化工进展 ›› 2022, Vol. 41 ›› Issue (3): 1241-1255.DOI: 10.16085/j.issn.1000-6613.2021-2096
陈磊1(), 闫兴清1, 胡延伟1, 于帅1, 杨凯1, 陈绍云1, 关辉2(), 喻健良1(), HMAHGEREFTE Haroun3, MARTYNOV Sergey3
收稿日期:
2021-10-11
修回日期:
2021-11-15
出版日期:
2022-03-23
发布日期:
2022-03-28
通讯作者:
关辉,喻健良
作者简介:
陈磊(1990—),男,博士研究生,主要从事CO2管输安全方面的研究。E-mail:基金资助:
CHEN Lei1(), YAN Xingqing1, HU Yanwei1, YU Shuai1, YANG Kai1, CHEN Shaoyun1, GUAN Hui2(), YU Jianliang1(), MAHGEREFTEH Haroun3, MARTYNOV Sergey3
Received:
2021-10-11
Revised:
2021-11-15
Online:
2022-03-23
Published:
2022-03-28
Contact:
GUAN Hui,YU Jianliang
摘要:
管道是二氧化碳捕集、利用和封存(carbon capture, utilization, and storage,CCUS)技术产业链中输运大量二氧化碳(CO2)的最优方式,但其在运行中具有意外泄漏风险。本文从实验和计算机模拟两个方面综述了国内外开展CO2管道泄漏减压、断裂扩展的研究进展,分析了相态、管材、埋地条件等初始状态对裂纹扩展规律的影响。阐述了状态方程、杂质因素、理论模型对开展实验和模拟计算研究的影响。归纳了适用于建立减压波预测模型的状态方程,开展流固耦合研究的理论方法和模拟仿真软件,设计CO2输运管道参考的技术文档。总结了当前CO2管道泄漏减压、断裂扩展控制研究方面需深入研究的科学问题,展望了亟待开展的研究内容,包括构建多元混合物状态方程在三相点、相间线的计算模型;探究裂纹裂间处CO2热物性质与裂纹断裂扩展的耦合关系;建立管道止裂准则,开发、优化CO2输运管道专用止裂器。
中图分类号:
陈磊, 闫兴清, 胡延伟, 于帅, 杨凯, 陈绍云, 关辉, 喻健良, HMAHGEREFTE Haroun, MARTYNOV Sergey. 二氧化碳管道意外泄漏减压过程的断裂控制研究进展[J]. 化工进展, 2022, 41(3): 1241-1255.
CHEN Lei, YAN Xingqing, HU Yanwei, YU Shuai, YANG Kai, CHEN Shaoyun, GUAN Hui, YU Jianliang, MAHGEREFTEH Haroun, MARTYNOV Sergey. Research progress on fracture control of accidental leakage and decompression in CO2 pipeline transportation[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1241-1255.
1 | 王金南,严刚. 加快实现碳排放达峰 推动经济高质量发展[N]. 经济日报, 2021-01-04. |
WANG J N, YAN G. To accelerate peaking carbon emissions and promote high-quality economic development[N]. Economic Daily, 2021-01-04. | |
2 | WOOD D A. Carbon dioxide (CO2) handling and carbon capture utilization and sequestration (CCUS) research relevant to natural gas: a collection of published research (2009—2015)[J]. Journal of Natural Gas Science and Engineering, 2015, 25: A1-A9. |
3 | VERMEUL V R, AMONETTE J E, STRICKLAND C E, et al. An overview of the monitoring program design for the FutureGen 2.0 CO2 storage site[J]. International Journal of Greenhouse Gas Control, 2016, 51: 193-206. |
4 | LI Q, CHEN Z A, ZHANG J T, et al. Positioning and revision of CCUS technology development in China[J]. International Journal of Greenhouse Gas Control, 2016, 46: 282-293. |
5 | ROUSSANALY S, BUREAU-CAUCHOIS G, HUSEBYE J. Costs benchmark of CO2 transport technologies for a group of various size industries[J]. International Journal of Greenhouse Gas Control, 2013, 12: 341-350. |
6 | ROUSSANALY S, BERGHOUT N, FOUT T, et al. Towards improved cost evaluation of carbon capture and storage from industry[J]. International Journal of Greenhouse Gas Control, 2021, 106: 103263. |
7 | PRAH B, YUN R. Investigations on CO2 hydrate slurry for transportation in carbon capture and storage[J]. Journal of Mechanical Science and Technology, 2019, 33(10): 5085-5092. |
8 | 郭晓璐, 喻健良, 闫兴清, 等. 超临界CO2管道泄漏特性研究进展[J]. 化工学报, 2020, 71(12): 5430-5442. |
GUO Xiaolu, YU Jianliang, YAN Xingqing, et al. Research progress on leakage characteristics of supercritical CO2 pipeline[J]. CIESC Journal, 2020, 71(12): 5430-5442. | |
9 | 李玉星, 刘兴豪, 王财林, 等. 含杂质气态CO2输送管道腐蚀研究进展[J]. 金属学报, 2021, 57(3): 283-294. |
LI Yuxing, LIU Xinghao, WANG Cailin, et al. Research progress on corrosion behavior of gaseous CO2 transportation pipelines containing impurities[J]. Acta Metallurgica Sinica, 2021, 57(3): 283-294. | |
10 | COSHAM A, EIBER R J. Fracture control in carbon dioxide pipelines: the effect of impurities[C]//Proceedings of 2008 7th International Pipeline Conference, September 29-October 3, 2008, Calgary, Alberta, Canada. 2009: 229-240. |
11 | CHACı́N A, VÁZQUEZ J M, MÜLLER E A. Molecular simulation of the Joule-Thomson inversion curve of carbon dioxide[J]. Fluid Phase Equilibria, 1999, 165(2): 147-155. |
12 | ASHARI R, ESLAMI A. Anisotropy in mechanical properties and corrosion of X-52 pipeline steel at different pipe angles[J]. Protection of Metals and Physical Chemistry of Surfaces, 2019, 55(3): 546-553. |
13 | 陈国龙, 闫振汉, 喻健良, 等. 大规模埋地CO2管道泄漏过程中的温度场变化[J]. 安全与环境学报, 2020, 20(3): 870-877. |
CHEN Guolong, YAN Zhenhan, YU Jianliang, et al. Temperature field in the process of the buried CO2 pipeline release in large scale[J]. Journal of Safety and Environment, 2020, 20(3): 870-877. | |
14 | COSHAM A, JONES D G, ARMSTRONG K, et al. Ruptures in gas pipelines, liquid pipelines and dense phase carbon dioxide pipelines[C]//Proceedings of 2012 9th International Pipeline Conference, September 24-28, 2012, Calgary, Alberta, Canada. 2013: 465-482. |
15 | MOLAG M, DAM C. Modelling of accidental releases from a high pressure CO2 pipelines[J]. Energy Procedia, 2011, 4: 2301-2307. |
16 | WANG Cailin, LI Yuxing, TENG Lin, et al. Experimental study on dispersion behavior during the leakage of high pressure CO2 pipelines[J]. Experimental Thermal and Fluid Science, 2019, 105: 77-84. |
17 | WAREING C J, WOOLLEY R M, FAIRWEATHER M, et al. Large-scale validation of a numerical model of accidental releases from buried CO2 pipelines[M]//Computer Aided Chemical Engineering. Amsterdam: Elsevier, 2013: 229-234. |
18 | YAN Xingqing, GUO Xiaolu, YU Jianliang, et al. Flow characteristics and dispersion during the vertical anthropogenic venting of supercritical CO2 from an industrial scale pipeline[J]. Energy Procedia, 2018, 154: 66-72. |
19 | ZHANG Tian, ZHANG Wanchang, YANG Ruizhao, et al. CO2 capture and storage monitoring based on remote sensing techniques: A review[J]. Journal of Cleaner Production, 2021, 281: 124409. |
20 | MAXEY W A, KIEFNER J F, EIBER R J, et al. Ductile fracture initiation, propagation and arrest in cylindrical vessels[J]. ASTM Special Technical Publication, 1972: 70-81. DOI:10.1520/STP38819S . |
21 | ZHU X K. Review of fracture control technology for gas transmission pipelines[C]//Proceedings of 2014 10th International Pipeline Conference, September 29-October 3, 2014, Calgary, Alberta, Canada. 2014 |
22 | MUNKEJORD S T, HAMMER M. Depressurization of CO2-rich mixtures in pipes: two-phase flow modelling and comparison with experiments[J]. International Journal of Greenhouse Gas Control, 2015, 37: 398-411. |
23 | MUNKEJORD S T, AUSTEGARD A, DENG Han, et al. Depressurization of CO2 in a pipe: high-resolution pressure and temperature data and comparison with model predictions[J]. Energy, 2020, 211: 118560. |
24 | TERENZI A. Expansion waves in two-phase pipelines[C]//Proceedings of 2006 International Pipeline Conference, September 25-29, 2006, Calgary, Alberta, Canada. 2008: 59-65. |
25 | WETENHALL B, RACE J M, AGHAJANI H, et al. The main factors affecting heat transfer along dense phase CO2 pipelines[J]. International Journal of Greenhouse Gas Control, 2017, 63: 86-94. |
26 | 赵青. 含杂质CO2不同相态管输节流及减压特性研究[D]. 东营: 中国石油大学(华东), 2015. |
ZHAO Qing. Throttling process and decompression property for pipeline transportation of anthropogenic CO2 in different phase[D]. Dongying: China University of Petroleum (Huadong), 2015. | |
27 | BÖTTCHER N, TARON J, KOLDITZ O, et al. Evaluation of thermal equations of state for CO2 in numerical simulations[J]. Environmental Earth Sciences, 2012, 67(2): 481-495. |
28 | DIAMANTONIS N I, BOULOUGOURIS G C, MANSOOR E, et al. Evaluation of cubic, SAFT, and PC-SAFT equations of state for the vapor-liquid equilibrium modeling of CO2 mixtures with other gases[J]. Industrial & Engineering Chemistry Research, 2013, 52(10): 3933-3942. |
29 | COSHAM A, JONES D G, ARMSTRONG K, et al. Analysis of a dense phase carbon dioxide full-scale fracture propagation test in 24 inch diameter pipe[C]//Proceedings of 2016 11th International Pipeline Conference, September 26-30, 2016, Calgary, Alberta, Canada. 2016 |
30 | BARNETT J, COOPER R. The COOLTRANS research programme: learning for the design of CO2 pipelines[C]//Proceedings of 2014 10th International Pipeline Conference, September 29-October 3, 2014, Calgary, Alberta, Canada. 2014 |
31 | COSHAM A, JONES D G, ARMSTRONG K, et al. Analysis of two dense phase carbon dioxide full-scale fracture propagation tests[C]//Proceedings of 2014 10th International Pipeline Conference, September 29-October 3, 2014, Calgary, Alberta, Canada. 2014 |
32 | COSHAM A, JONES D G, ARMSTRONG K, et al. The decompression behaviour of carbon dioxide in the dense phase[C]//Proceedings of 2012 9th International Pipeline Conference, September 24-28, 2012, Calgary, Alberta, Canada. 2013: 447-464. |
33 | BARNETT J, COOPER R. An operator’s perspective on fracture control in dense phase CO2 pipelines[C]//Proceedings of 2016 11th International Pipeline Conference, September 26-30, 2016, Calgary, Alberta, Canada. 2016 |
34 | MASSIMO D B, ANTONIO L, ELISABETTA M, et al. Fracture propagation prevention on CO2 pipelines: full-scale experimental testing and verification approach[C]//2017 Pipeline Technology Conference, 2017. |
35 | AURSAND E, DØRUM C, HAMMER M, et al. CO2 pipeline integrity: comparison of a coupled fluid-structure model and uncoupled two-curve methods[J]. Energy Procedia, 2014, 51: 382-391. |
36 | AURSAND E, DUMOULIN S, HAMMER M, et al. Fracture propagation control in CO2 pipelines: validation of a coupled fluid-structure model[J]. Engineering Structures, 2016, 123: 192-212. |
37 | BERSTAD T, DØRUM C, JAKOBSEN J P, et al. CO2 pipeline integrity: a new evaluation methodology[J]. Energy Procedia, 2011, 4: 3000-3007. |
38 | GODBOLE A, MICHAL G, LU C, et al. Full-bore pipeline rupture as ‘transient fanno’ flow[C]//Proceedings of 2016 11th International Pipeline Conference, September 26-30, 2016, Calgary, Alberta, Canada. 2016 |
39 | LIU Xiong, GODBOLE A, LU Cheng, et al. Consequence modelling of CO2 pipeline failure[J]. Energy Procedia, 2019, 158: 5109-5115. |
40 | LIU Xiong, GODBOLE A, LU Cheng, et al. Investigation of the consequence of high-pressure CO2 pipeline failure through experimental and numerical studies[J]. Applied Energy, 2019, 250: 32-47. |
41 | WAREING C J, FAIRWEATHER M, FALLE S A E G, et al. Modelling ruptures of buried high pressure dense phase CO2 pipelines in carbon capture and storage applications—Part I. Validation[J]. International Journal of Greenhouse Gas Control, 2015, 42: 701-711. |
42 | PORTER R T J, MAHGEREFTEH H, BROWN S, et al. Techno-economic assessment of CO2 quality effect on its storage and transport: CO2 quest[J]. International Journal of Greenhouse Gas Control, 2016, 54: 662-681. |
43 | COSHAM A, EIBER R J, CLARK E B. GASDECOM: carbon dioxide and other components[C]//Proceedings of 2010 8th International Pipeline Conference, September 27-October 1, 2010, Calgary, Alberta, Canada. 2011: 777-794. |
44 | MAXEY W. Long shear fractures in CO2 lines controlled by regulating saturation, arrest pressures[J]. Oil Gas Journal, 1986, 84: 109581413. |
45 | AURSAND E, AURSAND P, HAMMER M, et al. The influence of CO2 mixture composition and equations of state on simulations of transient pipeline decompression[J]. International Journal of Greenhouse Gas Control, 2016, 54: 599-609. |
46 | BOTROS K K, GEERLIGS J, ROTHWELL B, et al. Effects of Argon as the primary impurity in anthropogenic carbon dioxide mixtures on the decompression wave speed[J]. The Canadian Journal of Chemical Engineering, 2017, 95(3): 440-448. |
47 | BOTROS K K, GEERLIGS J, ROTHWELL B, et al. Measurements of decompression wave speed in simulated anthropogenic carbon dioxide mixtures containing hydrogen[J]. Journal of Pressure Vessel Technology, 2017, 139(2): 021201. |
48 | BOTROS K K, IGI S, KONDO J. Measurements of decompression wave speed in natural gas containing 2%—8% (mole) hydrogen by a specialized shock tube[C]//Proceedings of 2016 11th International Pipeline Conference, September 26-30, 2016, Calgary, Alberta, Canada. 2016 |
49 | KUNZ O, WAGNER W. The GERG-2008 wide-range equation of state for natural gases and other mixtures: an expansion of GERG-2004[J]. Journal of Chemical & Engineering Data, 2012, 57(11): 3032-3091. |
50 | DALL’ACQUA D, TERENZI A, LEPORINI M, et al. A new tool for modelling the decompression behaviour of CO2 with impurities using the Peng-Robinson equation of state[J]. Applied Energy, 2017, 206: 1432-1445. |
51 | DRESCHER M, VARHOLM K, MUNKEJORD S T, et al. Experiments and modelling of two-phase transient flow during pipeline depressurization of CO2 with various N2 compositions[J]. Energy Procedia, 2014, 63: 2448-2457. |
52 | MUNKEJORD S T, DENG Han, AUSTEGARD A, et al. Depressurization of CO2-N2 and CO2-He in a pipe: experiments and modelling of pressure and temperature dynamics[J]. International Journal of Greenhouse Gas Control, 2021, 109: 103361. |
53 | GU Shuaiwei, LI Yuxing, TENG Lin, et al. A new model for predicting the decompression behavior of CO2 mixtures in various phases[J]. Process Safety and Environmental Protection, 2018, 120: 237-247. |
54 | GU Shuaiwei, LI Yuxing, TENG Lin, et al. An experimental study on the flow characteristics during the leakage of high pressure CO2 pipelines[J]. Process Safety and Environmental Protection, 2019, 125: 92-101. |
55 | TENG Lin, ZHANG Datong, LI Yuxing, et al. Multiphase mixture model to predict temperature drop in highly choked conditions in CO2 enhanced oil recovery[J]. Applied Thermal Engineering, 2016, 108: 670-679. |
56 | 顾帅威, 李玉星, 滕霖, 等. 小尺度超临界CO2管道小孔泄漏减压及温降特性[J]. 化工进展, 2019, 38(2): 805-812. |
GU Shuaiwei, LI Yuxing, TENG Lin, et al. Decompression and temperature drop characteristics of small-scale supercritical CO2 pipeline leakage with small holes[J]. Chemical Industry and Engineering Progress, 2019, 38(2): 805-812. | |
57 | 梁杰, 李玉星, 刘翠伟, 等. 埋地输气管道泄漏特性实验研究[J]. 化工学报, 2019, 70(4): 1635-1643. |
LIANG Jie, LI Yuxing, LIU Cuiwei, et al. Experimental study on leakage characteristics of buried gas pipelines[J]. CIESC Journal, 2019, 70(4): 1635-1643. | |
58 | TENG Lin, LIU Xiong, LI Xigui, et al. An approach of quantitative risk assessment for release of supercritical CO2 pipelines[J]. Journal of Natural Gas Science and Engineering, 2021, 94: 104131. |
59 | 喻健良, 朱海龙, 郭晓璐, 等. 超临界CO2管道减压过程中的热力学特性[J]. 化工学报, 2017, 68(9): 3350-3357, 3645. |
YU Jianliang, ZHU Hailong, GUO Xiaolu, et al. Thermodynamic properties during depressurization process of supercritical CO2 pipeline[J]. CIESC Journal, 2017, 68(9): 3350-3357, 3645. | |
60 | 喻健良, 郭晓璐, 闫兴清, 等. 工业规模CO2管道泄放过程中的压力响应及相态变化[J]. 化工学报, 2015, 66(11): 4327-4334. |
YU Jianliang, GUO Xiaolu, YAN Xingqing, et al. Pressure response and phase transition in process of CO2 pipeline release in industrial scale[J]. CIESC Journal, 2015, 66(11): 4327-4334. | |
61 | GUO Xiaolu, YAN Xingqing, ZHENG Yangguang, et al. Under-expanded jets and dispersion in high pressure CO2 releases from an industrial scale pipeline[J]. Energy, 2017, 119: 53-66. |
62 | GUO Xiaolu, YAN Xingqing, YU Jianliang, et al. Pressure responses and phase transitions during the release of high pressure CO2 from a large-scale pipeline[J]. Energy, 2017, 118: 1066-1078. |
63 | GUO Xiaolu, XU Shuangqing, CHEN Gaojun, et al. Fracture criterion and control plan on CO2 pipelines: theory analysis and full-bore rupture (FBR) experimental study[J]. Journal of Loss Prevention in the Process Industries, 2021, 69: 104394. |
64 | ELSHAHOMI A, LU Cheng, MICHAL G, et al. Decompression wave speed in CO2 mixtures: CFD modelling with the GERG-2008 equation of state[J]. Applied Energy, 2015, 140: 20-32. |
65 | PARK A, KO Y, RYU S, et al. Numerical modeling of rapid depressurization of a pressure vessel containing two-phase hydrocarbon mixture[J]. Process Safety and Environmental Protection, 2018, 113: 343-356. |
66 | LIU Bin, LIU Xiong, LU Cheng, et al. Computational fluid dynamics simulation of carbon dioxide dispersion in a complex environment[J]. Journal of Loss Prevention in the Process Industries, 2016, 40: 419-432. |
67 | LIU Bin, LIU Xiong, LU Cheng, et al. Multi-phase decompression modeling of CO2 pipelines[J]. Greenhouse Gases: Science and Technology, 2017, 7(4): 665-679. |
68 | LIU Bin, LIU Xiong, LU Cheng, et al. Decompression modelling of pipelines carrying CO2-N2 mixture and the influence of non-equilibrium phase transition[J]. Energy Procedia, 2017, 105: 4204-4209. |
69 | LIU Bin, LIU Xiong, LU Cheng, et al. A CFD decompression model for CO2 mixture and the influence of non-equilibrium phase transition[J]. Applied Energy, 2018, 227: 516-524. |
70 | LIU Xiong, MICHAL G, GODBOLE A, et al. Decompression modelling of natural gas-hydrogen mixtures using the Peng-Robinson equation of state[J]. International Journal of Hydrogen Energy, 2021, 46(29): 15793-15806. |
71 | FLECHAS T, LABOUREUR D M, GLOVER C J. A 2-D CFD model for the decompression of carbon dioxide pipelines using the Peng-Robinson and the Span-Wagner equation of state[J]. Process Safety and Environmental Protection, 2020, 140: 299-313. |
72 | JIE H E, XU B P, WEN J X, et al. Predicting the decompression characteristics of carbon dioxide using computational fluid dynamics[C]//Proceedings of 2012 9th International Pipeline Conference, September 24-28, 2012, Calgary, Alberta, Canada. 2013: 585-595. |
73 | XU B P, JIE H G. Numerical study of compressed CO2 pipeline decompression characteristics using CFD-DECOM[C]//2011 Process Safety and Environmental Protection 2011. |
74 | DE KOEIJER G, HENRIK BORCH J, DRESCHER M, et al. CO2 transport-depressurization, heat transfer and impurities[J]. Energy Procedia, 2011, 4: 3008-3015. |
75 | 谢丽华, 吉玲康, 孙志强, 等. 国内外输气管线止裂韧性的预测方法[J]. 石油工业技术监督, 2004, 20(12): 8-10. |
XIE Lihua, JI Lingkang, SUN Zhiqiang, et al. Methods used in China and other countries to predict fracture-arrest toughness of gas pipeline[J]. Technology Supervision in Petroleum Industry, 2004, 20(12): 8-10. | |
76 | WOOLLEY R M, FAIRWEATHER M, WAREING C J, et al. CO2PipeHaz: quantitative hazard assessment for next generation CO2 pipelines[J]. Energy Procedia, 2014, 63: 2510-2529. |
77 | LINTON V, LEINUM B H, NEWTON R, et al. CO2SAFE-ARREST: a full-scale burst test research program for carbon dioxide pipelines—Part 1: Project overview and outcomes of test 1[C]//Proceedings of 2018 12th International Pipeline Conference, September 24-28, 2018, Calgary, Alberta, Canada. 2018 |
78 | AURSAND P, HAMMER M, MUNKEJORD S T, et al. Pipeline transport of CO2 mixtures: models for transient simulation[J]. International Journal of Greenhouse Gas Control, 2013, 15: 174-185. |
79 | ZHU Xiaohua, DENG Zilong, LIU Weiji. Dynamic fracture analysis of buried steel gas pipeline using cohesive model[J]. Soil Dynamics and Earthquake Engineering, 2020, 128: 105881. |
80 | MICHAL G, DAVIS B, ØSTBY E, et al. CO2SAFE-ARREST: a full-scale burst test research program for carbon dioxide pipelines—Part 2: Is the BTCM out of touch with dense-phase CO2 ?[C]//Proceedings of 2018 12th International Pipeline Conference, September 24-28, 2018, Calgary, Alberta, Canada. 2018 |
81 | DAVIS B J, MICHAL G, LU C, et al. Separation characteristics of an X65 linepipe steel from laboratory-scale to full-scale fracture tests[C]//Proceedings of 2020 13th International Pipeline Conference, September 28-30, 2020, Virtual, Online. 2021 |
82 | MARTYNOV S B, TALEMI R H, BROWN S, et al. Assessment of fracture propagation in pipelines transporting impure CO2 streams[J]. Energy Procedia, 2017, 114: 6685-6697. |
83 | 任科. 超临界二氧化碳管道断裂理论和控制方法研究[D]. 西安: 西安石油大学, 2018. |
REN Ke. Study on theory and control method of supercritical carbon dioxide pipe fracture[D]. Xi’an: Xi’an Shiyou University, 2018. | |
84 | HU Qihui, ZHANG Nan, LI Yuxing, et al. A new model for calculation of arrest toughness in the fracture process of the supercritical CO2 pipeline[J]. ACS Omega, 2021, 6(26): 16804-16815. |
85 | AURSAND E, AURSAND P, BERSTAD T, et al. CO2 pipeline integrity: a coupled fluid-structure model using a reference equation of state for CO2 [J]. Energy Procedia, 2013, 37: 3113-3122. |
86 | 金峤, 孙泽宇, 孙威. 内压波动下的CO2管道轴向表面裂纹疲劳扩展研究[J]. 工程力学, 2015, 32(5): 84-93. |
JIN Qiao, SUN Zeyu, SUN Wei. Study on fatigue crack growth in CO2 pipelines with an axial surface crack under pulsating internal pressure[J]. Engineering Mechanics, 2015, 32(5): 84-93. | |
87 | KEIM V, MARX P, NONN A, et al. Fluid-structure-interaction modeling of dynamic fracture propagation in pipelines transporting natural gases and CO2-mixtures[J]. International Journal of Pressure Vessels and Piping, 2019, 175: 103934. |
88 | KEIM V, NONN A, MÜNSTERMANN S. Application of the modified Bai-Wierzbicki model for the prediction of ductile fracture in pipelines[J]. International Journal of Pressure Vessels and Piping, 2019, 171: 104-116. |
89 | KEIM V, PAREDES M, NONN A, et al. FSI-simulation of ductile fracture propagation and arrest in pipelines: comparison with existing data of full-scale burst tests[J]. International Journal of Pressure Vessels and Piping, 2020, 182: 104067. |
90 | OKODI A, LIN Meng, YOOSEF-GHODSI N, et al. Crack propagation and burst pressure of longitudinally cracked pipelines using extended finite element method[J]. International Journal of Pressure Vessels and Piping, 2020, 184: 104115. |
91 | TALEMI R H, BROWNB S, MARTYNOV S, et al. Assessment of brittle fractures in CO2 transportation pipelines: a hybrid fluid-structure interaction model[J]. Procedia Structural Integrity, 2016, 2: 2439-2446. |
92 | TALEMI R, COOREMAN S, MAHGEREFTEH H, et al. A fully coupled fluid-structure interaction simulation of three-dimensional dynamic ductile fracture in a steel pipeline[J]. Theoretical and Applied Fracture Mechanics, 2019, 101: 224-235. |
93 | TALEMI R H, BROWN S, MARTYNOV S, et al. Hybrid fluid-structure interaction modelling of dynamic brittle fracture in steel pipelines transporting CO2 streams[J]. International Journal of Greenhouse Gas Control, 2016, 54: 702-715. |
94 | ZHEN Ying, ZU Yizhen, CAO Yuguang, et al. Effect of accurate prediction of real-time crack tip position on dynamic crack behaviors in gas pipeline[J]. Journal of Natural Gas Science and Engineering, 2021, 94: 104136. |
95 | KAWAGUCHI S, MURAI K, HASHIMOTO Y, et al. Full-scale burst tests of ultra-high pressured rich-gas pipelines under buried and unburied conditions[C]//Proceedings of 2008 7th International Pipeline Conference, September 29-October 3, 2008, Calgary, Alberta, Canada. 2009: 327-336. |
96 | BOTROS K K, CLAVELLE E J, UDDIN M, et al. Next generation ductile fracture arrest analyses for high energy pipelines based on detail coupling of CFD and FEA approach[C]//Proceedings of 2018 12th International Pipeline Conference, September 24-28, 2018, Calgary, Alberta, Canada. 2018 |
97 | WILKOWSKI G, RUDLAND D, ROTHWELL B. How to optimize the design of mechanical crack arrestors[C]//Proceedings of 2006 International Pipeline Conference, September 25-29, 2006, Calgary, Alberta, Canada. 2008: 393-405. |
98 | MAZURKIEWICZ L, TOMASZEWSKI M, MALACHOWSKI J, et al. Experimental and numerical study of steel pipe with part-wall defect reinforced with fibre glass sleeve[J]. International Journal of Pressure Vessels and Piping, 2017, 149: 108-119. |
99 | ABEELE F VAN DEN, AMLUNG L, DI BIAGIO M, et al. Towards a numerical design tool for composite crack arrestors on high pressure gas pipelines[C]//Proceedings of 2010 8th International Pipeline Conference, September 27-October 1, 2010, Calgary, Alberta, Canada. 2011: 359-368. |
100 | KING G G, KUMAR S. Designing CO2 transmission pipelines without crack arrestors[C]//Proceedings of 2010 8th International Pipeline Conference, September 27-October 1, 2010, Calgary, Alberta, Canada. 2011: 923-934. |
101 | LYONS C J, RACE J M, WETENHALL B, et al. Assessment of the applicability of failure frequency models for dense phase carbon dioxide pipelines[J]. International Journal of Greenhouse Gas Control, 2019, 87: 112-120. |
102 | LU Hongfang, MA Xin, HUANG Kun, et al. Carbon dioxide transport via pipelines: a systematic review[J]. Journal of Cleaner Production, 2020, 266: 121994. |
103 | 闫兴清, 李佳桐, 喻健良, 等. 超临界/密相二氧化碳长输管道内径计算方法探讨[J]. 石油化工设备, 2020, 49(4): 22-26. |
YAN Xingqing, LI Jiatong, YU Jianliang, et al. Discussion on inner diameter calculation methods of supercritical/dense carbon dioxide long-distance transportation pipeline[J]. Petro-Chemical Equipment, 2020, 49(4): 22-26. | |
104 | SKOVHOLT O. CO2 transportation system[J]. Energy Conversion and Management, 1993, 34(9/10/11): 1095-1103. |
105 | MCCOY S. The economics of CO2 transport by pipeline and storage in saline aquifers and oil reservoirs[D]. Pittsburgh:Carnegie Mellon University, 2008. |
106 | ZHAO Dongya, TIAN Qunhong, LI Zhaomin, et al. A new stepwise and piecewise optimization approach for CO2 pipeline[J]. International Journal of Greenhouse Gas Control, 2016, 49: 192-200. |
107 | VALLURI S, CLAREMBOUX V, KAWATRA S. Opportunities and challenges in CO2 utilization[J]. Journal of Environmental Sciences, 2022, 113: 322-344. |
108 | ONYEBUCHI V E, KOLIOS A, HANAK D P, et al. A systematic review of key challenges of CO2 transport via pipelines[J]. Renewable and Sustainable Energy Reviews, 2018, 81: 2563-2583. |
[1] | 杨寒月, 孔令真, 陈家庆, 孙欢, 宋家恺, 王思诚, 孔标. 微气泡型下向流管式气液接触器脱碳性能[J]. 化工进展, 2023, 42(S1): 197-204. |
[2] | 王胜岩, 邓帅, 赵睿恺. 变电吸附二氧化碳捕集技术研究进展[J]. 化工进展, 2023, 42(S1): 233-245. |
[3] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[4] | 郑谦, 官修帅, 靳山彪, 张长明, 张小超. 铈锆固溶体Ce0.25Zr0.75O2光热协同催化CO2与甲醇合成DMC[J]. 化工进展, 2023, 42(S1): 319-327. |
[5] | 戴欢涛, 曹苓玉, 游新秀, 徐浩亮, 汪涛, 项玮, 张学杨. 木质素浸渍柚子皮生物炭吸附CO2特性[J]. 化工进展, 2023, 42(S1): 356-363. |
[6] | 孙玉玉, 蔡鑫磊, 汤吉海, 黄晶晶, 黄益平, 刘杰. 反应精馏合成甲基丙烯酸甲酯工艺优化及节能[J]. 化工进展, 2023, 42(S1): 56-63. |
[7] | 吴正浩, 周天航, 蓝兴英, 徐春明. 人工智能驱动化学品创新设计的实践与展望[J]. 化工进展, 2023, 42(8): 3910-3916. |
[8] | 王耀刚, 韩子姗, 高嘉辰, 王新宇, 李思琪, 杨全红, 翁哲. 铜基催化剂电还原二氧化碳选择性的调控策略[J]. 化工进展, 2023, 42(8): 4043-4057. |
[9] | 刘毅, 房强, 钟达忠, 赵强, 李晋平. Ag/Cu耦合催化剂的Cu晶面调控用于电催化二氧化碳还原[J]. 化工进展, 2023, 42(8): 4136-4142. |
[10] | 黄玉飞, 李子怡, 黄杨强, 金波, 罗潇, 梁志武. 光催化CO2和CH4重整催化剂研究进展[J]. 化工进展, 2023, 42(8): 4247-4263. |
[11] | 娄宝辉, 吴贤豪, 张驰, 陈臻, 冯向东. 纳米流体用于二氧化碳吸收分离研究进展[J]. 化工进展, 2023, 42(7): 3802-3815. |
[12] | 白亚迪, 邓帅, 赵睿恺, 赵力, 杨英霞. 变温吸附碳捕集机组标准化测试方案探讨及性能实验[J]. 化工进展, 2023, 42(7): 3834-3846. |
[13] | 李蓝宇, 黄新烨, 王笑楠, 邱彤. 化工科研范式智能化转型的思考与展望[J]. 化工进展, 2023, 42(7): 3325-3330. |
[14] | 王俊杰, 潘艳秋, 牛亚宾, 俞路. 分子水平催化重整装置模型构建及应用[J]. 化工进展, 2023, 42(7): 3404-3412. |
[15] | 杨许召, 李庆, 袁康康, 张盈盈, 韩敬莉, 吴诗德. 含Gemini离子液体低共熔溶剂热力学性质[J]. 化工进展, 2023, 42(6): 3123-3129. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |