Red (X-3B) using Tannin gel[J]. Journal of Environmental Chemical Engineering, 2014, 2(1): 76-83. |
61 | AKTER N, HOSSAIN M A, HASSAN M J, et al. Amine modified tannin gel for adsorptive removal of Brilliant Green dye[J]. Journal of Environmental Chemical Engineering, 2016, 4(1): 1231-1241. |
62 | KIM Y H, OGATA T, NAKANO Y. Kinetic analysis of palladium(Ⅱ) adsorption process on condensed-tannin gel based on redox reaction models[J]. Water Research, 2007, 41(14): 3043-3050. |
63 | NAKANO Y, TAKESHITA K, TSUTSUMI T. Adsorption mechanism of hexavalent chromium by redox within condensed-tannin gel[J]. Water Research, 2001, 35(2): 496-500. |
64 | MOON C W, KIM Y, IM S S, et al. Effect of activation temperature on CO2 capture behaviors of resorcinol-based carbon aerogels[J]. Bulletin of the Korean Chemical Society, 2014, 35(1): 57-61. |
65 | ELLO A S, YAPO J A, TROKOUREY A. N-doped carbon aerogels for carbon dioxide (CO2) capture[J]. African Journal of Pure and Applied Chemistry, 2013, 7(2): 61-66. |
66 | MARQUES L M, CARROTT P J M, CARROTT M M L R. Carbon aerogels used in carbon dioxide capture[J]. Boletín del Grupo Español del Carbón 2016, (40): 9-12. |
67 | PANDEY A P, BHATNAGAR A, SHUKLA V, et al. Hydrogen storage properties of carbon aerogel synthesized by ambient pressure drying using new catalyst triethylamine[J]. International Journal of Hydrogen Energy, 2020, 45(55): 30818-30827. |
68 | ALVARES RODRIGUES L, KOIBUCHI SAKANE K, ALVES NUNES SIMONETTI E, et al. Cr total removal in aqueous solution by PHENOTAN AP based tannin gel (TFC)[J]. Journal of Environmental Chemical Engineering, 2015, 3(2): 725-733. |
69 | MALAIKA A, MORAWA EBLAGON K, SOARES O S G P, et al. The impact of surface chemistry of carbon xerogels on their performance in phenol removal from wastewaters via combined adsorption-catalytic process[J]. Applied Surface Science, 2020, 511: 145467. |
70 | LIU Q, HE P P, QIAN X C, et al. Carbon aerogels synthesizd with cetyltrimethyl ammonium bromide (CTAB) as a catalyst and its application for CO2 capture[J]. Zeitschrift Für Anorganische Und Allgemeine Chemie, 2018, 644(3): 155-160. |
71 | XU Y, YANG Z X, ZHANG G J, et al. Excellent CO2 adsorption performance of nitrogen-doped waste biocarbon prepared with different activators[J]. Journal of Cleaner Production, 2020, 264: 121645. |
72 | WEI H M, CHEN J, FU N, et al. Biomass-derived nitrogen-doped porous carbon with superior capacitive performance and high CO2 capture capacity[J]. Electrochimica Acta, 2018, 266: 161-169. |
73 | ADIO S O, GANIYU S A, USMAN M, et al. Facile and efficient nitrogen modified porous carbon derived from sugarcane bagasse for CO2 capture: experimental and DFT investigation of nitrogen atoms on carbon frameworks[J]. Chemical Engineering Journal, 2020, 382: 122964. |
74 | CUI H M, XU J G, SHI J S, et al. Facile fabrication of nitrogen doped carbon from filter paper for CO2 adsorption[J]. Energy, 2019, 187: 115936. |
75 | MA X C, LI L Q, ZENG Z, et al. Experimental and theoretical demonstration of the relative effects of O-doping and N-doping in porous carbons for CO2 capture[J]. Applied Surface Science, 2019, 481: 1139-1147. |
76 | FANG B Z, BINDER L. A modified activated carbon aerogel for high-energy storage in electric double layer capacitors[J]. Journal of Power Sources, 2006, 163(1): 616-622. |
77 | XU Y L, REN B, WANG S S, et al. Carbon aerogels with oxygen-containing surface groups for use in supercapacitors[J]. Solid State Ionics, 2019, 339: 115005. |
78 | ZHUO H, HU Y J, TONG X, et al. Sustainable hierarchical porous carbon aerogel from cellulose for high-performance supercapacitor and CO2 capture[J]. Industrial Crops and Products, 2016, 87: 229-235. |
79 | MEZZAVILLA S, ZANELLA C, ARAVIND P R, et al. Carbon xerogels as electrodes for supercapacitors. The influence of the catalyst concentration on the microstructure and on the electrochemical properties[J]. Journal of Materials Science, 2012, 47(20): 7175-7180. |
80 | KALIJADIS A, GAVRILOV N, JOKIĆ B, et al. Composition, structure and potential energy application of nitrogen doped carbon cryogels[J]. Materials Chemistry and Physics, 2020, 239: 122120. |
81 | ZAPATA-BENABITHE Z, DIOSSA G, CASTRO C D, et al. Activated carbon bio-xerogels as electrodes for super capacitors applications[J]. Procedia Engineering, 2016, 148: 18-24. |
82 | AMARAL-LABAT G, SZCZUREK A, FIERRO V, et al. Pore structure and electrochemical performances of tannin-based carbon cryogels[J]. Biomass and Bioenergy, 2012, 39: 274-282. |
83 | SMIRNOVA A, DONG X, HARA H, et al. Novel carbon aerogel-supported catalysts for PEM fuel cell application[J]. International Journal of Hydrogen Energy, 2005, 30(2): 149-158. |
84 | WANG C, XIONG Y, FAN B T, et al. Cellulose as an adhesion agent for the synthesis of lignin aerogel with strong mechanical performance, sound-absorption and thermal Insulation[J]. Scientific Reports, 2016, 6: 32383. |
85 | WEI S, QIU X Y, AN J Q, et al. Highly sensitive, flexible, green synthesized graphene/biomass aerogels for pressure sensing application[J]. Composites Science and Technology, 2021, 207: 108730. |
86 | GUO F, JIANG Y Q, XU Z, et al. Highly stretchable carbon aerogels[J]. Nature Communications, 2018, 9(1): 881. |
87 | LONG D, CHEN Q, QIAO W, et al. Three-dimensional mesoporous carbon aerogels: ideal catalyst supports for enhanced H2S oxidation[J]. Chemical Communications, 2009(26): 3898-3900. |
88 | MOHAMMAD ZAINOL M, SAIDINA AMIN N A, ASMADI M, et al. Carbon cryogel from lignin-furfural as acid catalyst in esterification of oleic acid[M]//International Conference on Global Sustainability and Chemical Engineering (ICGSCE), 2014. Singapore: Springer Singapore, 2015: 315-322. |
[1] | 邵志国, 任雯, 许世佩, 聂凡, 许毓, 刘龙杰, 谢水祥, 李兴春, 王庆吉, 谢加才. 终温对油基钻屑热解产物分布和特性影响[J]. 化工进展, 2023, 42(9): 4929-4938. |
[2] | 李志远, 黄亚继, 赵佳琪, 于梦竹, 朱志成, 程好强, 时浩, 王圣. 污泥与聚氯乙烯共热解重金属特性[J]. 化工进展, 2023, 42(9): 4947-4956. |
[3] | 杨莹, 侯豪杰, 黄瑞, 崔煜, 王兵, 刘健, 鲍卫仁, 常丽萍, 王建成, 韩丽娜. 利用煤焦油中酚类物质Stöber法制备碳纳米球用于CO2吸附[J]. 化工进展, 2023, 42(9): 5011-5018. |
[4] | 吴亚, 赵丹, 方荣苗, 李婧瑶, 常娜娜, 杜春保, 王文珍, 史俊. 用于复杂原油乳液的高效破乳剂开发及应用研究进展[J]. 化工进展, 2023, 42(8): 4398-4413. |
[5] | 尹新宇, 皮丕辉, 文秀芳, 钱宇. 特殊浸润性材料在防治油气管道中水合物成核与聚集的应用[J]. 化工进展, 2023, 42(8): 4076-4092. |
[6] | 李海东, 杨远坤, 郭姝姝, 汪本金, 岳婷婷, 傅开彬, 王哲, 何守琴, 姚俊, 谌书. 炭化与焙烧温度对植物基铁碳微电解材料去除As(Ⅲ)性能的影响[J]. 化工进展, 2023, 42(7): 3652-3663. |
[7] | 徐沛瑶, 陈标奇, KANKALA Ranjith Kumar, 王士斌, 陈爱政. 纳米材料用于铁死亡联合治疗的研究进展[J]. 化工进展, 2023, 42(7): 3684-3694. |
[8] | 姚丽铭, 王亚琢, 范洪刚, 顾菁, 袁浩然, 陈勇. 餐厨垃圾处理现状及其热解技术研究进展[J]. 化工进展, 2023, 42(7): 3791-3801. |
[9] | 张杉, 仲兆平, 杨宇轩, 杜浩然, 李骞. 磷酸盐改性高岭土对生活垃圾热解过程中重金属的富集[J]. 化工进展, 2023, 42(7): 3893-3903. |
[10] | 许春树, 姚庆达, 梁永贤, 周华龙. 氧化石墨烯/碳纳米管对几种典型高分子材料的性能影响[J]. 化工进展, 2023, 42(6): 3012-3028. |
[11] | 杨红梅, 高涛, 鱼涛, 屈撑囤, 高家朋. 高铁酸盐处理难降解有机物磺化酚醛树脂[J]. 化工进展, 2023, 42(6): 3302-3308. |
[12] | 李若琳, 何少林, 苑宏英, 刘伯约, 纪冬丽, 宋阳, 刘博, 余绩庆, 徐英俊. 原位热解对油页岩物性及地下水水质影响探索[J]. 化工进展, 2023, 42(6): 3309-3318. |
[13] | 李栋先, 王佳, 蒋剑春. 皂脚热解-催化气态加氢制备生物燃料[J]. 化工进展, 2023, 42(6): 2874-2883. |
[14] | 张晨宇, 王宁, 徐洪涛, 罗祝清. 纳米颗粒强化传热的多级潜热储热器性能评价[J]. 化工进展, 2023, 42(5): 2332-2342. |
[15] | 陈少华, 王义华, 胡强飞, 胡坤, 陈立爱, 李洁. 电化学修饰电极在检测Cr(Ⅵ)中的研究进展[J]. 化工进展, 2023, 42(5): 2429-2438. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |