化工进展 ›› 2022, Vol. 41 ›› Issue (4): 1982-1993.DOI: 10.16085/j.issn.1000-6613.2021-0937
任首龙1(), 陆庭中2, 唐波1(), 高颖1(), 戴远哲1, 吉利1, 赵胜悟1
收稿日期:
2021-05-05
修回日期:
2021-06-28
出版日期:
2022-04-23
发布日期:
2022-04-25
通讯作者:
唐波,高颖
作者简介:
任首龙(1997—),男,硕士研究生,研究方向为高发射率陶瓷材料。E-mail:基金资助:
REN Shoulong1(), LU Tingzhong2, TANG Bo1(), GAO Ying1(), DAI Yuanzhe1, JI li1, ZHAO Shengwu1
Received:
2021-05-05
Revised:
2021-06-28
Online:
2022-04-23
Published:
2022-04-25
Contact:
TANG Bo,GAO Ying
摘要:
随着全球变暖的趋势加剧,人类生存环境受到严重威胁,发展节能环保的冷却降温技术迫在眉睫。辐射冷却材料由于其不消耗能源便可辐射散热等特性引起了国内外研究者的广泛关注,但同时其存在着制备复杂、成本较高、耐候性较差等问题,导致其在实际应用中受到限制。目前,对于各类辐射冷却材料性能的优化是辐射冷却领域的核心课题。本文从辐射冷却机理出发,对近几年来辐射冷却材料的相关研究进行归纳与总结,主要介绍了各类辐射冷却材料的设计思路,进一步阐述了辐射冷却材料应用于实际工业领域的性能情况。总结了目前辐射冷却材料仍面临的问题与发展趋势,指出进一步将不同类别的辐射冷却材料进行合理结合,以及根据当地环境特点对材料的辐射冷却特性进行完整评估将是未来研究的主要方向。辐射冷却材料的研制与应用将对我国节能减排事业做出巨大贡献。
中图分类号:
任首龙, 陆庭中, 唐波, 高颖, 戴远哲, 吉利, 赵胜悟. 辐射冷却材料研究进展[J]. 化工进展, 2022, 41(4): 1982-1993.
REN Shoulong, LU Tingzhong, TANG Bo, GAO Ying, DAI Yuanzhe, JI li, ZHAO Shengwu. Research progress on radiative cooling materials[J]. Chemical Industry and Engineering Progress, 2022, 41(4): 1982-1993.
辐射冷却材料种类 | 反射率 | 红外发射率 | 辐射冷却功率 /W·m-2 | 降温幅度 /℃ | 文献 来源 |
---|---|---|---|---|---|
超材料 | 接近1 | 0.99 | 116.6 | 12.2 | [ |
0.9 | >0.92 | 95.84 | 11.14 | [ | |
0.95 | >0.8 | 107 | 12 | [ | |
0.965 | >0.93 | >105 | 40 | [ | |
— | 0.96 | — | 5.6 | [ | |
— | 0.9 | — | 13 | [ | |
— | >0.93 | 93 | — | [ | |
聚合物 | 0.9 | >0.9 | 127 | 8.7 | [ |
— | — | 120 | 9.5 | [ | |
— | — | 300 | 2 | [ | |
0.96±0.03 | 0.97±0.02 | 96 | 6 | [ | |
0.96 | 0.95 | — | 6.2 | [ | |
0.963 | 0.78 | — | 5 | [ | |
0.51 | 0.89 | — | 15.6 | [ | |
0.95 | 0.98 | 85 | 6~8.9 | [ | |
多层薄膜材料 | 0.97 | 0.8 | 40.1±4.1 | 4.9 | [ |
0.95 | 0.85 | 88 | 20 | [ | |
0.97 | 0.75~0.77 | 100 | — | [ | |
— | — | 50~100 | 12.6 | [ | |
0.95 | 0.87 | — | 8.2 | [ | |
0.88 | — | 43 | 2.5 | [ |
表1 部分日间辐射冷却材料性能汇总
辐射冷却材料种类 | 反射率 | 红外发射率 | 辐射冷却功率 /W·m-2 | 降温幅度 /℃ | 文献 来源 |
---|---|---|---|---|---|
超材料 | 接近1 | 0.99 | 116.6 | 12.2 | [ |
0.9 | >0.92 | 95.84 | 11.14 | [ | |
0.95 | >0.8 | 107 | 12 | [ | |
0.965 | >0.93 | >105 | 40 | [ | |
— | 0.96 | — | 5.6 | [ | |
— | 0.9 | — | 13 | [ | |
— | >0.93 | 93 | — | [ | |
聚合物 | 0.9 | >0.9 | 127 | 8.7 | [ |
— | — | 120 | 9.5 | [ | |
— | — | 300 | 2 | [ | |
0.96±0.03 | 0.97±0.02 | 96 | 6 | [ | |
0.96 | 0.95 | — | 6.2 | [ | |
0.963 | 0.78 | — | 5 | [ | |
0.51 | 0.89 | — | 15.6 | [ | |
0.95 | 0.98 | 85 | 6~8.9 | [ | |
多层薄膜材料 | 0.97 | 0.8 | 40.1±4.1 | 4.9 | [ |
0.95 | 0.85 | 88 | 20 | [ | |
0.97 | 0.75~0.77 | 100 | — | [ | |
— | — | 50~100 | 12.6 | [ | |
0.95 | 0.87 | — | 8.2 | [ | |
0.88 | — | 43 | 2.5 | [ |
1 | YU X X, CHEN C. Coupling spectral-dependent radiative cooling with building energy simulation[J]. Building and Environment, 2021, 197: 107841. |
2 | LIM X. The super-cool materials that send heat to space[J]. Nature, 2020, 577(7788): 18-20. |
3 | XU Y P, XUAN Y M, LIU X L. Broadband selective tailoring of spectral features with multiple-scale and multi-material metasurfaces[J]. Optics Communications, 2020, 467: 125691. |
4 | GRANQVIST C G, HJORTSBERG A. Radiative cooling to low temperatures: general considerations and application to selectively emitting SiO films[J]. Journal of Applied Physics, 1981, 52(6): 4205-4220. |
5 | LIU L, ZHANG S Y, MA Z, et al. Effects of Ca2+-Sr2+ doping on the infrared emissivity of LaCrO3 [J]. Ceramics International, 2020, 46(12): 19738-19742. |
6 | ERIKSSON T S, HJORTSBERG A, GRANQVIST C G. Solar absorptance and thermal emittance of Al2O3 films on Al: a theoretical assessment[J]. Solar Energy Materials, 1982, 6(2): 191-199. |
7 | HARRISON A W, WALTON M R. Radiative cooling of TiO2 white paint[J]. Solar Energy, 1978, 20(2): 185-188. |
8 | BERDAHL P. Radiative cooling with MgO and/or LiF layers[J]. Applied Optics, 1984, 23(3): 370-372. |
9 | ERIKSSON T S, JIANG S J, GRANQVIST C G. Surface coatings for radiative cooling applications: silicon dioxide and silicon nitride made by reactive RF-sputtering[J]. Solar Energy Materials, 1985, 12(5): 319-325. |
10 | DIATEZUA D M, THIRY P A, DEREUX A, et al. Silicon oxynitride multilayers as spectrally selective material for passive radiative cooling applications[J]. Solar Energy Materials and Solar Cells, 1996, 40(3): 253-259. |
11 | ZHANG H W, LY K C S, LIU X H, et al. Biologically inspired flexible photonic films for efficient passive radiative cooling[J]. PNAS, 2020, 117(26): 14657-14666. |
12 | YANG J N, GAO X D, WU Y Q, et al. Nanoporous silica microspheres-ploymethylpentene (TPX) hybrid films toward effective daytime radiative cooling[J]. Solar Energy Materials and Solar Cells, 2020, 206: 110301. |
13 | HOSSAIN M M, JIA B H, GU M. A metamaterial emitter for highly efficient radiative cooling[J]. Advanced Optical Materials, 2015, 3(8): 1047-1051. |
14 | ZOU C J, REN G H, HOSSAIN M M, et al. Metal-loaded dielectric resonator metasurfaces for radiative cooling[J]. Advanced Optical Materials, 2017, 5(20): 1700460. |
15 | LIU Y N, WENG X L, ZHANG P, et al. Broadband absorption of infrared dielectric resonators for passive radiative cooling[J]. Journal of Optics, 2021, 23(2): 025102. |
16 | REPHAELI E, RAMAN A, FAN S H. Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling[J]. Nano Letters, 2013, 13(4): 1457-1461. |
17 | WU W C, LIN S H, WEI M M, et al. Flexible passive radiative cooling inspired by Saharan silver ants[J]. Solar Energy Materials and Solar Cells, 2020, 210: 110512. |
18 | ZHU L X, RAMAN A P, FAN S H. Radiative cooling of solar absorbers using a visibly transparent photonic crystal thermal blackbody[J]. PNAS, 2015, 112(40): 12282-12287. |
19 | LI W, SHI Y, CHEN Z, et al. Photonic thermal management of coloured objects[J]. Nature Communications, 2018, 9(1): 4240. |
20 | ZHAI Y, MA Y G, DAVID S N, et al. Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling[J]. Science, 2017, 355(6329): 1062-1066. |
21 | KOU J L, JURADO Z, CHEN Z, et al. Daytime radiative cooling using near-black infrared emitters[J]. ACS Photonics, 2017, 4(3): 626-630. |
22 | ZHOU L, SONG H M, LIANG J W, et al. A polydimethylsiloxane-coated metal structure for all-day radiative cooling[J]. Nature Sustainability, 2019, 2(8): 718-724. |
23 | MENG S, LONG L S, WU Z X, et al. Scalable dual-layer film with broadband infrared emission for sub-ambient daytime radiative cooling[J]. Solar Energy Materials and Solar Cells, 2020, 208: 110393. |
24 | MANDAL J, FU Y K, OVERVIG A C, et al. Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling[J]. Science, 2018, 362(6412): 315-319. |
25 | XIANG B, ZHANG R, LUO Y L, et al. 3D porous polymer film with designed pore architecture and auto-deposited SiO2 for highly efficient passive radiative cooling[J]. Nano Energy, 2021, 81: 105600. |
26 | LI D, LIU X, LI W, et al. Scalable and hierarchically designed polymer film as a selective thermal emitter for high-performance all-day radiative cooling[J]. Nature Nanotechnology, 2021, 16(2): 153-158. |
27 | CHEN Y J, MANDAL J, LI W X, et al. Colored and paintable bilayer coatings with high solar-infrared reflectance for efficient cooling[J]. Science Advances, 2020, 6(17): eaaz5413. |
28 | ZHAO D L, AILI A, ZHAI Y, et al. Subambient cooling of water: toward real-world applications of daytime radiative cooling[J]. Joule, 2019, 3(1): 111-123. |
29 | WANG T, WU Y, SHI L, et al. A structural polymer for highly efficient all-day passive radiative cooling[J]. Nature Communications, 2021, 12: 365. |
30 | ENGELHARD T, JONES E D, VINEY I, et al. Deposition of tellurium films by decomposition of electrochemically-generated H2Te: application to radiative cooling devices[J]. Thin Solid Films, 2000, 370(1/2): 101-105. |
31 | NAGHSHINE B B, SABOONCHI A. Optimized thin film coatings for passive radiative cooling applications[J]. Optics Communications, 2018, 410: 416-423. |
32 | RAMAN A P, ANOMA M A, ZHU L X, et al. Passive radiative cooling below ambient air temperature under direct sunlight[J]. Nature, 2014, 515(7528): 540-544. |
33 | MABCHOUR G, BENLATTAR M, SAADOUNI K, et al. Daytime radiative cooling purposes with selective multilayer design based on Ta2O5 [J]. Optik, 2020, 214: 164811. |
34 | KECEBAS M A, MENGUC M P, KOSAR A, et al. Passive radiative cooling design with broadband optical thin-film filters[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2017, 198: 179-186. |
35 | ZHU Y Q, WANG D, FANG C, et al. A multilayer emitter close to ideal solar reflectance for efficient daytime radiative cooling[J]. Polymers, 2019, 11(7): 1203. |
36 | CHAE D, KIM M, JUNG P H, et al. Spectrally selective inorganic-based multilayer emitter for daytime radiative cooling[J]. ACS Applied Materials & Interfaces, 2020, 12(7): 8073-8081. |
37 | FAN X C, SHI K L, XIA Z L. Using multi-layer structure to improve the radiative cooling performance[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2020, 251: 107052. |
38 | CUNHA N F, AL-RJOUB A, REBOUTA L, et al. Multilayer passive radiative selective cooling coating based on Al/SiO2/SiN x /SiO2/TiO2/SiO2 prepared by dc magnetron sputtering[J]. Thin Solid Films, 2020, 694: 137736. |
39 | WU J Y, CHEN Y X. Broadband radiative cooling and decoration for passively dissipated portable electronic devices by aperiodic photonic multilayers[J]. Annalen Der Physik, 2020, 532(5): 2000001. |
40 | YOU P, LI X, HUANG Y J, et al. High-performance multilayer radiative cooling films designed with flexible hybrid optimization strategy[J]. Materials, 2020, 13(13): 2885. |
41 | LEE G J, KIM Y J, KIM H M, et al. Colored, daytime radiative coolers with thin-film resonators for aesthetic purposes[J]. Advanced Optical Materials, 2018, 6(22): 1800707. |
42 | CAI L L, PENG Y C, XU J W, et al. Temperature regulation in colored infrared-transparent polyethylene textiles[J]. Joule, 2019, 3(6): 1478-1486. |
43 | ZHANG X A, YU S J, XU B B, et al. Dynamic gating of infrared radiation in a textile[J]. Science, 2019, 363(6427): 619-623. |
44 | WEI W, ZHU Y, LI Q, et al. An Al2O3-cellulose acetate-coated textile for human body cooling[J]. Solar Energy Materials and Solar Cells, 2020, 211: 110525. |
45 | DOBSON K D, HODES G, MASTAI Y. Thin semiconductor films for radiative cooling applications[J]. Solar Energy Materials and Solar Cells, 2003, 80(3): 283-296. |
46 | PENG Y C, CHEN J, SONG A Y, et al. Nanoporous polyethylene microfibres for large-scale radiative cooling fabric[J]. Nature Sustainability, 2018, 1(2): 105-112. |
47 | CAI L L, SONG A Y, LI W, et al. Spectrally selective nanocomposite textile for outdoor personal cooling[J]. Advanced Materials, 2018, 30(35): 1802152. |
48 | GULMINE J V, JANISSEK P R, HEISE H M, et al. Polyethylene characterization by FTIR[J]. Polymer Testing, 2002, 21(5): 557-563. |
49 | 朱丽, 陈萨如拉, 杨洋, 等. 太阳能太阳电池冷却散热技术研究进展[J]. 化工进展, 2017, 36(1): 10-19. |
ZHU Li, CHEN Sarula, YANG Yang, et al. Research progress on heat dissipation technology of photovoltaic cells[J]. Chemical Industry and Engineering Progress, 2017, 36(1): 10-19. | |
50 | ZHU L X, RAMAN A, WANG K X, et al. Radiative cooling of solar cells[J]. Optica, 2014, 1(1): 32-38. |
51 | LONG L S, YANG Y, WANG L P. Simultaneously enhanced solar absorption and radiative cooling with thin silica micro-grating coatings for silicon solar cells[J]. Solar Energy Materials and Solar Cells, 2019, 197: 19-24. |
52 | ZHU L X, RAMAN A P, FAN S H. Radiative cooling of solar absorbers using a visibly transparent photonic crystal thermal blackbody[J]. PNAS, 2015, 112(40): 12282-12287. |
53 | LI W, SHI Y, CHEN K F, et al. A comprehensive photonic approach for solar cell cooling[J]. ACS Photonics, 2017, 4(4): 774-782. |
54 | KUMAR A, CHOWDHURY A. Effect of multilayer selective radiative anti-reflective coating on crystalline silicon photovoltaics for operating temperature reduction[J]. International Journal of Sustainable Energy, 2020, 39(10): 982-996. |
55 | KUMAR A, CHOWDHURY A. Advanced radiative cooler for multi-crystalline silicon solar module[J]. Solar Energy, 2020, 201: 751-759. |
56 | 戴远哲, 唐波, 张振宇, 等. 多孔载体基水合盐相变材料热物性研究进展[J]. 精细化工, 2020, 37(9): 1755-1761, 1824. |
DAI Yuanzhe, TANG Bo, ZHANG Zhenyu, et al. Research progress of thermophysical properties of porous carrier-based hydrated salts phase change materials[J]. Fine Chemicals, 2020, 37(9): 1755-1761, 1824. | |
57 | FANG H, ZHAO D L, YUAN J C, et al. Performance evaluation of a metamaterial-based new cool roof using improved Roof Thermal Transfer Value model[J]. Applied Energy, 2019, 248: 589-599. |
58 | MANDAL J, YANG Y, YU N F, et al. Paints as a scalable and effective radiative cooling technology for buildings[J]. Joule, 2020, 4(7): 1350-1356. |
59 | ROMEO C, ZINZI M. Impact of a cool roof application on the energy and comfort performance in an existing non-residential building. A sicilian case study[J]. Energy and Buildings, 2013, 67: 647-657. |
60 | KOLOKOTRONI M, SHITTU E, SANTOS T, et al. Cool roofs: high tech low cost solution for energy efficiency and thermal comfort in low rise low income houses in high solar radiation countries[J]. Energy and Buildings, 2018, 176: 58-70. |
61 | YANG Z B, SUN H X, XI Y L, et al. Bio-inspired structure using random, three-dimensional pores in the polymeric matrix for daytime radiative cooling[J]. Solar Energy Materials and Solar Cells, 2021, 227: 111101. |
62 | VOORTHUYSEN E D M V, ROES R. Blue sky cooling for parabolic trough plants[J]. Energy Procedia, 2014, 49: 71-79. |
63 | ZEYGHAMI M, KHALILI F. Performance improvement of dry cooled advanced concentrating solar power plants using daytime radiative cooling[J]. Energy Conversion and Management, 2015, 106: 10-20. |
64 | ZHAO D L, YIN X B, XU J T, et al. Radiative sky cooling-assisted thermoelectric cooling system for building applications[J]. Energy, 2020, 190: 116322. |
65 | MATSUTA M, TERADA S, ITO H. Solar heating and radiative cooling using a solar collector-sky radiator with a spectrally selective surface[J]. Solar Energy, 1987, 39(3): 183-186. |
66 | HU M K, PEI G, WANG Q L, et al. Field test and preliminary analysis of a combined diurnal solar heating and nocturnal radiative cooling system[J]. Applied Energy, 2016, 179: 899-908. |
67 | VALL S, MEDRANO M, SOLÉ C, et al. Combined radiative cooling and solar thermal collection: experimental proof of concept[J]. Energies, 2020, 13(4): 893. |
68 | ONO M, CHEN K F, LI W, et al. Self-adaptive radiative cooling based on phase change materials[J]. Optics Express, 2018, 26(18): A777-A787. |
[1] | 王正坤, 黎四芳. 双子表面活性剂癸炔二醇的绿色合成[J]. 化工进展, 2023, 42(S1): 400-410. |
[2] | 孙玉玉, 蔡鑫磊, 汤吉海, 黄晶晶, 黄益平, 刘杰. 反应精馏合成甲基丙烯酸甲酯工艺优化及节能[J]. 化工进展, 2023, 42(S1): 56-63. |
[3] | 李梦圆, 郭凡, 李群生. 聚乙烯醇生产中回收工段第三、第四精馏塔的模拟与优化[J]. 化工进展, 2023, 42(S1): 113-123. |
[4] | 张瑞杰, 刘志林, 王俊文, 张玮, 韩德求, 李婷, 邹雄. 水冷式复叠制冷系统的在线动态模拟与优化[J]. 化工进展, 2023, 42(S1): 124-132. |
[5] | 徐晨阳, 都健, 张磊. 基于图神经网络的化学反应优劣评价[J]. 化工进展, 2023, 42(S1): 205-212. |
[6] | 王福安. 300kt/a环氧丙烷工艺反应器降耗减排分析[J]. 化工进展, 2023, 42(S1): 213-218. |
[7] | 王胜岩, 邓帅, 赵睿恺. 变电吸附二氧化碳捕集技术研究进展[J]. 化工进展, 2023, 42(S1): 233-245. |
[8] | 陈匡胤, 李蕊兰, 童杨, 沈建华. 质子交换膜燃料电池气体扩散层结构与设计研究进展[J]. 化工进展, 2023, 42(S1): 246-259. |
[9] | 李春利, 韩晓光, 刘加朋, 王亚涛, 王晨希, 王洪海, 彭胜. 填料塔液体分布器的研究进展[J]. 化工进展, 2023, 42(9): 4479-4495. |
[10] | 董佳宇, 王斯民. 超声强化对二甲苯结晶特性及调控机理实验[J]. 化工进展, 2023, 42(9): 4504-4513. |
[11] | 刘炫麟, 王驿凯, 戴苏洲, 殷勇高. 热泵中氨基甲酸铵分解反应特性及反应器结构优化[J]. 化工进展, 2023, 42(9): 4522-4530. |
[12] | 林晓鹏, 肖友华, 管奕琛, 鲁晓东, 宗文杰, 傅深渊. 离子聚合物-金属复合材料(IPMC)柔性电极的研究进展[J]. 化工进展, 2023, 42(9): 4770-4782. |
[13] | 王晨, 白浩良, 康雪. 大功率UV-LED散热与纳米TiO2光催化酸性红26耦合系统性能[J]. 化工进展, 2023, 42(9): 4905-4916. |
[14] | 朱传强, 茹晋波, 孙亭亭, 谢兴旺, 李长明, 高士秋. 固体高分子脱硝剂选择性非催化还原NO x 特性[J]. 化工进展, 2023, 42(9): 4939-4946. |
[15] | 李伯耿, 罗英武, 刘平伟. 聚合物产品工程研究内容与方法的思考[J]. 化工进展, 2023, 42(8): 3905-3909. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |